
Some results about generalisation of graphs
embedded in metric spaces

V. Estruch C. Ferri J. Hernández-Orallo M.J. Ramı́rez-Quintana

DSIC, Univ. Politècnica de València , Camı́ de Vera s/n, 46020 València, Spain.
{vestruch,cferri,jorallo,mramirez}@dsic.upv.es

Abstract. Distances and similarity functions between structured data-
types, such as graphs, have been widely employed in machine learning
since they are able to identify similar cases or prototypes from which
decisions can be made. In these distance-based methods the justification
of the labelling of a new case a is usually based on expressions such as
“label(a)=label(b) because case a is similar to case b”. However, a more
general or meaningful pattern, such as “because case a has properties
x and y (as b has)” is usually more difficult to find. Furthermore, the
connection of this pattern with the original distance-based method might
be unclear, or even inconsistent. The relationship between the concept of
distance (or similarity), generalisation and pattern languages has been
studied in a general way in [5]. In this paper we analyse the particular
case of graphs embedded in metric spaces. We also study how to char-
acterise consistent generalisation operators for one given metric space of
graphs. Then, we analyse some properties related to the pattern language
and the metric space employed.

Keywords: distance-based methods, generalisation operators, graph-based rep-
resentation, graph-edit distance, metric spaces.

1 Introduction

While in some learning problems the data can be described by a single-fixed
row of nomimal or numerical attributes, in most others, especially from new
challenging scenarios such as biomedicine and web mining, a more expressive
representation language is needed. In fact, in many cases, the data can be di-
rectly represented as a graph. For instance, in molecule classification, the labelled
vertices of the graph would correspond to atoms and the edges to chemical bonds.

In general, for structured-data domains (e.g. graph-based instances), those
properties inherent to the sort of data (e.g. common subgraphs, trees, cycles,
etc.), might be important to achieve a competitive solution. For this reason,
the approaches based on flattening the structured data in order to obtain a
propositional representation might not be suitable for this kind of problems since
propositionalisation implies the loss of the original data structure. In addition,
other drawbacks of these techniques is that flattening data could not be a trivial

task, specially when data is highly-structured as it happens in web mining or in
molecule classification.

This circumstance has motivated that some learning techniques which di-
rectly deal with structured data have been developed (multi-relational data
mining [3]). Among them, we focus on distance-based methods, which unlike
the ILP approaches, do not give an explanation of their predictions.

Roughly speaking, it is due to the matches between two objects (e.g. two
molecules) are encoded by a number (their distance). Unfortunately, model
comprehensibility would be useful in some contexts. Imagine, for instance, in
molecule classification, how interesting it would be to describe a cluster of
molecules by saying what chemical structures these molecules have in common
instead of saying that they are closed according to a certain distance measure
used in the clustering process. Providing the possibility of this kind of descrip-
tions for a distance-based algorithm would imply to incorporate a pattern lan-
guage and some generalisation operators such that the patterns would be seen
as comprehensible explanations of the generalisations. But in this case, an im-
mediate issues arises: the model (expressed in a hopeful comprehensible pattern
language) which generalises a set of elements could not be consistent with the
distance employed.

Initially, the issue above was considered in [4] by introducing the notion of
distance-based binary generalisations. In [5], a more general framework in order
to handle n-ary generalisation operators and to introduce the notion of minimal
distance-based generalisations is presented.

In this paper, we use some of the concepts introduced in [5], to study general-
isation operators and pattern languages for graph-based representations embed-
ded in metric spaces. For this purpose, we consider two graph distance functions:
the first one is described in [2], and then we propose a second distance which
is a bit more general. Next, a pattern language for graphs is introduced. This
language is utilised to represent, in a comprehensible way, the generalisation
computed by the generalisation operator. Next, for each metric space, a special
kind of generalisation operator is defined according to our framework. From these
generalisation operators, we will show that some interesting aspects such as the
complexity of the metric space and the expressivity of the pattern language will
be deduced.

The paper is organised as follows. Section 2 presents both the notation and
the concepts of graphs used through this paper. Our generalisation setting is
introduced in Section 3 and it is applied in Section 4, when data is represented
by means of graphs. Finally, we finish with some conclusions and future lines of
work in Section 5.

2 Preliminaries

In this section we briefly review some basic concepts about graphs and graph
distances. For any concept not explicitly included we refer the reader to [2].

