Backward Trace Slicing for
Rewriting Logic Theories*

M. Alpuente!, D. Ballis?, J. Espert!, and D. Romero!

! DSIC-ELP, Universidad Politécnica de Valencia
Camino de Vera s/n, Apdo 22012, 46071 Valencia, Spain
{alpuente, jespert,dromero}@dsic.upv.es
2 Dipartimento di Matematica e Informatica
Via delle Scienze 206, 33100 Udine, Italy demis.ballis@uniud.it

Abstract. Trace slicing is a widely used technique for execution trace
analysis that is effectively used in program debugging, analysis and com-
prehension. In this paper, we present a backward trace slicing technique
that can be used for the analysis of Rewriting Logic theories. Our trace
slicing technique allows us to systematically trace back rewrite sequences
modulo equational axioms (such as associativity and commutativity) by
means of an algorithm that dynamically simplifies the traces by detecting
control and data dependencies, and dropping useless data that do not
influence the final result. Our methodology is particularly suitable for
analyzing complex, textually-large system computations such as those
delivered as counter-example traces by Maude model-checkers.

1 Introduction

The analysis of execution traces plays a fundamental role in many program
manipulation techniques. Trace slicing is a technique for reducing the size of
traces by focusing on selected aspects of program execution, which makes it
suitable for trace analysis and monitoring [7].

Rewriting Logic (RWL) is a very general logical and semantic framework,
which is particularly suitable for formalizing highly concurrent, complex sys-
tems (e.g., biological systems [5,17] and Web systems [3,4]). RWL is efficiently
implemented in the high-performance system Maude [9]. Roughly speaking, a
rewriting logic theory seamlessly combines a term rewriting system (TRS) to-
gether with an equational theory that may include sorts, functions, and algebraic
laws (such as commutativity and associativity) so that rewrite steps are applied
modulo the equations. Within this framework, the system states are typically
represented as elements of an algebraic data type that is specified by the equa-
tional theory, while the system computations are modeled via the rewrite rules,
which describe transitions between states.

* This work has been partially supported by the EU (FEDER) and the Spanish MEC
TIN2010-21062-C02-02 project, by Generalitat Valenciana PROMETEO02011/052,
and by the Italian MUR under grant RBIN04M8&S8, FIRB project, Internationaliza-
tion 2004. Daniel Romero is also supported by FPI-MEC grant BES—-2008-004860.

Due to the many important applications of RWL, in recent years, the de-
bugging and optimization of RWL theories have received growing attention [2,
14,15]. However, the existing tools provide hardly support for execution trace
analysis. The original motivation for our work was to reduce the size of the coun-
terexample traces delivered by Web-TLR, which is a RWL-based model-checking
tool for Web applications proposed in [3,4]. As a matter of fact, the analysis (or
even the simple inspection) of such traces may be unfeasible because of the size
and complexity of the traces under examination. Typical counterexample traces
in Web-TLR are 75 Kb long for a model size of 1.5 Kb, that is, the trace is in a
ratio of 5.000% w.r.t. the model.

To the best of our knowledge, this paper presents the first trace slicing tech-

nique for RWL theories. The basic idea is to take a trace produced by the RWL
engine and traverse and analyze it backwards to filter out events that are irrele-
vant for the rewritten task. The trace slicing technique that we propose is fully
general and can be applied to optimizing any RWL-based tool that manipulates
rewrite logic traces. Our technique relies on a suitable mechanism of backward
tracing that is formalized by means of a procedure that labels the calls (terms)
involved in the rewrite steps. This allows us to infer, from a term ¢ and posi-
tions of interest on it, positions of interest of the term that was rewritten to .
Our labeling procedure extends the technique in [6], which allows descendants
and origins to be traced in orthogonal (i.e., left-linear and overlap-free) term
rewriting systems in order to deal with rewrite theories that may contain com-
mutativity /associativity axioms, as well as nonleft-linear, collapsing equations
and rules.
Plan of the paper. Section 2 summarizes some preliminary definitions and nota-
tions about term rewriting systems. In Section 3, we recall the essential notions
concerning rewriting modulo equational theories. In Section 4, we formalize our
backward trace slicing technique for elementary rewriting logic theories. Sec-
tion 5 extends the trace slicing technique of Section 4 by considering extended
rewrite theories, i.e., rewrite theories that may include collapsing, nonleft-linear
rules, associative/commutative equational axioms, and built-in operators. Sec-
tion 6 describes a software tool that implements the proposed backward slicing
technique and reports on an experimental evaluation of the tool that allows us
to assess the practical advantages of the trace slicing technique. In Section 7,
we discuss some related work and then we conclude. More details and missing
proofs can be found in [1].

2 Preliminaries

A many-sorted signature (X, S) consists of a set of sorts S and a S* x S-indexed
family of sets X' = {Xsxs}(s,)e5+xs, Which are sets of function symbols (or
operators) with a given string of argument sorts and result sort. Given an S-
sorted set V = {V, | s € S} of disjoint sets of variables, Tx(V)s and Tx, are
the sets of terms and ground terms of sorts s, respectively. We write Tx;()) and
T, for the corresponding term algebras. An equation is a pair of terms of the

form s = t, with s,¢t € Tx(V)s. In order to simplify the presentation, we often
disregard sorts when no confusion can arise.

