
On the relationship between distance and generalisation

V. Estruch C. Ferri J. Hernández-Orallo M.J. Ramı́rez-Quintana

July 12, 2006

1 Preliminaries

The most common metric spaces (e.g. the real numbers using the absolute difference for distance)
normally have some properties (e.g. completeness) upon which new useful concepts and operations
can be established (e.g. to compute the limit of a sequence). Therefore, if we aim to define a
distance-based generalisation operator, we could wonder whether the metric spaces we are working
with should satisfy certain conditions.

In this line, we propose the following reasoning: given two objects, x and y, we notice that a
concept z is more general than x and y if z somehow collects the common features of x and y.
Additionally, z is likely to represent other elements besides x and y. For instance, imagine that x
is a regular pentagon and y is an equilateral triangle. Then, z could be the set of all the of regular
polygon with n sides. It is helpful to see that many generalisations hide a transformation which
can be used to gradually convert x into y and vice-versa. Namely, the pentagon of our example can
be transformed into a regular triangle by means of two basic steps. First, we convert the pentagon
into a square (the square is a particular case of z) by removing one of its sides and then we do the
same over the square. Methods which have to perform a search in a metric space to find a good
generalisation would benefit from this property. From this observation, it seems that the metric
spaces we are interested in have to preserve some kind of “continuity” in order to express proper
generalisations. Let us see that both concepts (“continuity” and “gradual transformations”) are
related.

From a mathematical point of view, the metric spaces employed in structured learning are usually
discrete (discontinuous). For instance, the space of lists of symbols using the edit distance. But if
we require the space of lists to be mathematically continuous, this would require to map lists into
elements belonging to a continuous space (e.g. Rn). This strategy sounds similar to how kernel
methods work []. The problem is that defining a generalisation operator in this continuous space
may not have an easy interpretation in the original data space. Hence, it seems to be better, at least
for the sake of the comprehensibility of the extracted patterns, to work on the original space.

Our proposal is as follows: we intuitively consider that an object is continuous when it is not
made of separated pieces, i.e. it is not divided. The concept of “naturally divisible” can be easily
handled in a continuous space. For instance, if we observe Figure 1, it is intuitively clear that the
square X = [0, 1]× [0, 1] is made of only one piece. However, it does not happen the same with the
object Y = Y 1∪ Y 2∪ Y 3. It is impossible to go, in a continuous way, from a point in Y1 to a point
in Y2 without “stepping” outside Y 1, Y 2 and Y 3. Necessarily, we have to jump from one “piece” to
another.

1

Figure 1: (Left picture) The closed square is not a divided object. We can connect any two points
by means of a continuous path without leaving the object. (Right picture) In this case, the object
is made of three separated pieces ({Y 1, Y 2, Y 3}). There does not exist a continuous path included
in Y which connects two points belonging to different components.

Let us see what happens with discrete spaces. By definition a discrete metric space is divided
because it is made up of separated pieces, its elements and, between them, there is nothing. But
if the generalisations we are looking for implicitly hide a “gradual transformation” , we need a not
divided space. The trick will consist of revisiting the concept of “divided” in the following way.
Two parts are divided if they are further than the shortest step which is possible in the space. For
example, let us consider the finite metric spaces (X, d) and (Y, d) depicted in Figure 2. Although
both spaces are discrete, the distribution of their elements is completely different. The elements of
X are grouped into clusters whereas the elements of Y are not. The clusters will play the role of the
separated pieces in the left figure. Note that it is impossible to “travel” from one element to another
belonging to a different cluster taking minimum length steps. A longer step is always needed. It
contrasts with space Y , where these minimum steps are always possible.

(X,d) (Y,d)
d

d d

d

Figure 2: (Left picture) The elements of X are grouped into clusters. (Right picture) The
elements of Y are uniformly distributed.