A graph is a 4-tuple G = (V,E, µ, ν) where V is a finite set of vertices, E is
a set of edges (each one denoted as a pair of vertices belonging to V × V), and
µ and ν are functions which assign labels to vertices and edges respectively. The
number of nodes of a graph G = (V,E, µ, ν) is given by |V | and it is denoted as
|VG|. The number of edges of a graph G is given by |E| and is denoted as |EG|.
Given a graph G = (V,R, µ, ν), a subgraph of G is a graph S = (VS , ES , µS , νS)
such that VS ⊆ V , ES ⊆ E ∩ (VS × VS), and µS and νS are the restrictions of
µ and ν to VS and ES respectively, that is µS(v) = µ(v) (res. νS(e) = ν(e)) if
v ∈ VS (res. e ∈ ES) and undefined in otherwise.

Two graphs G1 = (V1, E1, µ1, ν1) and G2 = (V2, E2, µ2, ν2) are isomorphic
if there is a bijection φ : V1 → V2 such that for every pair of vertices vi, vj ∈
V1, (vi, vj) ∈ E1, if and only if (φ(vi), φ(vj)) ∈ E2 and φ(vi), φ(vj) ∈ V2. Let G,
G1 and G2 be graphs. G is a common subgraph of G1 and G2 if it is a subgraph
of G1 and G2. A common subgraph G of G1 and G2 is maximal, denoted as
mcs(G1, G2), if there exists no other common subgraph G′ that has more nodes
than G. A subgraph G1 of a graph G = (V,E, µ, ν) is said to be induced by
a set of vertices W ⊆ V if for any pair of vertices w1 and w2 of W , (w1, w2)
is an edge of G1 if and only if (w1, w2) ∈ E, that is, G1 is isomorphic to G.
The concepts of common subgraph and maximal common subgraph are trivially
extended to subgraphs induced by a set of vertices. We will call vimcs(G1, G2)
to the maximal common subgraph of G1 and G2 induced by a set of vertices.
Figure 1 illustrates with an example the above concepts. Note that, in general,
there can be more than one maximal common subgraph induced by a set of
vertices.

b

a

aa

a

a
a

a

aa

G1

b

G2

aa

a a

a
a

a

a a

a

Fig. 1. G1 is the maximal common subgraph of G1 and G2 whereas the sub-
graphs marked with dashed points and lines are the two maximal common
subgraphs of G1 and G2 induced by a set of vertices.

In [2] a graph distance based on the maximal common subgraph is introduced.
We call this distance d1 and it is defined in terms of the minimal cost mapping

transforming one graph into other. It is shown in [2], that the distance d1 of two
graphs G1 and G2 can be expressed as:

d1(G1, G2) = |VG1 |+ |VG2 | − 2|Vvimcs(G1,G2)|

By modifying the definition of cost mapping employed in [2] we have derived
a more general distance d2 which can be calculated as:

d2(G1, G2) = |VG1 |+ |VG2 | − 2|Vmcs(G1,G2)|+ |EG1 |+ |EG2 | − 2|Emcs(G1,G2)|

Regarding the graphs G1 and G2 in Figure 1, we have |VG1 | = |VG2 | = 5,
|EG1 | = 5, |EG2 | = 6, Vmcs(G1,G2) = 5, Emcs(G1,G2) = 5 and Vvimcs(G1,G2) = 4.
Hence, d1(G1, G2) = 2 and d2(G1, G2) = 1.

Note that the computation of both distances is an NP problem because the
computation of mcs is needed. However, we are not interested in its calculus
but we will use them to illustrate that extracting meaningful patterns when the
distance d2 is used, is easier than using the distance d1.

3 Distance-based generalisation operators

In this section we present the main concepts related to our proposal of a gen-
eralisation framework based on distances. For a more detailed presentation see
[5].

Our approach aims to define generalisation operators for data embedded in a
metric space (X, d). These operators are denoted as ∆(E), where E is a finite set
of elements (|E| > 2) of X to be generalised. In principle, a generalisation of E
will be a particular set in 2X containing E. But, for the sake of comprehensibility,
the generalisation computed by ∆(E) will be expressed by a pattern p belonging
to a pattern language L. In fact, every pattern p represents a set of elements of
X and it is denoted by Set(p). In this way, we can say that an element x ∈ X is
covered by a pattern p, if x ∈ Set(p).

Additionally, if for every E, ∆(E) computes a generalisation of E “explain-
ing” the distances among the elements of E, we will say that ∆ is a distance-based
generalisation operator. Then, the objective will be to find possible distance-
based generalisation operators for the metric space (X, d).

For this purpose, we will focus on a particular kind of metric spaces, the con-
nected ones. Informally speaking, this property means that given two elements
in the metric space, we can always go from one to the other one through elements
belonging to the space such that these elements are at a minimal distance. In
order to formally define what a connected space is, we need to introduce the
notion of δ-path and the length of a δ-path.