Terms are viewed as labelled trees in the usual way. Positions are represented
by sequences of natural numbers denoting an access path in a term. The empty
sequence A denotes the root position. By root(t), we denote the symbol that
occurs at the root position of t. We let Pos(t) denote the set of positions of
t. By notation w;.ws, we denote the concatenation of positions (sequences) wy
and ws. Positions are ordered by the prefix ordering, that is, given the positions
wi,we, w1 < ws if there exists a position x such that wy.x = ws. ty is the
subterm at the position u of ¢. t[r], is the term ¢ with the subterm rooted at the
position u replaced by r. A substitution ¢ is a mapping from variables to terms
{z1/t1,...,2p/ty} such that ;0 =¢; for i = 1,...,n (with z; # z; if i # j),
and xo = x for any other variable x. By ¢, we denote the empty substitution.
Given a substitution o, the domain of o is the set Dom(o) = {x|zoc # x}.
By Var(t) (resp. F'Symbols(t)), we denote the set of variables (resp. function
symbols) occurring in the term ¢.

A context is a term v € Txy(my (V) with zero or more holes 3, and O & X.
We write v[], to denote that there is a hole at position u of v. By notation 7]],
we define an arbitrary context (where the number and the positions of the holes
are clarified in situ), while we write y[t1,...%,] to denote the term obtained by
filling the holes appearing in [] with terms t1, ..., t,. By notation t=, we denote
the context obtained by applying the substitution o = {z1/00, ..., z,/0} to t,
where Var(t) = {z1...,z,} (ie., t7 = to).

A term rewriting system (TRS for short) is a pair (X, R), where X is a
signature and R is a finite set of reduction (or rewrite) rules of the form A — p,
ANp € Txs(V), A\ €V and Var(p) C Var(\). We often write just R instead of
(X, R). A rewrite step is the application of a rewrite rule to an expression. A term
s rewrites to a term t via r € R, s g t (or s =5 t), if there exists a position
q in s such that A matches s|, via a substitution ¢ (in symbols, s|, = Ao), and
t is obtained from s by replacing the subterm s, = Ao with the term po, in
symbols ¢ = s[po],. The rule A — p (or equation A = p) is collapsing if p € V; it
is left-linear if no variable occurs in A more than once. We denote the transitive
and reflexive closure of — by —*.

Let r : A — p be a rule. We call the context A\Y (resp. pY) redex pat-
tern (resp. contractum pattern) of r. For example, the context f(g(0,0),a)
(resp. d(s(0),0)) is the redex pattern (resp. contractum pattern) of the rule
r: f(g(z,y),a)) = d(s(y),y), where a is a constant symbol.

3 Rewriting Modulo Equational Theories

An equational theory is a pair (X, E), where X is a signature and £ = AU B
consists of a set of (oriented) equations A together with a collection B of equa-
tional axioms (e.g., associativity and commutativity axioms) that are associated

3 Actually, when considering types, we assume to have a distinct s symbol for each
sort s € S, and by abuse we simply denote s by [.

with some operator of Y. The equational theory E induces a least congruence
relation on the term algebra T’x;(V), which is usually denoted by =g.

A rewrite theory is a triple R = (X, E, R), where (X, E) is an equational
theory, and R is a TRS. Examples of rewrite theories can be found in [9].

Rewriting modulo equational theories [14] can be defined by lifting the stan-
dard rewrite relation —r on terms to the E-congruence classes induced by =g.
More precisely, the rewrite relation — g, for rewriting modulo E is defined as
=g o —p 0 =g. A computation in R using —rua,g is a rewriting logic deduc-
tion, in which the equational simplification with A (i.e., applying the oriented
equations in A to a term ¢ until a canonical form ¢| g is reached where no further
equations can be applied) is intermixed with the rewriting computation with the
rules of R, using an algorithm of matching modulo* B in both cases. Formally,
given a rewrite theory R = (X, E, R), where E = AU B, a rewrite step modulo
E on a term sg by means of the rule r : A — p € R (in symbols, s QRUAB $1)
can be implemented as follows: (i) apply (modulo B) the equations of A on s
to reach a canonical form (s }g); (i) rewrite (modulo B) (sg |g) to term v by
using r € R; and (4i%), apply (modulo B) the equations of A on v again to reach
a canonical form for v, s1 = v |p.

Since the equations of A are implicitly oriented (from left to right), the
equational simplification can be seen as a sequence of (equational) rewrite steps
(—ay/B). Therefore, a rewrite step modulo E sg QRUAB s1 can be expanded
into a sequence of rewrite steps as follows:

equational rewrite equational
simplification step/ B simplification
—_——— A
r
S0 —*A/B - —7A/B SO\LE =B U PRV —A/B - 7A/B ’UiE = 81

Given a finite rewrite sequence & = so = rua,B 51 —RUA,B -.. — Sy, in the
rewrite theory R, the execution trace of S is the rewrite sequence T obtained
by expanding all the rewrite steps s; —rua,B Si+1 of S as is described above.

In this work, a rewrite theory R = (X, BU A, R) is called elementary if R
does not contain equational axioms (B = §)) and both rules and equations are
left-linear and not collapsing.