The concept of a “gradual transformation” is more intuitive in Y since equally significant changes
can convert one element into another. In other words, spaces like Y have the advantage of lead-
ing to more reasonable generalisations. Let us illustrate this claim with the example in Figure 3.
We want generalise the elements a and b. If these elements belong to X , not too much intuitive
generalisations will be obtained because the way in which the elements of X are distributed. Note
that a generalisation tries to stand out what properties two elements have in common. In this case,
a generalisation should include some elements close to a (e.g. a1), others close to b (e.g. b1) and

2

those which let one go from a to b step by step. But latter do not exist and, thus, it is not possible
gradually to go from a to b, there is no notion of middle point and it is more difficult to find the
similar traits between a and b. However, this problem does not occur in space Y . We can always
find a sequence of elements, quite close one to each other, to go from a to b. For example, in Figure
3, the most basic sequence is formed by a, c and b. Therefore, we are focusing on those metric
spaces whose elements allow gradual transformations (in other words, the elements are “uniformly
distributed”) since generalisations can be performed more easily, and as we will see, the extracted
patterns can be more regular and more comprehensible. The following definitions let us formalise
this property.

b

a1

bb1

���
�

���
�

���
�

�������
�

(X,d)

(Y,d)

(X,d)

aa

(Y,d)

a b a bc

Figure 3: Generalisation of the elements a and b. (Top-left picture) The elements belong to
different clusters. (Top-right picture) A generalisation should include the elements a, a1, b and
b1. (Bottom-left picture) Now, the elements a and b belong to Y . (Bottom-right picture)
Intuitively, the intermediate element c permits to directly connect a and b. Therefore, these elements
could be included by a generalisation.

Definition 1 (Infimum Distance) Let (X, d) be a metric space. We define the infimum distance
of X, and we denote it by I(X), as

I(X) = inf{d(x, y) : ∀x, y ∈ X, x 6= y},

where inf stands for the infimum of a set. That is, I(X) is the greatest lower bound of X not
necessarely belonging to it.

Note that if (X, d) is a continuous metric space then I(X) = 0. However, the reciprocal is not
true. There are discrete metric spaces where I(X) = 0, as we show in Example 2.

Definition 2 (Locally-connected) Let (X, d) be a metric space, we say that X is a locally-
connected metric space if for all ε > I(X) and for all x belonging to X, then B(x, ε) − {x} 6= ∅,
where B(x, ε) = {y ∈ X : d(x, y) < ε}.

3

Intuitively, it means that every element belonging to X has at least one “neighbour” at a distance
equal to or slightly greater than I(X). Note that this definition is not still sufficient to say that the
elements of X are “uniformly distributed”. Next, two examples are given in order to illustrate the
need for Definitions 3 to 6.

Example 1 Let (X1, d) and (X2, d) be two finite metric spaces where X1 = {x1, x2, x3, x4}, X2 =
{x1, x2, x3} and d(·, ·) is defined as follows:

d(·, ·) x1 x2 x3 x4

x1 0 δ 2δ 2δ

x2 δ 0 2δ 2δ

x3 2δ 2δ 0 δ

x4 2δ 2δ δ 0

Table 1: Definition of the distance function d(·, ·)

Note that, I(X1) = I(X2) = δ. Clearly, (X2, d) is not a locally-connected metric space because
B(x3, δ) = {x3}. Nevertheless, (X1, d) is a locally-connected metric space although it has two “clus-
ters” {x1, x2} and {x3, x4}.

Example 2 Let (X, d) be a metric space where X = Σ∗ (Σ = {a, b}) and d is defined as follows1.
Given to words x = x1 · · ·xn and y = y1 · · · ym (n, m > 0) belonging to X,

d(x, y) =

{

0 , if x=y
1

2i , if xj = yj (j = 1, . . . , i) and xi+1 6= yi+1

The infimum distance of X is equal to zero since for any ε > 0, we can always find two words x and
y belonging to X such that d(x, y) < ε. The space (X, d) is not locally connected.

The elements of X2 in example 1 and the elements of X in example 2 are not uniformly distributed
and Definition 2 captures this. However, as we have mentioned, Definition 2 is not restrictive enough
to ensure that the elements of a metric space are uniformly distributed (as the previous space (X1, d)
in Example 1). Thus, we need a harder condition. Having this in mind, we introduce the concept
of δ-path.

Definition 3 (δ-path) Let (X, d) be a metric space and let δ be a real number greater than zero. We
will say that a finite sequence of elements P = {xi}n>0

i=0 belonging to X is a δ-path if d(xi, xi+1) ≤ δ
for all 0 ≤ i ≤ n − 1. We can represent this sequence as x0 → x1 → . . . → xn

In what follows, we will say that the elements x and y are δ-path connected when there exists a
δ-path P = {xi}n>0

i=0
such that x0 = x and xn = y. Intuitively, it means that we can “transform” x

into y (through P) by means of successive changes which must be equal or smaller than δ.