Given a metric space (X, d), I(X) = inf{d(x, y) : ∀x, y ∈ X, x 6= y} denotes
the infimum distance of X. Let δ be a real positive number such that δ ≥ I(X).
Then,

– if I(X) > 0, a δ − path is a sequence of elements P = {xi}n>0
i=0 ,∀xi ∈ X, if

d(xi, xi+1) ≤ δ for all 0 ≤ i ≤ n− 1.

– if I(X) = 0, a δ − path is a sequence of elements P belonging to X if P is
the image of a continuous function γ defined over the closed interval [0, 1] if
the space is continuous or over the rational number in [0, 1] otherwise, such
that γ([0, 1]) = P .

If P = {xi}n>0
i=0 , xi ∈ X is a δ − path then the length of P , denoted as L(P), is

defined as follows:

L(P) =
{∑n−1

i=0 d(xi, xi+1), if δ > 0
sup{

∑n−1
i=0 d(γ(ti), γ(ti+1)) : ∀n ∈ N, 0 = t0 < · · · < tn = 1}, if δ = 0

Let (X, d) be a metric space, two elements x, y ∈ X are connected by a δ-path
or equivalently, are δ-path connected, if there exists a δ-path P = {xi}n>0

i=0 such
that x0 = x and xn = y. Next, we will say that X is a connected metric space,
if for every pair of elements x and y belonging to X, they are δ-path connected
with δ ≥ I(X). From this definition, we can say that a set S ⊆ X is connected,
if for every pair of elements in S they are δ-path connected, being δ = I(X). In
what follows, we will use the term of x-connected space meaning that the metric
space is connected and its I(·) = x.

The notion of connected spaces and sets plays a fundamental role in our
approach since it permits us to reject much too specific generalisations (see
Example 1).

Example 1. Let us suppose we are clustering graphs with the distance d1 defined
in Section 2. Imagine that each graph represents an organic compound and we
would be interested in extracting some patterns saying which kind of molecules
can be found in a cluster. One of the obtained clusters consisting of two molecules
(m1 and m2) is depicted on the top Figure 2.

Let us obtain a pattern explaining the data distribution in this cluster. For
this purpose, one could think on the pattern p (bottom-right Figure 2) saying
all the molecules with a cyclopropane structure and an extra atom. But, is this
pattern much too specific? Considering that the molecules are really graphs in
the space (G, d1), we could consider that the pattern p overfits the data since
the cyclopropane molecule, which would be placed in the“middle”1 of m1 and
m2, that is, d1(m1, cyclopropane) = d1(cyclopropane,m2) = 1, is not covered
by this pattern. Perhaps, a more natural pattern would be that one saying “all
the molecules built from cyclopropane”.

The last reasoning can be modelled in terms of connections. We know that
(G, d1) is a 1-connected space (see Proposition 1 in Appendix), and clearly, the
set given by Set(p) is not connected because the elements m1 and m2 are not con-
nected by means of a 1-path included in Set(p). That is, m1 and m2 are, at least,
2-path connected since d1(m1,m2) = 2. However, Set(“all the molecules built
from cyclopropane”) would be connected.

Now, we are in conditions of introducing the formal definition of a generali-
sation operator.
1 Formally, given three elements x, y and z belonging to a metric space (X, d), we say

that z is in the ”middle” of x and y if d(x, y) = d(x, z) + d(z, y).

m

2

Cl

CH2

CH2

CH2CH2

CH2

Br

: Chlorine−cyclopropanem1

CH2CH2

CH2

 Cyclopropane
CH2CH2

CH2

X1

pattern p

: Bromine−cyclopropane2

CH

Fig. 2. The pattern p does not cover the cyclopropane molecule.

Definition 1. (Generalisation operator) Let (X, d) be a connected metric
space and let L be a pattern language. For every finite set E of elements in X,
a generalisation operator ∆ is a function ∆ : E → p ∈ L such that E ⊂ Set(p)
and Set(p) is a connected set.

Note that this latter definition permits to avoid some specific generalisations
but does not ensure that the generalisation computed by ∆ informs about the
distances among the elements in E. In other words, given two elements x, y ∈ X,
we could find a connected set covering x and y but excluding those elements
z ∈ X placed in the middle of x and y.

In order to define distance-based generalisations, the concept of ”nerve” of
a set of elements E is needed. In this way, a nerve of E, denoted by N(E), is
simply a connected2 graph whose nodes are the elements belonging to E.

Definition 2. (Distance-based generalisation operator) Let (X, d) be a
connected metric space and let L be a pattern language. Given a generalisation
operator ∆, we will say that ∆ is a (proper or hard) distance-based generalisation
operator if, for every E ⊆ X, there exists a nerve N(E) such that,

– (proper) For every pair of elements x, y in E such that they are directly
linked in N(E), ∆(E) includes some I(X)-path P connecting x and y such
that d(x, y) = L(P).