4 Backward Trace Slicing for Elementary Rewrite
Theories

In this section, we formalize a backward trace slicing technique for elementary
rewrite theories that is based on a term labeling procedure that is inspired by [6].
Since equations in A are treated as rewrite rules that are used to simplify terms,
our formulation for the trace slicing technique is purely based on standard rewrit-
ing.

* A subterm of ¢ matches | (modulo B) via the substitution o if t = u and uj, = lo
for a position ¢ of wu.

4.1 Labeling procedure for rewrite theories

Let us define a labeling procedure for rules similar to [6] that allows us to trace
symbols involved in a rewrite step. First, we provide the notion of labeling for
terms, and then we show how it can be naturally lifted to rules and rewrite steps.

Consider a set A of atomic labels, which are denoted by Greek letters v, 53,
Composite labels (or simply labels) are defined as finite sets of elements of A.
By abuse, we write the label a8y as a compact denotation for the set {a, 8,7}

A labeling for a term t € Tx oy (V) is a map L that assigns a label to (the
symbol occurring at) each position w of ¢, provided that root(t,,) # 0. If t is a
term, then t“ denotes the labeled version of ¢. Note that, in the case when ¢t is
a context, occurrences of symbol [J appearing in the labeled version of ¢ are not
labeled. The codomain of a labeling L is denoted by Cod(L) = {l | (w 1) € L}.

An initial labeling for the term t is a labeling for ¢ that assigns distinct fresh
atomic labels to each position of the term. For example, given t = f(g(a, a),0),
then t© = f*(¢%(a”,a%),0) is the labeled version of ¢ via the initial labeling
L={A— a,1— 3,11+~ ~, 1.2 — §}. This notion extends to rules and rewrite
steps in a natural way as shown below.

Labeling of Rules. The labeling of a rewriting rule is formalized as follows:

Definition 1. (rule labeling) [6] Given a rule v : X — p, a labeling L, for r is
defined by means of the following procedure.

r1. The redex pattern A5 is labeled by means of an initial labeling L.

ro. A new label | is formed by joining all the labels that occur in the labeled
redex pattern AU (say in alphabetical order) of the rule r. Label I is then
associated with each position w of the contractum pattern p=, provided that

root(pEU) £ 0.

The labeled version of r w.r.t. L, is denoted by r’~. Note that the labeling
procedure shown in Definition 1 does not assign labels to variables but only to
the function symbols occurring in the rule.

Labeling of Rewrite Steps. Before giving the definition of labeling for a
rewrite step, we need to formalize the auxiliary notion of substitution labeling.

Definition 2. (substitution labeling) Let o = {x1/t1,..., 2, /tn} be a substitu-
tion. A labeling L, for the substitution o is defined by a set of initial labelings
Lo ={Ly,jt,s--sLa, i, } such that (i) for each binding (x;/t;) in the substitu-
tion o, t; is labeled using the corresponding initial labeling Ly, /i,, and (ii) the
sets Cod(Ly, 1,), .-, Cod(Lg, 11,,) are pairwise disjoint.

By using Definition 2, we can formulate a labeling procedure for rewrite steps
as follows.

6

Definition 3. (rewrite step labeling) Let r : A — p be a rule, and p : t s
be a rewrite step using r such that t = C[Aolq and s = Clpol,, for a context C
and position q. Let o = {x1/t1,...,x,/tn}. Let L, be a labeling for the rule r,
Lc be an initial labeling for the context C, and Ly = {Lg, jt,,- - La, ¢, } be a
labeling for the substitution o such that the sets Cod(L¢), Cod(L,), and Cod(o)
are pairwise disjoint, where Cod (o) = J;—, Cod(Ly, 1,).

The rewrite step labeling L,, for u is defined by successively applying the
following steps:

s1. First, positions of t or s that belong to the context C are labeled by using the
initial labeling L.

s3. Then positions of t|, (resp. s)q) that correspond to the redex pattern (resp.
contractum pattern) of the rule r rooted at the position q are labeled according
to the labeling L.

sg. Finally, for each term t;, j = {1,...,n}, which has been introduced in t
or s via the binding x;/t; € o, with x; € Var(\), t; is labeled using the
corresponding labeling Ly, /¢, € Lo

The labeled version of a rewrite step p w.r.t. L, is denoted by e Let us
illustrate these definitions by means of a rather intuitive example.

Ezample 1. Consider the rule r : f(g(x,y),a)) = d(s(y), y). The labeled version
of rule r using the initial labeling L = {(A — a,1— 5,2 — ~} is as follows:

1% (@, y),a7) = d*P7 (%P7 (y), y)

Consider a rewrite step u : C[\o] = C[po] using r, where C[\o] =
d(f(g(a, h(b)),a),a), Clpo] = d(d(s(h(b)), h(b)),a), and o = {z/a,y/h(b)}. Let
Lo = {/1 — 5, 2 — 6}, L;c/a = {/1 — C}, and Ly/h(b) = {/1 — T],]. — 9} be
the labelings for C and the bindings in o, respectively. Then, the corresponding
labeled rewrite step ul is as follows

pt e d(f (g7 (@ (), a7),a%) = d° (@7 (8™ (T (67)), 7 (7)), a)

4.2 Backward Tracing Relation

Given a rewrite step p : t — s and the labeling process defined in the previous
section, the backward tracing relation computes the set of positions in ¢ that are
origin for a position w in s. Formally.