Example 3 Let (X, d) be a metric space where X is the set of finite words over the two-symbol
alphabet Σ = {a, b} and d the distance function defined in ?? (edit distance). If x = aab and
y = bba, then we can find a sequence according to Definition 3, such that:

x = aab → ab → b → bb → bba = y,

1This distance is a slight variation of the fractal distance [].

4

and this sequence is a 1-path.

The idea from this example is that we can set δ = I(X) and hence we have the definition of a path
with minimum steps. However, this idea would only work with those metric spaces X such that
I(X) > 0. In order to cover every metric space, it will be enough to state what a 0-path is:

Definition 4 (0-path) Let (X, d) be a metric space with I(X) = 0. We will say that a sequence of
points P belonging to X is a 0-path, if P is the image of a continuous function γ defined over the
closed interval [0, 1] if the space is continuous or over the rational number in [0, 1] otherwise, such
that γ([0, 1]) = P .

Summing up, a 0-path is just the well-known concept of a curve (indiscrete or discrete). That is,
given two points x and y belonging to X , we will say that x and y are 0-path connected, if there
exists a continuous function γ such that γ(0) = x and γ(1) = y (see Figure 4).

For the sake of simplicity, in what follows we call δ-path to every path with δ ≥ 0. When it is
needed, we explicitly distinguish between δ > 0 and δ = 0.

A useful property concerning a δ-path, and that we will need in the next section, is its length.

Definition 5 (Length of a δ-path) Let (X, d) be a metric space and let P = {xi}n>0
i=0 be a δ-path

in X, then the length of P (L(P)) is defined as follows2:

L(P) =

{
∑n−1

i=0
d(xi, xi+1), if δ > 0

sup{∑n−1

i=0
d(γ(ti), γ(ti+1)) : ∀n ∈ N and 0 = t0 < t1 < · · · < tn = 1}, if δ = 0

For instance, all paths in Figure 4 have length 5.
We are now ready to define the metric spaces we will work with.

N2 and d(,) is the Manhattan
distance

and d(,) is the Manhattan
distance

and d(,) is the Manhattan
distance

2Q 2R

(1,1) (1,2)

(2,2) (2,3)

(3,3) (3,4)
(2,3)

(3,4)

(1,1)

(2,2)

(3,3)

(1,2)(1,1)

(2,2) (2,3)

(3,3) (3,4)

(1,2)

Figure 4: (Left picture) A 1-path (a finite collection of points) connecting the elements (1, 1)
and (3, 4). (Centre picture) A 0-path (a discrete curve) connecting the elements (1, 1) and (3, 4).
(Right picture) A 0-path (an indiscrete curve) connecting the elements (1, 1) and (3, 4).

Definition 6 (Globally connected3) Let (X, d) be a locally-connected metric space. We will say
that X is a globally-connected metric space, if for every pair of items x and y belonging to X, they
are δ-path connected with δ ≥ I(X).

2sup stands for the supremum of a set, that is, its least upper bound.
3Note that there exist some peculiar distance functions in the sense that the return value is a tuple of numbers

instead of one single number (see e.g. the distance function defined in ??). Definition 6 can be easily adapted to
take these cases into account. For instance, as the image set of the mentioned distance function is total ordered and
contains a minimum element, then I(X) is just this minimum (I(X) = (1,−1)).

5

Example 4 The metric space used in the Example 3 is a globally-connected space. Immediately,
I(X) = 1, and given two finite words x = x1 . . . xn and y = y1 . . . ym (n, m > 0), we can find a
trivial 1-path connecting them:

x = x1 · · ·xn → x2 · · ·xn → . . . → xn → xny1 → y1 → . . . → y1 · · · ym−1 → y = y1 · · · ym

For indiscrete metric spaces, Definition 6 matches the well-known topological definition of a path-
connected metric space. As the metric spaces we will work with will be always globally-connected,
for the sake of simplicity, we will simply refer to them as connected metric spaces.
Before going on, it is enlightening to see that some “dense” spaces are not necessarily connected.
For instance, the following example shows that “strange” spaces are discarded by Definition 6.

Example 5 The metric space introduced in Example 2 is not connected. Given any two words x
and y belonging to the space, it is impossible to find a continuous function γ such that γ(0) = x and
γ(1) = y. From a practical point of view, this latter distance is quite useful if we pursue to distinguish
those words beginning by a or by b. Fortunately, although it is out of the scope of this paper, it can
be redefined in such a way that the elements of the space (X, d) are uniformly distributed.