– (hard) For every pair of elements x, y in E such that they are directly
linked in N(E), ∆(E) includes all I(X)-path P connecting x and y such
that d(x, y) = L(P).

2 Here, the term connected refers to the well-known property for graphs.

Definition 2 can be difficult to understand. Let us see an example with a
binary sets of elements E = {x, y}. In this case a proper distance-based operator
will be that one computing a generalisation of E which includes some of the paths
built from the elements placed at the “middle” of x and y. The generalisation is
hard, if it includes all the paths built from the elements placed at the “middle”
of x and y. In what follows, we will refer to them as proper or hard operators.
On the other hand, independently to the operator, we can say that a pattern
generalises E in a proper or a hard way if Set(p) satisfies the conditions above
(for further details see [5]).

The distinction between proper and hard is due to the fact that hard gen-
eralisations explains the distance among the elements better than the proper
ones because it takes into account all the middle elements of two given elements
and not only some of then as proper generalisations do. In fact, in some cases,
proper generalisations do not always have an intuitive interpretation in terms of
the distance involved, as we will see in next section.

4 Generalising set of graphs

In this section, we study some distance-based generalisation operators for graphs
embedded in the metric spaces (G, d1) and (G, d2).

The process is as follows. First, for each metric space and using the pattern
language L that will be further defined, we try to characterise which conditions
a generalisation operator must satisfy to be a hard operator. From these hard
operators we will study two important aspects: i) how expressive our pattern
language is, and ii) how complicated the metric space is in order to compute
patterns which inform about the distance between a group of elements. Finally,
some patterns, leading to proper generalisations, will be examined as well.

The pattern language L we are working with is composed of two types of
patterns: the first-kind (L1) and the second-kind (L2) patterns. The so-called
first-kind patterns will be a set of graphs built from an alphabet of labels contain-
ing constant and variable symbols. Regarding the second-kind patterns, these are
expressed in terms of the first ones and they are specially introduced to improve
the expressiveness of (L1).

Definition 3. (First-kind patterns (L1)) Given G the set of all the graphs
over an alphabet of constant symbols A. If X is a set of variable symbols such
that for all Xi ∈ X, Xi represents any constant symbol in A, then the language
of first-kind patterns (L1) is defined as the set of all the graphs over the alphabet
A ∪X.

Roughly speaking, the first-kind pattern is the intensional representation of a
set of graphs sharing a particular topological structure, just as we show in the
following example.

Example 2. Given the first-kind pattern language (L1) defined from the set of
constant symbols A = {a, b} and the set of variable symbols X = {X1, . . . , Xn, . . .},
consider the patterns p1 in Figure 3.

Fig. 3. A first-kind pattern representing a finite set of graphs.

This pattern represents only those graphs g in G made up of one edge and
two vertices being one vertex labelled by the symbol a.

Although L1 permits quite interesting patterns, it still possesses some limita-
tions. That is, imagine that we want to denote all the graphs in G having a
subgraph in common. Despite the fact that this request seems usual, there is no
pattern in L1 expressing it. For this reason, the class of the second-kind patterns
is introduced.

Definition 4. (Second-kind patterns L2) Given the language of the the first-
kind patterns L1, the language of the second-kind patterns L2 is defined as, L2 =
{[p] : ∀p ∈ L1} ∪ {>}, where [p] denotes all the graphs g in G having a subgraph
covered by p and > denotes the whole space G.

Example 3. The second-kind pattern p depicted in Figure 4 represents the set
of all the graphs in G containing the path3 a− a− b.

Next, lest us define distance-based generalisation operators for (G, d1) and (G, d2)
via L.

4.1 Generalisation operators for (G, d1)

Before defining a generalisation operator, we have proved that the metric space
(G, d1) is a 1-connected metric space (see Proposition 1 in Appendix).

Now, let us characterise hard generalisation operators in (G, d1) using L.
Note that, for every finite set of graphs {gi}n>2

i=1 in G, an operator ∆({gi}n>2
i=1)

will return a pattern belonging either to L1 or to L2. It can be shown that first-
kind patterns do not represent connected sets (see Proposition 2 in Appendix)
and therefore, according to Definition 1 they cannot represent a set computed
by a generalisation operator. Then, the only possibility is that ∆ computes a

3 The concept of path referred here, is the well-known concept of path of a graph.

p

a

b

a aa

b

a a

a b

a a

a b

a a

a b

a a

a b

a a

a b

a a

a b

aa

b

e1 e2 e3 e4

e5 e7 e8e6

...