Definition 4. (origin positions) Let u : t 5 s be a rewrite step and L be a
labeling for p where Ly (resp. Lg) is the labeling of t (resp. s). Given a position
w of s, the set of origin positions of w in t w.r.t. u and L (in symbols, Qﬁw) is
defined as follows:

<fw = {v e Pos(t) | Ip € Pos(s), (v 1y) € Lt,(p+> 1) € Ls s.t. p<w and l, Clp}

Note that Definition 4 considers all positions of s in the path from its root
to w for computing the origin positions of w. Roughly speaking, a position v in
t is an origin of w, if the label of the symbol that occurs in t* at position v is
contained in the label of a symbol that occurs in s” in the path from its root to
the position w.

Example 2. Consider again the rewrite step p” : t*— s’ of Example 1, and let
w be the position 1.2 of s. The set of labeled symbols occurring in s” in the
path from its root to position w is the set z = {h", deB, dé}. Now, the labeled
symbols occurring in t whose label is contained in the label of one element of
z is the set {h", f*, ¢” a7, d‘s}. By Definition 4, the set of origin positions of w
in plis <fw={1.1.2, 1, 1.1, 1.2, A}.

4.3 The Backward Trace Slicing Algorithm

First, let us formalize the slicing criterion, which basically represents the infor-
mation we want to trace back across the execution trace in order to find out the
“origins” of the data we observe. Given a term ¢, we denote by O, the set of
observed positions of t.

Definition 5. (slicing criterion) Given a rewrite theory R = (X, A, R) and
an execution trace T : s =* t in R, a slicing criterion for T is any set Oy of
positions of the term t.

In the following, we show how backward trace slicing can be performed by
exploiting the backward tracing relation Qﬁ that was introduced in Definition 4.
Informally, given a slicing criterion O, for 7 : tg — to — ... — t,, at each
rewrite step t;,_1 — t;, ¢ = 1,...,n, our technique inductively computes the
backward tracing relation between the relevant positions of ¢; and those in t;_;.
The algorithm proceeds backwards, from the final term ¢, to the initial term ¢,
and recursively generates at step ¢ the corresponding set of relevant positions,
P;, ,. Finally, by means of a removal function, a simplified trace is obtained
where each t; is replaced by the corresponding term slice that contains only the
relevant information w.r.t. Py,

Definition 6. (sequence of relevant position sets) Let R = (X, A, R) be a
rewrite theory, and T : tg ot B ¢, be an execution trace in R. Let L;
be the labeling for the rewrite step t; — t;y1 with 0 < i < n. The sequence of
relevant position sets in T w.r.t. the slicing criterion Oy, is defined as follows:

relevant_positions(T,O,) = [Py, . .., Py]

P, =0,
where L, . .
P, = Uper+1 Ltso ty40)P with0<j<mn

Now, it is straightforward to formalize a procedure that obtains a term slice
from each term t in 7 and the corresponding set of relevant positions of t. We
introduce the fresh symbol e ¢ X to replace any information in the term that is
not relevant, hence does not affect the observed criterion.

Definition 7. (term slice) Let t € Tx; be a term and P be a set of positions of
t. A term slice of t with respect to P is defined as follows:

slice(t, P) = sl_rec(t, P, A), where

f(slorec(ty, P,p.1),..., slrec(ty, P,p.n))
sl_rec(t, P,p) = if t = f(t1,...,tn) and there exists w s.t. (p.w) € P
° otherwise

In the following, we use the notation t® to denote a term slice of the term ¢.
Roughly speaking, the symbol e can be thought of as a variable, and we denote
by [t°] the term that is obtained by replacing all occurrences of e in t® with fresh
variables. Then, we say that ¢’ is a concretization of ¢* (in symbols, t* oc t') , if
[t*]c = t/, for some substitution o. Let us define a sliced rewrite step between
two term slices as follows.

Definition 8. (sliced rewrite step) Let R = (X, A, R) be a rewrite theory and
r a rule of R. The term slice s* rewrites to the term slice t* via v (in symbols,
s* 5 t*) if there exist two terms s and t such that s® is a term slice of s, t* is
a term slice of t, and s - t.

Finally, using Definition 8, backward trace slicing is formalized as follows.

Definition 9. (backward trace slicing) Let R = (X, A, R) be a rewrite theory,
and T : to 2> t1... 3 t, be an execution trace in R. Let Oy, be a slicing
criterion for T, and let [Py, ..., Py] be the sequence of the relevant position sets
of T w.r.t. O, . A trace slice T* of T w.r.t. Oy, is defined as the sliced rewrite
sequence of term slices t? = slice(t;, P;) which is obtained by gluing together the
sliced rewrite steps in the set

Ke={ts_, Bt |0<k<n Aty | #t0}

Note that in Definition 9, the sliced rewrite steps that do not affect the
relevant positions (i.e., t5_, LY ty with t;_, = t7) are discarded, which further
reduces the size of the trace.

A desirable property of a slicing technique is to ensure that, for any con-
cretization of the term slice ¢, the trace slice 7* can be reproduced. This prop-
erty ensures that the rules involved in 7°® can be applied again to every concrete
trace 7' that we can derive by instantiating all the variables in [t§] with arbitrary
terms.