Summing up, Definition 6 means that the space is made of one piece, as we discussed at the beginning.
This idea is key to introduce the concept of connected sets in discrete metric spaces, i.e. the extension
of the idea to groups of objects in the space.

Definition 7 (Connected set) Let (X, d) be a connected metric space. We will say that Y ⊂ X
is a connected set, if for every pair of elements x and y belonging to Y there exists a δ-path P
connecting them such that δ = I(X) and P is included in Y .

Informally speaking, a connected set is a set, i.e. a group of elements from a connected space, which
is made of one piece.

Example 6 Let us illustrate what a connected set is in a discrete space Y . For this purpose, we will
take the space depicted in the Figure 3. As we can appreciate in the left picture (see figure below),
the set A is connected since for every pair of elements belonging to A, there exists at least one δ-path
with δ = I(Y) (dashed lines) included in A connecting them. However, the set B on the right is
disconnected. The elements x and y are not δ-path connected with δ = I(Y).

(Y,d)

A

(Y,d)

B

x

y

Figure 5: (Left picture) The set A is connected since its elements are δ-path connected. (Right
picture) Nevertheless, the set B is disconnected because we would need an extra element (for
instance, z) in one of the two sets X or T .

6

2 Generalisation operators

In our approach, connected sets play a fundamental role in order to define a generalisation operator
since a generalisation of a group of elements will be just a connected set containing them. First,
in this section we introduce a generalisation operator for a pair of items (binary generalisation
operator) and then, we will extend it for n-ary operators, that is, operators taking more than two
input elements. In advance, we will say that, in this latter case, the generalisation will be a connected
set covering the group of items as well.

Intuitively, the (binary) generalisation of two items of a connected metric space (X, d) could be
extensionally defined as a connected set that contains both items. But, from a comprehensibility
point of view, we must highlight that our concept of generalisation should be associated to a family
of patterns L, where each pattern represents a set in the connected metric space (X, d). Note that a
generalisation which is just expressed as a set of elements (e.g. {2, 4, 6, . . .})is much less useful than
a generalisation which has an associated pattern (e.g. {x : odd(x)}). That is, a pattern h ∈ L will
be an intensional (and hopefully “comprehensible”) manner of denoting the set of all the elements
in X which are covered by h. Additionally, viewing patterns as the sets they denote, we can use
the well-known set operations. For example, we can say that a pattern h1 is included in a pattern
h2 if the set which represents h1 is included in the set which represents h2, or we can say that an
element x ∈ X belongs to the pattern h, if x is covered by h. Note that the same set can have
several patterns which denote it. Depending on our pattern language L we will be able to express
some sets as generalisations but some others not. For instance, if our family of patterns in the metric
space R2 is made of all the possible squares of size 1 × 1, the concept of a 2 × 2 square can not be
expressed. An important reason to introduce the notion of L is because not all the connected sets
in one given space X will usually have an intuitive pattern associated to them (just figure out all
the possible connected sets in R2). For this purpose, L will be defined according to the problem to
be solved, and very specially, on the kind of patterns the user can understand. Nevertheless, in the
worst case, L can always be defined as 2X if we do not have any representation bias. So, instead of
extensional generalisation operators, we will work with intensional operators.

Definition 8 (binary generalisation operator) Let (X, d) be a connected metric space and let
L be a pattern language. An binary generalisation operator ∆ is a function ∆ : X × X → L such
that:

∀x, y ∈ X, ∃h ∈ L : ∆(x, y) = h,

where x, y ∈ h and h is a connected set.

Therefore, a binary generalisation operator simply maps pairs of items into patterns representing
connected sets.

So far, we have not still mentioned anything concerning the“shape” of the sets computed by ∆.
For instance, the generalisation of two points belonging to R2 could be something as simple as a
straight line or something as complicated as the most intricate curve connecting them. But, from
a comprehensibility point of view, it might be more interesting to compute regular-shaped sets (see
Left Figure 6). Therefore, it is convenient to established some conditions about the “shape” of these
sets. For this purpose, we distinguish among proper, hard-proper and improper generalisations:

Definition 9 (proper generalisation) Let ∆ be a binary generalisation operator defined in a
connected metric space (X, d). We will say that ∆ is a proper generalisation if, for every pair of

7

elements x and y (x 6= y) belonging to X, ∆(x, y) includes some I(X)-path P connecting x and y
such that d(x, y) = L(P).