]= [

Fig. 4. An example of second-kind pattern using the notation [·].

second-kind pattern. Thus, a hard operator is given by (see Proposition 5 in
Appendix):

∆({gi}n>2
i=1) =

{
[p] if conditions (1) and (2) holds
> otherwise.

where conditions (1) and (2) are:
(1) p is a subgraph of the mcs({ri}n

i=1), where mcs({ri}n
i=1) 6= ∅ and each

ri denotes one of the possible vimcs({gi}n≥2
i=n).

(2) there exists a nerve N({gi}n≥2
i=n) such that for every pair of graphs, gi

and gj , directly linked in the nerve N , all the possible vimcs(gi, gj) are included
in {ri}n

i=1.
As we can appreciate, the above conditions are extremely restrictive. For

instance, regarding the two graphs depicted in the Figure 1, the pattern [a− b]
generalises G1 and G2 since they have the edge a− b in common. However, this
pattern is not hard because the common squared subgraph is a middle element
of G1 and G2 but it is not covered by the pattern. In fact, p does not satisfy
condition (1) since [a − b] is not a common subgraph of the vicms(G1, G2).
This fact gives us an idea about how difficult is computing hard operators in
this space. Imaging an algorithm implementing ∆, this would have to check if
a subgraph of a set of graphs G is in its turn a subgraph of the vicms(G).
According to this observation, the algorithms in the literature approaching the
maximum common subgraph among a set of graphs [1] can not be used as an
implementation of ∆ because it can not be ensured that the returned subgraph
belongs to the intersection of the vicms.

Another possibility is to use proper patterns, but in some cases it occurs that
these do not explain the distance between two elements in a satisfactory way.
This is shown in Figure 5. Both graphs have the subgraph g1 in common, but by
applying d1, only one of the edges of g1 is used to compute the distance between
g1 and g2. Therefore, the pattern [g1] does not completely justify why the graphs
are at this distance.

a

g1 g2

c

a

c

aa a

a

Fig. 5. Proper patterns in (G, d1).

According to the definition of ∆, if the mcs(ri
n>2
i=1) is empty, the operator

returns >. This happens even when there exist subgroups of graphs in the set
having some features in common (see left Figure 6). Although > is hard, it is
not very useful because it is excessively general. This issue is treated with more
detail in [5].

g1

c

a

d

a

a

g2

c

a

f

a

a

g3

d

f

w1
c

a

a

a

w2
d

w3
f

Fig. 6. A finite set of graphs belonging to (G, d1).

In Figure 6, every pair of graphs, gi and gj has a common subgraph wk. But
the pattern computed by a hard generalisation operator is >. On the one hand, it
is somehow consistent because there is no another pattern in L which generalise
the three graphs. If the problem we are treating requires a more interesting
solution, L should be improved. One possibility could be introduce a special
symbol + which permits to combine several patterns. That is, we would have
new patterns such as [p] + [q], which could be interpreted as Set([p]) ∪ Set([q]).
However, by doing that, two new hurdles arises. First, as the pattern language
has changed, a new characterisation for the hard operators should be given.
Secondly, since the size of L increases, it would take more time to the operator
implementation to find the adequate pattern.

4.2 Generalisation operators for (G, d2)

The metric space (G, d2) is 1-connected as well (see Proposition 1 in Appendix).
One of the advantages of working with this metric space is that hard gener-

alisation operators can be characterised in a more natural way using L. Doing a
similar analysis that in the previous subsection, hard operators can be defined
in (G, d2) as (see Proposition 6 in Appendix):

∆(gi
n>2
i=1) =

{
[p] if p is a subgraph of the mcs({gi}n≥2

i=1)
> otherwise.

Unlike the space (G, d1), these hard operators could be implemented by using
one of the several algorithms in the literature for searching common subgraphs
among a set of graphs since now ∆ directly uses the mcs of the set of graphs
instead of the vicms of the set of graphs. Any subgraph returned by these algo-
rithms can be perfectly used to define a hard generalisation.

However, the most general pattern > can be obtained in this scenario as well.
It happens when mcs({gi}n≥2

i=1)) is empty. As we know, to avoid that, we could
introduce the operation + over patterns defined as in the case above with the
same inconveniences already mentioned.