Theorem 1. (soundness) Let R be an elementary rewrite theory. Let T be an
execution trace in the rewrite theory R, and let O be a slicing criterion for T.
Let T* : ty 55 t3... 18 2 be the corresponding trace slice w.r.t. O. Then, for
any concretization t}y of t8, it holds that T' : t) 2>t} ... 2t/ is an evecution
trace in R, and t? < t;, fori=1,...,n.

The proof of Theorem 1 relies on the fact that redex patterns are preserved
by backward trace slicing. Therefore, for ¢ = 1, ..., n, the rule r; can be applied
to any concretization ¢;_, of term ¢?_, since the redex pattern of r; does appear
in t?_,, and hence in ¢;_,. A detailed proof of Theorem 1 can be found in [1].

Note that our basic framework enjoys neededness of the extracted information
(in the sense of [18]), since the information captured by every sliced rewrite step
in a trace slice is all and only the information that is needed to produce the data
of interest in the reduced term.

5 Backward Trace Slicing for Extended Rewrite Theories

In this section, we consider an extension of our basic slicing methodology that
allows us to deal with extended rewrite theories R = (X, E, R) where the equa-
tional theory (X, F) may contain associativity and commutativity axioms, and
R may contain collapsing as well as nonleft-linear rules. Moreover, we also con-
sider the built-in operators, which are not equipped with an explicit functional
definition (e.g., Maude arithmetical operators). It is worth noting that all the
proposed extensions are restricted to the labeling procedure of Section 4.1, keep-
ing the backbone of our slicing technique unchanged.

5.1 Dealing with collapsing and nonleft-linear rules

Collapsing Rules. The main difficulty with collapsing rules is that they have
a trivial contractum pattern, which consists in the empty context [J; hence, it is
not possible to propagate labels from the left-hand side of the rule to its right-
hand side. This makes the rule labeling procedure of Definition 1 completely
unproductive for trace slicing.

In order to overcome this problem, we keep track of the labels in the left-hand
side of the collapsing rule r, whenever a rewrite step involving r takes place. This
amounts to extending the labeling procedure of Definition 3 as follows.

Definition 10. (rewrite step labeling for collapsing rules) Let u : t s bea
rewrite step s.t. o = {x1/t1,...,Zn/tn}, where r : X — x; is a collapsing rule.
Let L, be a labeling for the rule r. In order to label the step u, we extend the
labeling procedure formalized in Definition 8 as follows:

sq. Let t; be the term introduced in s via the binding x;/t; € o, for some i €
{1,...,n}. Then, the label l; of the root symbol of t; in s is replaced by a new
composite label I 1;, where l. is formed by joining all the labels appearing in
the redex pattern of rr.

Nonleft-linear Rules. The trace slicing technique we described so far does not
work for nonleft-linear TRS. Counsider the rule: r : f(z,y,z) — g(z,y) and the
one-step trace T : f(a,b,a) — g(a,b). If we are interested in tracing back the
symbol g that occurs in the final state g(a,b), we would get the following trace
slice 7° : f(o,0,0) — g(e,e). However, f(a,b,b) is a concretization of f(e, e, e)

10

that cannot be rewritten by using r. In the following, we augment Definition 10
in order to also deal with nonleft-linear rules.

Definition 11. (rewrite step labeling for nonleft-linear rules) Let p : t 2% s be
a rewrite step s.t. o = {x1/t1,..,x,/tn}, where r is a nonleft-linear rule. Let
Lo ={La,jt,> - La, 1, } be alabeling for the substitution o. In order to label the
step p, we further extend the labeling procedure formalized in Definition 10 as
follows:

s5. For each variable x; that occurs more than once in the left-hand side of the

rule r, the following steps must be followed:
e we form a new label l,; by joining all the labels in Cod(ij/t) where

L /t € Lo’y
o let ls be the label of the root symbol of s. Then, ls is replaced by a new
composite label I, 1.

Note that, whenever a rewrite step p involves the application of a rule that is
both collapsing and non left-linear, the labeling for p is obtained by sequentially
applying step s4 of Definition 10 and step s5 of Definition 11 (over the labeled
rewrite step resulting from sy4).

Ezample 3. Consider the labeled, collapsing and nonleft-linear rule
fP(z,y,x) — y together with the rewrite step u:h(f(a,b,a),b) — h(b,b),
and matching substitution o = {z/a,y/b}. Let Lyop) = {A — a,2 — €} be
the labeling for the context h([J,b). Then, for the labeling Ly = {L/q, Ly},
with Ly/q = {A = ~} and Ly, = {A — 6}, the labeled version of p is
he(fP(a,b%,a7),b¢) — h*(bP7°,b°). Finally, by considering the criterion {1},
we can safely trace back the symbol b of the sliced final state h(b,) and obtain
the following trace slice

h(f(g(a),b,9(a)),e) = h(b,e).

5.2 Built-in Operators

In practical implementations of RWL (e.g., Maude [9]), several commonly used
operators are pre-defined (e.g., arithmetic operators, if-then-else constructs),
which do not have an explicit specification. To overcome this limitation, we
further extend our labeling process in order to deal with built-in operators.

