
Slicing-Based Trace Analysis

of Rewriting Logic Specifications with iJulienne�

Maŕıa Alpuente1, Demis Ballis2, Francisco Frechina1, and Julia Sapiña1

1 DSIC-ELP, Universitat Politècnica de València,
Camino de Vera s/n, Apdo 22012, 46071 Valencia, Spain

{alpuente,ffrechina,jsapina}@dsic.upv.es
2 DIMI, Università degli Studi di Udine,
Via delle Scienze 206, 33100 Udine, Italy

demis.ballis@uniud.it

Abstract. Wepresent iJulienne, a trace analyzer for conditional rewrit-
ing logic theories that can be used to compute abstract views of Maude ex-
ecutions that help users understand and debug programs. Given a Maude
execution trace and a slicing criterion which consists of a set of target sym-
bols occurring in a selected state of the trace, iJulienne is able to track
back reverse dependences and causality along the trace in order to incre-
mentally generate highly reduced program and trace slices that
reconstruct all and only those pieces of information that are needed to
deliver the symbols of interest. iJulienne is also endowed with a trace
querying mechanism that increases flexibility and reduction power and al-
lows program runs to be examined at the appropriate level of abstraction.

1 Introduction

Execution traces are an important source of information for program under-
standing and debugging. Standard tracers usually present execution histories
that mainly consist of low-level execution steps so that the relationship between
the executed program and the execution history is not easy to derive because
some key dependences that are naturally expressed at the programming language
level can be either scattered or omitted in the trace. This is particularly true for
those systems that are specified in Rewriting Logic (RWL) —a logic of change
that can deal naturally with highly nondeterministic concurrent computations.

Rewriting logic is efficiently implemented in the high-performance language
Maude. Execution traces generated by Maude are complex objects to deal with.
The traces typically include thousands of rewrite steps that are obtained by
applying the equations and rules of the considered specification (including all
the internal rewrite steps for evaluating the conditions of such equations/rules).

� This work has been partially supported by the EU (FEDER) and the Spanish
MEC project ref. TIN2010-21062-C02-02, and Generalitat Valenciana ref. PROME-
TEO2011/052, and was carried out during the tenure of D. Ballis’ ERCIM ”Alain
Bensoussan” Postdoctoral Fellowship. The research leading to these results has re-
ceived funding from the EU 7th Framework Programme (FP7/2007-2013) under
agreement n. 246016. F. Frechina is supported by FPU-ME grant AP2010-5681.

M. Felleisen and P. Gardner (Eds.): ESOP 2013, LNCS 7792, pp. 121–124, 2013.
© Springer-Verlag Berlin Heidelberg 2013

122 M. Alpuente et al.

In addition, Maude traces are incomplete because algebraic axiom applications,
which implicitly occur in an equational simplification process that is hidden
within Maude’s matching modulo algorithm, are not recorded at all in the trace.
This provides a very low-level blueprint of program execution whose manual
inspection is frequently unfeasible or, in the best case, is an extremely labor-
intensive and time-consuming task.

This paper describes iJulienne, a slicing-based trace analysis tool that assists
the user in the comprehension and debugging of RWL theories that are encoded
in Maude. iJulienne is built on top of a trace slicer that implements the back-
ward conditional trace slicing algorithm described in [2,3,4]. Roughly speaking,
the trace slicing mechanism included in iJulienne rolls back the program exe-
cution (making all the rewrite and equational simplification steps explicit) while
tracking back only and all data in the trace that are needed to accomplish the
selected slicing criterion —that is, the data that contribute to producing the
set of target symbols that occur in the observed state of the trace. The core
trace slicer included within iJulienne is a totally redesigned implementation of
our slicing technique in [2,3] that supersedes and greatly improves the prelim-
inary system presented in [4]. In particular, the new trace analyzer iJulienne
is equipped with an incremental backward trace slicing algorithm that supports
stepwise refinements of the trace slice and achieves huge reductions in the size of
the trace. Starting from a Maude execution trace T , a slicing criterion S can be
attached to any given state of the trace and the computed trace slice T � can be
repeatedly refined by applying backward trace slicing w.r.t. increasingly restric-
tive versions of S. Furthermore, the system supports a cogent form of dynamic
program slicing [7] as follows. Given a Maude program M and a trace slice T �

for M, iJulienne is able to infer the minimal fragment of M (i.e., the program
slice) that is needed to reproduce T �. Finally, iJulienne is endowed with a
powerful and intuitive Web user interface that allows the slicing criteria to be
easily defined by either highlighting the chosen target symbols or by applying a
user-defined filtering pattern. A browsing facility is also provided that enables
forward and backward navigation through the trace (and the trace slice) and
allows the user to examine each state transition (and its corresponding sliced
counterpart) at different granularity levels.

2 iJulienne at Work

The iJulienne system is written in Maude and consists of about 250 Maude
function definitions. It can be invoked as a Maude command or used online
through a Java Web service. The tool is publicly available at [6] together with
several case studies which consider large execution traces, such as the counter-
examples delivered by the Maude LTLR model-checker [1]. A thorough experi-
mental evaluation of our slicing methodology can be found in [5].