Another alternative solution could be explored: to use patterns [p] such that
all the labels of p are variables. For instance, in Figure 7, the graphs g1 and g2

do not have any subgraph in common, but both have the same topology. We
could say, that g1 and g2 belong to the set of all the graphs having a squared
subgraph structure represented by the pattern [p]. Note that this pattern belongs
to L. This pattern performs a proper generalisation. To show this it is enough to
consider the 1-path in the metric space obtained in the following way. First, we
start from g1. Then, the rest of elements gi of the path are obtained by adding a
vertex or an edge of g2 to gi−1. When this process ends we have a graph g1− g2

which is the result of joining g2 and g1. Next, we remove iteratively the vertices
and edges of g1 from g1−g2 until g2 is obtained. The length of this 1-path (which
is 8) is the same that d2(g1, g2) and it is included in [p]. Therefore, [p] is a proper
pattern. This is another example of proper pattern which does not explain why
g1 and g2 are placed at this distance. Note that, d2 counts only the number of
different vertices and edges. For this reason, d2(g1, g3) = d2(g1, g2) = 8 but g3 is
not covered by [p].

g2

c

a

a

a

b

e f

d

e

b

d

f

X Y

Z T

g1 g3 p

Fig. 7. A finite set of graphs belonging to (G, d2).

5 Conclusions and future work

Graph based learning is a challenging field due to the growing interest showed
by several disciplines, such as biomedicine, in mining their source of data repre-
sented by means of graphs. However, most of the algorithms dealing with graphs,

specially distance-based, do not return a model using graph features (e.x. com-
mon paths, walks, etc.) explaining why a sample has been labelled or grouped in
one way. Although this kind of models is useful from a comprehensibility point
of view, obtaining them could lead to a inconsistence problems with the distance
employed.

In this work, we use some of the concepts in [5] to analyse which consistent
models can be obtained when graphs are embedded in metric spaces. According
to our proposal, a model explaining a set of elements E corresponds to a pattern
belonging to a pattern language. We say that a model/pattern for E is consistent
when it is computed by a special generalisation operator, the so-called hard
or proper generalisation operators. In this paper, we have mainly focused on
characterising hard operators, although proper ones have been commented as
well, for the metric spaces (G, d1) and (G, d2). The distance d1 is found in [2] and
d2 is a variation of d1 proposed by us. Hard operators are interesting because they
computes patterns more consistent to the distance than proper operators do.
Additionally, as we have seen, hard operators can bring information concerning
how complex the metric space is or how expressive the pattern language is.

As future work, we are investigating on several topics, some of them have
been slightly mentioned here, not only for graphs but also anther sort of data.
First, we are developing distance-based cost functions to quantify how complex
and general a pattern is for a given set of samples. This function will let us
define operators computing patterns which reach a trade-off between overfitting
and simplicity. Then, we aim to develop distance-based operators using pattern
languages as expressive as regular languages. In this line, we think that some of
the grammar inference algorithms could be upgraded for this purpose.

References

1. E. Bengoetxea. Inexact Graph Matching Using Estimation of Distribution Algo-
rithms. PhD thesis, 2003.

2. H. Bunke. On a relation between graph edit distance and maximum common sub-
graph. Pattern Recognition Letters, 18(8):689–694, 1997.

3. S. Dzeroski and N. Lavrac, editors. Relational Data Mining. Springer-Verlag, Berlin,
September 2001.

4. V. Estruch, C. Ferri, J. Hernández-Orallo, and M. J. Ramı́rez-Quintana. Distance
based generalisation. In Proc. of the 15th International Conference on Inductive
Logic Programming, ILP, volume 3625 of Lecture Notes in Computer Science, pages
87–102. Springer, 2005.

5. V. Estruch, C. Ferri, J. Hernández-Orallo, and M. J. Ramı́rez-Quintana. On the re-
lationship between distance and generalisation. Technical report, Departamento
de Sistemas Informaticos y Computacion, Universidad Politecnica de Valencia,
http://www.dsic.upv.es/̃flip/#Papers, 2006.

6 Appendix

Proposition 1. The metric space (G, di) (i = 1, 2) is a 1-connected metric
space.

Proof. The proof is direct for both metric spaces. Focusing on (G, d1), we will
see that for every pair of graphs g1 and g2 in G, there exists a 1-path connecting
both. Observe that, when a vertex is removed from gi (i = 1, 2), the new graph
obtained g′i is a subgraph of gi and obviously d1(gi, g

′
i) = 1. Applying this op-

eration (vertex removing) over g′i iteratively, we obtain two 1-paths, P1 and P2,
connecting g1 and g2 respectively, to the empty graph. That is,

P1 ≡ g1 → g′1 → · · · → ∅ and P2 ≡ g2 → g′2 → · · · → ∅

Finally, joining P1 and P2 using the empty graph as common element, the
1-path connecting g1 and g2 is obtained.

As for (G, d2), the demonstration is exactly the same that the latter one.
For this reason, we will simply sketch it. Given two graphs g1 and g2 belonging
to G, there are always two 1-paths, P1 and P2, connecting g1 and g2 to the
empty graph. They are obtained by iteratively removing vertices and edges from
gi (i = 1, 2). Finally, joining the paths P1 and P2 using the empty graph as
common element, we have the 1-path connecting g1 and g2.