Definition 12. (rewrite step labeling for built-in operators) For the case of a
rewrite step p : Clop(ti,...,tn)] — C[t'] involving a call to a built-in, n-ary
operator op, we extend Definition 11 by introducing the following additional case:

. Given an initial labeling Lop for the term op(ty,. .., t,
e cach symbol occurrence in t' is labeled with a new label that is formed by
joining the labels of all the (labeled) arguments tq, ..., t, of op;
e the remaining symbol occurrences of C[t'] that are not considered in the
previous step inherit all the labels appearing in Clop(ty, ..., t,)].

For example, by applying Definition 12, the addition of two natural num-
bers implemented through the built-in operator + might be labeled as
+(78,87) — 1597,

11

5.3 Associative-Commutative Axioms

Let us finally consider an extended rewrite theory R = (X, AU B, R), where B
is a set of associativity (A) and commutativity (C) axioms that hold for some
function symbols in X'. Now, since B only contains associativity /commutativity
(AC) axioms, terms can be represented by means of a single representative of
their AC congruence class, called AC canonical form [11]. This representative is
obtained by replacing nested occurrences of the same AC operator by a flattened
argument list under a variadic symbol, whose elements are sorted by means of
some linear ordering °. The inverse process to the flat transformation is the unflat
transformation, which is nondeterministic (in the sense that it generates all the
unflattended terms that are equivalent (modulo AC) to the flattened term) ©.

For example, consider a binary AC operator f together with the standard lex-
icographic ordering over symbols. Given the B-equivalence f(b, f(f(b,a),c)) =p
f(f(,c), f(a,b)), we can represent it by using the “internal sequence”
f(bv f(f(b7 a’)v C)) _>;latB f(a7 b’ b’ C) _>:;nﬁat3 f(f(b7 C)a f(a7 b))v where the first
one corresponds to the flattening transformation sequence that obtains the AC
canonical form, while the second one corresponds to the inverse, unflattening one.

The key idea for extending our labeling procedure in order to cope with B-
equivalence =p is to exploit the flat/unflat transformations mentioned above.
Without loss of generality, we assume that flat /unflat transformations are stable
w.r.t. the lexicographic ordering over positions C7. This assumption allows us
to trace back arguments of commutative operators, since multiple occurrences
of the same symbol can be precisely identified.

Definition 13. (AC Labeling.) Let f be an associative-commutative operator
and B be the AC axioms for f. Consider the B-equivalence ty =g ty and the
corresponding (internal) flat/unflat transformation T : t1 —Hat, S Funflat, t2-
Let L be an initial labeling for ty. The labeling procedure for t1 =g to is as

follows.

1. (flattening) For each flattening transformation step t, — fat, tiv in T for
the symbol f, a new label Iy is formed by joining all the labels attached to the
symbol f in any position w of t* s.t. w =v or w > v, and every symbol on
the path from v to w is f; then, label Iy is attached to the root symbol of tiv.

2. (unflattening) For each unflattening transformation step tj, —unfiat,, tTU n
T for the symbol f, the label of the symbol f in the position v of t* is attached

® Specifically, Maude uses the lexicographic order of symbols.

5 These two processes are typically hidden inside the B-matching algorithms that
are used to implement rewriting modulo B. See [9] (Section 4.8) for an in-depth
discussion on matching and simplification modulo AC in Maude.

" The lexicographic ordering C is defined as follows: A C w for every position w, and
given the positions w1 = i.w} and wy = jws, w1 C we iff i < j or (i = j and
w} € wy). Obviously, in a practical implementation of our technique, the considered
ordering among the terms should be chosen to agree with the ordering considered
by flat/unflat transformations in the RWL infrastructure.

12

to the symbol f in any position w of t' such that w = v or w > v, and every
symbol on the path from v to w is f.

3. The remaining symbol occurrences in t' that are not considered in cases 1 or
2 above inherit the label of the corresponding symbol occurrence in t.

Ezxample 4. Consider the transformation sequence
f(ba f(b7 f(a7 C))) ﬁ;(iatB f(a7 b7 ba C) %ZnﬁatB f(f(b7 C): f(a7 b))

by using Definition 13, the associated transformation sequence can be labeled as
follows:

fa(bﬁa f’y(b67 fé(ag7 Cn))) %ﬁatB fot’yé(aC’ bﬁa b67 Cn) HZ’!Lﬂ(LtB
FETLO8,), fO7(al, b))

Note that the original order between the two occurrences of the constant b is not
changed by the flat /unflat transformations. For example, in the first term, b? is
in position 1 and b? is in position 2.1 with 1 T 2.1, whereas, in the last term, b®
is in position 1.1 and b? is in position 2.2 with 1.1 C 2.2.

Finally, note that the methodology described in this section can be easily
extended to deal with other equational attributes, e.g., identity (U), by explicitly
encoding the internal transformations performed via suitable rewrite rules.

Soundness of the backward trace slicing algorithm for the extended rewrite
theories is established by the following theorem which properly extends Theo-
rem 1. The proof of such an extension can be found in [1].

Theorem 2. (extended soundness) Let R = (X, E,R) be an extended rewrite
theory. Let T be an execution trace in the rewrite theory R, and let O be a slicing
criterion for T. Let T® : t§ 25 t3... 3 t® be the corresponding trace slice w.r.t.
O. Then, for any concretization t) of tg, it holds that T' : tfy =5 ¢ ... %t/ is
an execution trace in R, and t? < t;, fori=1,...,n.