Definition 10 (hard-proper generalisation) Let ∆ be a binary generalisation operator defined
in a connected metric space (X, d). We will say that ∆ is a hard-proper generalisation if, for every
pair of elements x and y (x 6= y) belonging to X, ∆(x, y) includes all the I(X)-paths P connecting
x and y such that d(x, y) = L(P).

For instance, if we consider the plane R2 with the Manhattan distance4 and L some sufficiently
expressive family of patterns, then given two points A and B belonging to R2, all the 0-paths P
connecting A and B such that L(P) = d(A, B) are included (among other sets) in a square whose
two of its opposite vertices are A and B. If ∆(A, B) gives this square, we can say that ∆ is a hard-
proper generalisation. On the contrary, if ∆(A, B) gives something smaller e.g. a triangle whose
two of its vertices are A and B, then ∆ is not a hard-proper generalisation (see Right Figure 6).

Definition 11 (improper generalisation) Let ∆ be a binary generalisation operator defined in
a connected metric space (X, d). We will say that ∆ is an improper generalisation operator if it is
not proper, that is, given any two elements x and y (x 6= y) belonging to X, then ∆(x, y) does not
include any I(X)-path P such that d(x, y) = L(P).

2R , d(,) is the Manhattan distance 2R , d(,) is the Manhattan distance 2R , d(,) is the Manhattan distance

B B (3,4)

AA

B

A

(3,4)

(1,1) (1,1)

(1,1)

(3,4)

Figure 6: Generalising the elements A(1, 1) and B(3, 4). (Left picture) This curve is an improper
generalisation because its length is greater than d(A, B). (Middle picture) This triangle is a proper
generalisation of the elements A and B. Note that the dashed line is a 0-path whose distance is
equal to d(A, B) and it is not covered by the triangle. (Right picture) This square is a hard-proper
generalisation of the elements A and B.

In order to define n-ary distance-based generalisation operators, the concept of ”nerve” of a set
of elements E is needed. In this way, a nerve of E, denoted by N(E), is simply a connected5 graph
whose nodes are the elements belonging to E.

Definition 12 (Distance-based n-ary generalisation operator) Let (X, d) be a connected met-
ric space and let L be a pattern language. Given a generalisation operator ∆, we will say that ∆ is
a (proper or hard) distance-based generalisation operator if, for every E ⊆ X, there exists a nerve
N(E) such that,

• (proper) For every pair of elements x, y in E such that they are directly linked in N(E), ∆(E)
includes some I(X)-path P connecting x and y such that d(x, y) = L(P).

4Given two points A(a1, a2) and B(b1, b2), the Manhattan distance is defined as d(A, B) = |a1 − b1| + |a2 − b2|.
5Here, theterm connected refers to the well-known property for graphs.

8

• (hard) For every pair of elements x, y in E such that they are directly linked in N(E), ∆(E)
includes all I(X)-path P connecting x and y such that d(x, y) = L(P).

Definition 12 can be difficult to understand. Note that when E = {x, y}, this latter definition
matches definitions of proper or hard-proper binary generalisation operator.
Another issue related to the generalisation operator is to determine when it performs the least
general generalisation (lgg). It will be an important issue if we want the generalisations to “fit” a
group of elements as much as possible. Despite the lgg is a widely studied concept in the field of
Inductive Logic Programmming (ILP), it does not happen the same when the data is not described
by means of logical predicates. Thus, the following observations are in some way an attempt to
extend the notion of lgg for different sorts of data, not only first-order predicates. The process is
similar to the one employed in ILP. First, we will use a criterion to say, given two generalisations G1

and G2 of a set of elements E, which one is less general. Unlike ILP , this criterion will be based on
the underlying metric space. Then, note that, automatically, this criterion induces an order relation
in the set of all the possible generalisations of E, where the lgg will be just the bottom element of
this ordered set.

Note that the lgg concerns the generalisations of a set of elements E, only saying nothing about
the generalisation operator ∆. In other words, it is possible that ∆ computes the lgg for E, but not
necessarily for other sets. This issue will be treated in further sections where we will define some ∆
generalisation operators for several sort of data, such that ∆ performs always the lgg for every set
E.

In order to formalise our proposal, we might utilise the inclusion operation between sets (⊂) as
a “mechanism” to compare how general two generalisations are. That is, viewing generalisations as
connected sets, we would say that the generalisation G1 is less general than the generalisation G2,
if G1 ⊂ G2. However, if we do that, several details must be taken into account:

• The minimal generalisation: in addition, we should substitute the adjective “least” by the
adjective “minimal” because we could find in the pattern language L two non comparable lgg.
For instance, if L is the family of all the rectangles in R2, the two rectangles depicted in Figure
7 (right) could be lgg. In what follows, we will use the term minimal generalisation (mg).