Proposition 2. Given the metric space (G, di) (i = 1, 2) and the pattern lan-
guage L, then for every pattern p ∈ L1 where p contains variables, Set(p) is not
a connected set in (G, di).

Proof. We will proceed by contradiction. Let us suppose that there exist two
graphs g and g′ in Set(p) such that di(g, g′) = 1. According to how both distances
are defined, if di(g, g′) = 1, we necessarily have that g′ ⊂ g. But if it happens, g′

is not an instance of the pattern p, and this is impossible. Therefore, for every
g and g′ in Set(p), di(g, g′) > 1, and i.e., Set(p) is not a connect set.

Proposition 3. Given the metric space (G, di) (i = 1, 2) and the pattern lan-
guage L, then for every pattern p ∈ L1, Set([p]) is a connected set in (G, di).

Proof. Although the proof is straightforward, for the sake of comprehensibility,
it will be organised in two parts. First, the specific case when p does not contain
variables will be addressed. Then, the general case, that is, when p contains
variables, will be proved by reducing it to the first one.

1. The first-kind pattern p does not contain variables: Let us see that for every
pair of graphs g1 and g2 in Set([p]), they are connected by 1-path included
in Set(p). For this purpose, we introduce an artificial graph called g1 − g2.
This graph is obtained by linking one vertex v1 in g1 and one vertex v2 in g2

by an edge. Clearly, the graph g1 − g2 belongs to Set([p]) because g1 − g2 is
an instance of the pattern p. Additionally, a 1-path connecting g1 to g1− g2

and another one connecting g2 to g1 − g2 (both included in Set([p])) can be
obtained. Hence, the graphs g1 and g2 are connected by means of a 1-path
included in Set([p])).

2. The first-kind pattern p contains variables: In this case, we know that Set(p) =
{p1, . . . , pn} where each pi is a possible instance of p. Then, we can write:

Set([p]) = ∪n
i=1Set([pi])

Now, for every two graphs g′ and g in Set([p]), we will construct a 1-path,
included in Set([p]), connecting them. Naturally, there exist two patterns pi

and pj in Set(p) such that g ∈ Set([pi]) and g′ ∈ Set[pj]. If pi = pj , then
g and g′ are connected by means of a 1-path since we have just seen that
Set([pi]) is a connected set. If not, the proof is not much more complicated.
Note that Set([pi]) ∩ Set[pj] is not empty. This is immediate because the
graph pi − pj belongs to both Set([pi]) and Set([pj]). Then, we know that g
can be connected to pi−pj by means of a 1-path in Set[pi], and the same for
g′ in Set([pj]). Thus, we can define the following 1-path connecting g and g′:

g → . . . → p1 − p2 → . . . → g′

Of course, this path is included in Set([p]), and i.e., Set([p]) is a connected
set.

Finally, we can affirm that for every pattern p ∈ L2, Set([p]) is a connected set.

From this latter Proposition, we can conclude that only the second-kind patterns
can potentially be used by a generalisation operator defined both in (G, d1) and
(G, d2).

Proposition 4. Let g1,g2 and g3 be three graphs belonging to (G, di) (i = 1, 2)
such that mcs(g1, g2) 6= ∅, if di(g1, g2) = di(g1, g3) + di(g3, g2) then g3 contains:

– Considering the space (G, d1), at least one of the vertex-induced mcs(g1, g2)
– Considering the space (G, d2), the mcs(g1, g2).

Proof. Considering the space (G, d1): According to [] (referencia Bunke paper),
we can express the equality d1(g1, g2) = d1(g1, g3) + d1(g3, g2) in terms of the
set of vertices of the involved graphs:

|Vg1 |+ |Vg2 | − 2|Vg1,2 | = |Vg1 |+ |Vg3 | − 2|Vg1,3 |+ |Vg2 |+ |Vg3 | − 2|Vg2,3 | (1) ↔

−|Vg1,2 | = |Vg3 | − |Vg1,3 | − |Vg2,3 | (2),

where Vgi,j denotes the set of vertices correspondent to the vertex-induced
mcs(gi, gj). Now, let us see that the vertex-induced mcs(g1,3, g2,3) 6= ∅. If it was
the emtpy graph, we would have that

|V3| − |V1,3| − |V2,3| ≥ 0 (3)

and (2) would not hold. Hence, g1,3 and g2,3 have a vertex-induced subgraph in
common. In fact, it is immediate that the vertex-induced mcs(g1,3, g2,3) ⊂ g1,2.