6 Experimental Evaluation

We have developed a prototype implementation of our slicing methodology that
is publicly available at http://www.dsic.upv.es/~dromero/slicing.html.
The implementation is written in Maude and consists of approximately 800
lines of code. Maude is a high-performance, reflective language that supports
both equational and rewriting logic programming, which is particularly suitable
for developing domain-specific applications [12]. The reflection capabilities of
Maude allow metalevel computations in RWL to be handled at the object-level.
This facility allows us to easily manipulate computation traces of Maude it-
self and eliminate the irrelevant contents by implementing the backward slicing
procedures that we have defined in this paper. Using reflection to implement
the slicing tool has one important additional advantage, namely, the ability to
quickly integrate the tool within the Maude formal tool environment [10], which
is also developed using reflection.

13

E Example | Original Slicing Sliced %
xample
trace trace size| criterion |[trace size|reduction
WoS.77.01 201 74.10%
s Wos. T 776 Wos.71.02 138 82.22%
WoS. T 997 WoS.72.01 404 58.48%
2 WoS.73.02 174 82.55%
B FTCP.7:.0, 895 63.39%
I 2445 FTCR 7.0, 698 | 7L.45%
FTCP.75.01 364 84.63%
FICP.T> 2369 105 75.0, 707 | 70.16%
Web-TLR.77.01 1949 93.88%
e TLA Web-TLR.T1 | 31829 p iR 7,.0,] 1598 [04.07%
g Web-TLR.75.01 9090 87.39%
Web-TLR. T2 | 72098 |G IR T5.0,] 7119 | 90.13%

Table 1. Summary of the reductions achieved.

In order to evaluate the usefulness of our approach, we benchmarked our
prototype with several examples of Maude applications, namely: War of Souls
(WoS), a role-playing game that is modeled as a nontrivial producer/consumer
application; Fault-Tolerant Communication Protocol (FTCP), a Maude specifi-
cation that models a fault-tolerant, client-server communication protocol; and
Web-TLR, a software tool designed for model-checking real-size Web applica-
tions (e.g., Web-mailers, Electronic forums), which is based on rewriting logic.

We have tested our tool on some execution traces that were generated by the
Maude applications described above by imposing different slicing criteria. For
each application, we considered two execution traces that were sliced using two
different criteria. As for the WoS example, we have chosen criteria that allow us to
backtrace both the values produced and the entities in play — e.g., the criterion
WoS.771.05 isolates players’ behaviors along the trace 7;. Execution traces in
the FTCP example represent client-server interactions. In this case, the chosen
criteria aim at isolating a server and a client in a scenario that involves multiple
servers and clients (FTCP.73.01), and tracking the response generated by a server
according to a given client request (FTCP.7;.01). In the last example, we have
used Web-TLR to verify two LTL(R) properties of a Webmail application. The
considered execution traces are much bigger for this program, and correspond
to the counterexamples produced as outcome by the built-in model-checker of
Web-TLR. In this case, the chosen criteria allow us to monitor the messages
exchanged by the Web browsers and the Webmail server, as well as to focus our
attention on the data structures of the interacting entities (e.g., browser/server
sessions, server database).

Table 1 summarizes the results we achieved. For each criterion, Table 1 shows
the size of the original trace and of the computed trace slice, both measures
as the length of the corresponding string. The %reduction column shows the
percentage of reduction achieved. These results are very encouraging, and show
an impressive reduction rate (up to ~ 95%). Actually, sometimes the trace slices
are small enough to be easily inspected by the user, who can restrict her attention
to the part of the computation she wants to observe getting rid of those data
that are useless or even noisy w.r.t. the considered slicing criterion.

14

7 Conclusion and Related Work

We have presented a backward trace-slicing technique for rewriting logic the-
ories. The key idea consists in tracing back —through the rewrite sequence—
all the relevant symbols of the final state that we are interested in. Preliminary
experiments demonstrate that the system works very satisfactorily on our bench-
marks —e.g., we obtained trace slices that achieved a reduction of up to almost
95% in reasonable time (max. 0.5s on a Linux box equipped with an Intel Core
2 Duo 2.26GHz and 4Gb of RAM memory).

Tracing techniques have been extensively used in functional programming
for implementing debugging tools [8]. For instance, Hat [8] is an interactive de-
bugging system that enables exploring a computation backwards, starting from
the program output or an error message (with which the computation aborted).
Backward tracing in Hat is carried out by navigating a redex trail (that is,
a graph-like data structure that records dependencies among function calls),
whereas tracing in our approach does not require the construction of any auxil-
iary data structure.

Our backward tracing relation extends a previous tracing relation that was
formalized in [6] for orthogonal TRSs. In [6], a label is formed from atomic la-
bels by using the operations of sequence concatenation and underlining (e.g.,
a, b, ab, abed, are labels), which are used to keep track of the rule application
order. Collapsing rules are simply avoided by coding them away. This is done by
replacing each collapsing rule A — x with the rule A\ — &(x), where ¢ is a unary
dummy symbol. Then, in order to lift the rewrite relation to terms containing
€ occurrences, infinitely many new extra-rules are added that are built by sat-
urating all left-hand sides with ¢(z). In contrast to [6], we use a simpler notion
of labeling, where composite labels are interpreted as sets of atomic labels, and
in the case of collapsing as well as nonleft-linear rules we label the rewrite steps
themselves so that we can deal with these rules in an effective way.