• Flexibility:

G2

G0

G1 B (3,4)

A (1,1)

B (3,4)

A (1,1)

R
2={all the rectangles in }H

Figure 7: (Left picture) Several hard-proper generalisations of the elements A and B. The closed
figure G2 (the square) is a hard-proper generalisation of the elements A and B. (Right picture)
Two different minimal generalisations of the elements A and B considering all the rectangles in R2

as the language pattern.

9

Unfortunately, if we consider only the inclusion to compare how general two generalisations are,
an important problem arises. Again, let us consider R2 with the Euclidean distance and L as the set
of all the rectangles in R2. Then, the generalisation of n points belonging to R2 would be something
as simple as a rectangle containing them (see left Figure 8). However, in some contexts, it would be
preferable to obtain some slightly more elaborated generalisations. For instance, the one depicted on
the right of Figure 8. Note that, in this case, a more expressive pattern language is needed (L′ is the
set of all the rectangles in R2 along with their finite unions). But the more complex a generalisation
is, the less intelligible it is and, the higher the chance of overfitting is.

e1

e2

e3

e4

e5e6

e1

e2

e3

e4

e5e6

={all the rectangles in R }H 2 2
={finite union of rectangles in R }H’

Figure 8: (Left picture) A naive generalisation of the elements {e1, . . . , e6}. (Right picture) A
more elaborated generalisation considering a more expressive family of patterns.

Now, a second problem is that the mg could not exist. Consider two elements A and B in the pattern
language L′ mentioned above. If we look at Figure 9 which works with a L which is composed of
all the finite union of rectangles in R2, given any generalisation Gi in L′ of {A, B}, we can always
find another generalisation Gj included in Gi (Gj 6= Gi). For this purpose, it is enough to draw a
connected chain of squares included in Gi which links both A and B. Therefore, if we define the mg
in terms of the inclusion between sets, then the mg does not exist for this special pattern language
L′.

B(3,4)

A (1,1)

B(3,4)

A (1,1)

G0
G2G1

B(3,4)

A (1,1)

R
2H ={finite union of rectangles in }

Figure 9: For every generalisation Gi of {A, B}, we can always find another generalisation Gj of
{A, B} in L′ such that Gj ⊂ Gi. In this picture, we have that G2 ⊂ G1 ⊂ G0.

In general, this problem will be presented when we work with continuous metric spaces and we use
a pattern language built from a set of basic constructors. But it turns out that this kind of pattern
language is quite common in symbolic learning, i.e. regular languages. Therefore, we need to change
the inclusion between sets as a generality criterion. A possibility is as follows.

Note that the “complexity” of the pattern Gi grows as more squares are employed. But this
is only reasonable if a sufficient number of cases justifies a complex pattern, just as MDL/MML
principle states []. From a practical point of view, a pattern made of thousand of small squares
becomes hardly comprehensible, even if it fits the evidence E really well. Hence, it could be more

10

interesting to reach a trade-off between minimality and comprehensibility. For this purpose, we will
introduce a special function, called the cost function and denoted by k(E, h), which takes both the
complexity of the pattern h and how good the pattern fits E into account. Returning to Figure
9, the cost function k(E, h) should be able to discriminate those unnecessary complicated patterns,
such as G2, from those being more suitable such as G1 but at the same time should discard simple
rectangles which are not well adjusted, as G2 in Figure 7. Hence, the mg will be defined in terms of
a cost function instead of the inclusion operator between sets. As the mg depends on both a cost
function k and a pattern language L, it will be denoted by mgk,L.

Now, we are in conditions of formally introducing the concept of mg. First, we will define what
a cost function is. Secondly, we will use this cost function to say, given two generalisations, which
one is less general. Finally, the mg will be presented.

Definition 13 (cost function) Let (X, d) and L be a connected metric space and a pattern lan-
guage, respectively. Given a finite set of elements E ⊂ X, we will say that k(E, h) : 2X × L → Y
is a cost function, if Y is an ordered set and k(E, h) returns the top element of Y when h does not
cover E or h is not a connected set.