Let us decompose the set of vertices Vg1,3 (respectively Vg2,3) into two disjoint
sets Xg1,3 (Xg2,3) and Y , where Xg1,3 contains those vertices of g1,3 not belonging

to the vertex-induced mcs(g1,3, g2,3) and Y precisely contains the vertices of the
vertex-induced mcs(g1,3, g2,3). Thus, we can rewrite (2) as

−|Vg1,2 | = |Vg3 | − |Xg1,3 | − |Xg2,3 | − 2|Y | (4)

In principle, as the vertex-induced mcs(g1,3, g2,3) ⊂ g1,2, we can affirm that
|Y | ≤ |Vg1,2 |. But as (4) holds, the following inequality

|Vg3 | − |Xg1,3 | − |Xg2,3 | − |Y | ≥ 0 (5)

necessarily vanishes and |Y | = |Vg1,2 |. This implies that the vertex-induced
mcs(g1,3, g2,3) = g1,2 and finally, that g3 contains the vertex-induced mcs(g1, g2).
Considering the metric space (G, d2): The demonstration is quite similar to the
latter one. In this case, the distance d2 between two graphs, can be calculated
taking their set of vertices and edges into account. In this way, the expression
d2(g1, g2) = d2(g1, g3) + d2(g3, g2) can be written as

|Vg1 |+ |Vg2 | − 2|Vg1,2 |+ |Eg1 |+ |Eg2 | − 2|Eg1,2 | =

|Vg1 |+ |Vg3 | − 2|Vg1,3 |+ |Eg1 |+ |Eg3 | − 2|Eg1,3 |+

|Vg2 |+ |Vg3 | − 2|Vg2,3 |+ |Eg2 |+ |Eg3 | − 2|Eg2,3 | (6)

and simplifying,

−|Vg1,2 | − |Eg1,2 | = |Vg3 | − |Vg1,3 | − |Vg2,3 + |Eg3 | − |Eg1,3 | − |Eg2,3 | (7)

where Vgi,j and Egi,j denotes the set of vertices correspondent to the mcs(gi, gj).
Again, if (7) holds, necessarily mcs(g1,3, g2,3) 6= ∅. In fact, mcs(g1,3, g2,3) ⊂

g1,2. Let us decompose (7) into two new equations:

−|Vg1,2 | = |Vg3 | − |Vg1,3 | − |Vg2,3 | (8)

−|Eg1,2 | = |Eg3 | − |Eg1,3 | − |Eg2,3 | (9)

Note that (8) and (9) are structurally identical to (2). The same reasoning,
that we did in the case above, over equations (8) and (9) lead us to affirm that
the number of vertices and edges of mcs(g1,3, g2,3) is equal to |Vg1,2 | and |Eg1,2 |,
respectively. Hence, mcs(g1,3, g2,3) = g1,2 and we can say that g3 contains the
mcs(g1, g2).

Proposition 5. Let {gi}n≥2
i=n be a set of graphs belonging to G is not empty.

Given the metric space (G, d1) and the mapping ∆({gi}n≥2
i=n) → L2, we will say

that ∆({gi}n≥2
i=n) = [p] is a hard-proper generalisation if:

(1) p is a subgraph of the mcs({ri}n
i=1) 6= ∅, where each ri denotes one of

the possible vertex-induced mcs({gi}n≥2
i=n).

(2) there exists a nerve N({gi}n≥2
i=n) such that for every pair of related graphs,

gi and gj, in the nerve N , all the possible vertex-induced mcs(gi, gj) are included
in {ri}n

i=1.

Proof. As [p] belongs to L2, [p] is a connected set. Then, as for every pair of
graphs gi and gj directly linked in the graph, all its vertex-induced mcs(gi, gj)
are included in {ri}n

i=1 and p is a subgraph of mcs({ri}n
i=1), we can ensure that

all the possible vertex-induced mcs(gi, gj) is in [p]. Next, using Proposition 4,
if a graph g satisfies that d1(gi, gj) = d1(g1, g) + d1(gj , g), g contains a vertex-
induced mcs(gi, gj). Therefore, g belongs to [p] and ∆ is a locally hard proper
generalisation.

Proposition 6. Let {gi}n≥2
i=1 be a finite set of graphs belonging to G such that

mcs({gi}n≥2
i=1) is not empty. Given the metric space (G, d2) and the mapping

∆({gi}n≥2
i=1) → L2, we will say that ∆({gi}n≥2

i=1) = [p] is a hard-proper generali-
sation if p is a subgraph of the mcs({gi}n≥2

i=1).

Proof. Again, as [p] belongs to L2, [p] is a connected set. Now, using Proposition
4, if a graph g satisfies that d2(gi, gj) = d2(g1, g) + d2(gj , g), g contains the
mcs(gi, gj). As p is a subgraph of mcs({gi}n≥2

i=1), [p] necessarily covers g, and
i.e., ∆ is a locally hard-proper generalisation.