The work that is most closely related to ours is [13], which formalizes a no-
tion of dynamic dependence among symbols by means of contexts and studies
its application to program slicing of TRSs that may include collapsing as well as
nonleft-linear rules. Both the creating and the created contexts associated with a
reduction (i.e., the minimal subcontext that is needed to match the left-hand side
of a rule and the minimal context that is “constructed” by the right-hand side of
the rule, respectively) are tracked. Intuitively, these concepts are similar to our
notions of redex and contractum patterns. The main differences with respect to
our work are as follows. First, in [13] the slicing is given as a context, while we
consider term slices. Second, the slice is obtained only on the first term of the
sequence by the transitive and reflexive closure of the dependence relation, while
we slice the whole execution trace, step by step. Obviously, their notion of slice
is smaller, but we think that our approach can be more useful for trace analysis
and program debugging. An extension of [6] is described in [18], which provides
a generic definition of labeling that works not only for orthogonal TRSs as is
the case of [6] but for the wider class of all left-linear TRSs. The nonleft-linear
case is not handled by [18]. Specifically, [18] describes a methodology of static

15

and dynamic tracing that is mainly based on the notion of sample of a traced
proof term —i.e., a pair (u, P) that records a rewrite step 4 = s — t, and a set
P of reachable positions in ¢ from a set of observed positions in s. The tracing
proceeds forward, while ours employs a backward strategy that is particularly
convenient for error diagnosis and program debugging. Finally, [13] and [18] ap-
ply to TRSs whereas we deal with the richer framework of RWL that considers
equations and equational axioms, namely rewriting modulo equational theories.

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

Alpuente, M., Ballis, D., Espert, J., Romero, D.: Backward trace slicing for RWL
theories (Technical Report), available at http://hdl.handle.net/10251/10770
Alpuente, M., Ballis, D., Baggi, M., Falaschi, M.: A Fold/Unfold Transformation
Framework for Rewrite Theories extended to CCT. In Proc. PEPM 2010. pp. 43—
52. ACM (2010)

Alpuente, M., Ballis, D., Espert, J., Romero, D.: Model-checking Web Applications
with Web-TLR. In Proc. ATVA 2010. Springer LNCS 6252:341-346 (2010)
Alpuente, M., Ballis, D., Romero, D.: Specification and Verification of Web Appli-
cations in RWL . In Proc. FM 2009. Springer LNCS 5850:790-805 (2009)

. Baggi, M., Ballis, D., Falaschi, M.: Quantitative Pathway Logic for Computational

Biology. In Proc. CMSB 2009. Springer LNCS 5688:68-82 (2009)

Bethke, 1., Klop, J.W., de Vrijer, R.: Descendants and origins in term rewriting.
Inf. Comput. 159(1-2), 59-124 (2000)

Chen, F., Rosu, G.: Parametric trace slicing and monitoring. In Proc. TACAS
2009. Springer LNCS 5505:246-261 (2009)

Chitil, O., Runciman, C., Wallace, M.: Freja, hat and hood - a comparative evalua-
tion of three systems for tracing and debugging lazy functional programs. In Proc.
IFL 2000. Springer LNCS 2011:176-193 (2000)

Clavel, M., Durén, F., Eker, S.; Lincoln, P., Marti-Oliet, N., Meseguer, J., Talcott,
C.: All About Maude: A High-Performance Logical Framework. Springer LNCS
4350 (2007) -

Clavel, M., Duran, F., Hendrix, J., Lucas, S., Meseguer, J., Olveczky, P.C.:
The Maude Formal Tool Environment. In Proc. CALCO 2007. Springer LNCS
4624:173-178 (2007)

Eker, S.: Associative-Commutative Rewriting on Large Terms. In Proc. RTA 2003.
Springer LNCS 2706:14—-29 (2003)

Eker, S., Meseguer, J., Sridharanarayanan, A.: The Maude LTL model checker and
its implementation. In Proc. SPIN 2003. LNCS 2648:230—234 (2003)

Field, J., Tip, F.: Dynamic dependence in term rewriting systems and its applica-
tion to program slicing. In Proc. PLILP ’94. Springer LNCS 844:415-431 (1994)
Marti-Oliet, N., Meseguer, J.: Rewriting Logic: Roadmap and Bibliography. The-
oretical Computer Science 285(2), 121-154 (2002)

Riesco, A., Verdejo, A., Marti-Oliet, N.: Declarative Debugging of Missing Answers
for Maude Specifications. In Proc. RTA 2010. LIPIcs 6:277-294, 2010.

Rosu, G., Havelund, K.: Rewriting-Based Techniques for Runtime Verification.
Autom. Softw. Eng. 12(2), 151-197 (2005)

Talcott, C.: Pathway logic. Formal Methods for Computational Systems Biology
5016, 21-53 (2008)

TeReSe (ed.): Term Rewriting Systems. Cambridge University Press, Cambridge,
UK (2003)