As we will see later, the image set Y will usually be the real numbers or a subset of it which will be
endowed the usual order. In addition, most of the k(E, h) functions that we are going to use, will
be expressed as the sum of the auxiliary functions c(h) (it measures how complicated the pattern is)
and c(E|h) (it measures how the pattern fits the data E). Following the MML/MDL formulation, we
state no restrictions on c(h) but we are interested on c(E|h) which are defined in terms of distances.
This is so the distances are the basis of the underlying metric space and “fitness” must be defined in
terms of distances (more precisely distances to the border of the set). And this is so as well because
for a binary generalisation operator, if c(E|h) could be defined by expressing the examples, we would
have that c(h) would be usually much greater than c(E|h). A coherent cost function k(E, h) should
satisfy Properties 1 and, 2a or 2b which we present below:

• (1) The existence of a minimum: given a k(E, h) function, for every finite set of elements
E, there always exists a pattern h′ ∈ L such that k(E, h′) ≤ k(E, h) for every h ∈ L.

• (2a) Covering the sample: given two hypothesis h1 and h2 belonging to L, if h1 ⊂ h2 and
c(h1) = c(h2) then, c(E|h1) ≤ c(E|h2).

• (2b) Covering the sample using the minimum hypothesis: given h′ and h two hypothesis
belonging to L and E a finite set of elements, such that h′ ⊂ h and k(E, h′) performs the
minimum. If c(h′) = c(h), then c(E|h′) ≤ c(E|h).

Generally speaking, Property 1 concerns the existence of a pattern which performs an optimal
trade-off between complexity and overfitting. The rest of them focus on overfitting only. Property
2a means, if we have two equally ”complicated” hypothesis, which one should be chosen? Intuitively,
the one fitting the sample better. However, this might be difficult to achieve sometimes. Then, we
could relax this condition by forcing that only the optimal hypothesis satisfies it. This yields 2b.
In other words, if h′ is an optimal hypothesis covering E, then there should not exist any equally
complicated hypothesis included in h′.

Before going on, let us introduce some interesting definitions of k(E, h) and show how they work.
Concretely, we are focusing on those cost functions expressed in terms of c(h) and c(h|E). As c(h)

11

measures how complex a pattern is, this function will strongly depend on the sort of data and the
pattern space L we are handling. For instance, consider a closed interval. If the generalisation of
two real numbers is a closed interval containing them, then the complexity of the interval could
be its length. On the contrary consider a graph, if the elements to be generalised are two graphs,
and the generalisation is based on the idea of common subgraph, then the number of cycles in
the shared subgraph could be a measure of its complexity (see Table 2). On the other hand,
c(E|h) =

∑

∀ e∈E c(e|h).

Sort of data L c(h) Example

Numerical Closed intervals Length of the c([a, b]) = |a − b|
interval

Finite lists over Lists built from an Number of symbols c(X0abX1b) = 5)
an alphabet of alphabet Σ and
symbols Σ a special alphabet V

of variables.
First order Herbrand base with variables Number of different c(p(X,X, Y, a)) = 2
predicates variables
” ” Number of symbols c(p(X,X, Y, a)) = 5
Any Any Constant function ∀h ∈ L, c(h) = k

Table 2: Some definitions of the function c(h) for several sorts of data.

Now, let us see some definitions of c(E|h). All of them must be based on the underlying ditance.
In fact, all the definitions we present here are based on the well-known concept of border of a set6.
Intuitively, if a patttern h1 fits better E than a pattern h2, then the border of h1 (∂h1) will somehow
be nearer to E than the border of h2 (∂h2) (see Figure below).

2e

e3

h1

h2

1e

Figure 10: The pattern h1 fits better E than h2 and consequently, ∂h1 is “nearer” to E than ∂h2.

As the border of a set exists in every metric space, the function c(E|h) will be much more independent
of the sort of data we are handling than c(h) is. Therefore, it motivates that several definitions of
c(E|h) can be employed for different sorts of data, as we show in Table 3.

In general, the functions c(h) and c(E|h) can be combined obtaining a more flexible way of
defining k(E, h) (see Example 7).

Example 7 Let (R2, d) be the plane of real numbers with the Euclidean distance, and the pattern
language L is the finite union of rectangles in R2. We define c(h) as the minimum number of

6Let (X, d) be a metric space. We will say that an element e belonging to set A ⊆ X is a border point, if for every
ε > 0, B(e, ε) is not totally included in A. According to the standard notation, the border of a set A will be denoted
by ∂A.

12

Sort of data L c(e|h) Example

Any Any
P

∀e∈E
supr∈RB(e, r) 6⊂ h Left Figure 11

Any Any
P

∀e∈E
mine′∈∂hd(e, e′) Middle Figure 11

Any h represents an
P

∀e∈E
mine′∈∂hd(e, e′) Right Figure 11

acotate set +d(e, furthest point ∈ ∂h)

Table 3: Some definitions of the function c(E|h).

e 1B(,1)={a,aa,ab,ba}
e 1 e2c(E|h)=c() + c(|h |h) =2+1=3

e 1 e2E={ }, e 1 e2E={
e 1 e2c(E|h)=c() + c(|h |h)

e 1 e2E={
e 1 e2c(E|h)=c() + c(|h |h)

(R , d=Euclidean distance)2 (R , d=Euclidean distance)2

e1= a

e2=bb

h=X 1 X2

e2
e 1e2 e 1

ab

aa
b

,
=d1+d2

d12 d11
hh

ba

(X=space of lists, d=Edit distance)

=d11+d12+d21+d22

, , }}

d21 d22
d2

d1

Figure 11: Some pictures illustrating each definition of c(E|h) collected in Table 3. (Left picture)
The space of finite lists with the Edit distance without substitution. The closed ball B(e1, 1) is
included in the pattern h. (Middle picture) The pattern h is a rectangle covering e1 and e2. The
terms di represents the distance from ei to its nearest point in ∂h. (Right figure) This time, both
the distance from ei to its nearest and furthest point in ∂h (di1 and di2) are taken into account.

rectangles required to specify h and c(h|E) is the second function collected in Table 3. If E = {e1 =
(0, 0), e2 = (1, 1), e3 = (2, 1)} and h = ABCD ∪DEFG (see Figure 12), then c(h) = 2, c(e1|h) = 0,
c(e2|h) = 3/2

√
2, c(e3|h) = 3/2 and finally, k(E, h) = 2 + 3/2(1 +

√
2).

e 2

e 1

e 3

Y

X

1

1 2

2

3

B C

DA

E F

G

Figure 12: A possible cost function for R2, considering the Euclidean distance and the finite union
of rectangles in R2 as the pattern language.

The definition of the mg will be based on the concept of cost function. Recall that before introducing
the mg, we need to establish, given two generalisations, which one is the less general.

Definition 14 (Generality relation) Let (X, d) and L be a connected metric space and a pattern
language, respectively. Given a finite set of elements E ⊂ X, a cost function k(E, h) and two
generalisations expressed by the patterns h1 and h2, we will say that h1 is less general than h2 wrt.
E, if k(E, h1) < k(E, h2).

13

Example 8 Let k(E, h) = c(h) + c(E|h) be a cost function where c(h) is the constant function and
c(E|h) is the second function collected in Table 3. Imagine that the metric space is R2 with the
Euclidean distance and L is the set of all rectangles in R2. Then, according to the definition above,
the generalisation G1 depicted on the right of Figure 7 is less general than the generalisation G2,
since k(G1, {A, B}) < k(G2, {A, B}).

Definition 15 (Minimal generalisation) Let (X, d) and L be a connected metric space and a
pattern language, respectively. Given a finite set of elements E ⊂ X and a cost function k(E, h), we
will say that the generalisation expressed by the pattern h is a minimal generalisation for k(E, h) in
L (denoted it by mg(E)k,L), if k(E, h) ≤ k(E, h′), for every h′ ∈ L.

Example 9 Following with Example 8 and the definition above, it is quite immediate that the square
G1 is one of the minimal generalisations of E = {A, B} for the cost function k in the pattern language
L used in the example.

Definition 16 (Minimal generalisation operator) Let (X, d) be a connected metric space and
let ∆ be a binary generalisation operator defined in X using the pattern language L. Given a finite
set of elements E ⊂ X and a cost function k(E, h), we will say that ∆ is a minimal generalisation
operator for k in L, if

∆(E) = mg(E)k,L, for every finite set E ∈ X.

Example 10 Considering Example 9 and restricting E to a binary set (e.g. E = {A, B}), ∆ is a
minimal binary generalisation operator for k in L, if for every E = {A, B}, ∆ returns a rectangle
G such that A and B are placed at the border of G.

To summarise and according to our proposal, extending the concept of lgg for several sorts of data
requires generalisations to be associated to the same pattern language L, to talk about “minimal”
instead of “least” generalisation (mg) and to use a cost function to quantify how general a general-
isation is.

14