To illustrate how iJulienne works in practice, we show a typical trace slicing
session on a Maude implementation of Blocks World —one of the most popu-
lar planning problems in artificial intelligence. We assume that there are some
blocks, placed on a table, that can be moved by means of a robot arm; the

Slicing-Based Trace Analysis with iJulienne 123

mod BLOCKS-WORLD is inc INT .
sorts Block Prop State .
subsort Prop < State .
ops a b c : -> Block .
op table : Block -> Prop . *** block is on the table
op on : Block Block -> Prop . *** first block is on the second block
op clear : Block -> Prop . *** block is clear
op hold : Block -> Prop . *** robot arm holds the block
op empty : -> Prop . *** robot arm is empty
op _&_ : State State -> State [assoc comm] .
op size : Block -> Nat .
vars X Y : Block .

eq [sizeA] : size(a) = 1 .
eq [sizeB] : size(b) = 2 .
eq [sizeC] : size(c) = 3 .

rl [pickup] : clear(X) & table(X) => hold(X) .
rl [putdown] : hold(X) => empty & clear(X) & table(X) .
rl [unstack] : empty & clear(X) & on(X,Y) => hold(X) & clear(Y) .
crl [stack] : hold(X) & clear(Y) => empty & clear(X) & on(X,Y) if size(X) < size(Y) .

endm

Fig. 1. BLOCKS-WORLD faulty Maude specification

goal of the robot arm is to produce one or more vertical stacks of blocks. In
our specification, which is shown in the Maude module BLOCKS-WORLD of Figure
1, we define a Blocks World system with three different kinds of blocks that
are defined by means of the operators a, b, and c of sort Block. Different blocks
have different sizes that are described by using the unary operator size. We also
consider some operators that formalize block and robot arm properties whose
intuitive meanings are given in the accompanying program comments.

The states of the system are modeled by means of associative and commutative
lists of properties of the form prop1&prop2& . . .&propn, which describe any
possible configuration of the blocks as well as the status of the robot arm. The
system behavior is formalized by four, simple rewrite rules that control the robot
arm. Specifically, the pickup rule describes how the robot arm grabs a block
from the table, while putdown rule corresponds to the inverse move. The stack
and unstack rules respectively allow the robot arm to drop one block on top
of another block and to remove a block from the top of a stack. Note that the
conditional stack rule forbids a given block B1 from being piled on a block B2 if
the size of B1 is greater than the size of B2.

Barely perceptible, the Maude specification of Figure 1 fails to provide a
correct Blocks World implementation. By using the BLOCKS-WORLDmodule, it is
indeed possible to derive system states that represent erroneous configurations.
For instance, the initial state

si = empty & clear(a) & table(a) & clear(b) & table(b) & clear(c) & table(c)

describes a simple configuration where the robot arm is empty and there are
three blocks a, b, and c on the table. It can be rewritten in 7 steps to the state

sf = empty & empty & table(b) & table(c) & clear(a) & clear(c) & on(a,b)

which clearly indicates a system anomaly, since it shows the existence of two
empty robot arms!

124 M. Alpuente et al.

To find the cause of this wrong behavior, we feed iJulienne with the faulty
rewrite sequence T = si →∗ sf, and we initially slice T w.r.t. the slicing cri-
terion that observes the two anomalous occurrences of the empty property and
the stack on(a, b) in State sf. This task can be easily performed in iJulienne by
first highlighting the terms that we want to observe in State sf with the mouse
pointer and then starting the slicing process. Alternatively, we can also query the
trace using an appropriate pattern, which extracts the considered target data by
means of pattern-matching, to State sf. iJulienne yields a trace slice which only
records those data that are strictly needed to produce the considered slicing cri-
terion. Also, it automatically computes the corresponding program slice, which
consists of the equations defining the size operator together with the pickup and
stack rules. This allows us to deduce that the malfunction is located in one or
more rules and equations that are included in the computed program slice.

The generated trace slice is then browsed backwards using the iJulienne’s
navigation facility in search of a possible explanation for the wrong behavior. Dur-
ing this phase, we found an inconsistent state that models a robot arm that is
holding block a and is empty at the same time. Therefore, we further refine the
trace slice by incrementally applying backward trace slicing to the detected, in-
consistent state w.r.t. the slicing criterion hold(a). This way, we achieve a trace
reduction of ∼90% in which we can easily observe that hold(a) only depends on
the clear(a) and table(a)properties. Furthermore, the computed program slice
includes the single pickup rule. Thus, we can conclude that: (i) the malfunction is
certainly located in the pickup rule (since the computed program slice only con-
tains that rule); (ii) the pickup rule does not depend on the status of the robot
arm (this is witnessed by the fact that hold(a) only relies on the clear(a) and
table(a) properties); (iii) by (i) and (ii), we can deduce that the pickup rule
is incorrect, as it never checks the emptiness of the robot arm before grasping a
block.

References

1. Alpuente, M., Ballis, D., Espert, J., Romero, D.: Model-Checking Web Applications
with Web-TLR. In: Bouajjani, A., Chin, W.-N. (eds.) ATVA 2010. LNCS, vol. 6252,
pp. 341–346. Springer, Heidelberg (2010)

2. Alpuente, M., Ballis, D., Espert, J., Romero, D.: Backward Trace Slicing for Rewrit-
ing Logic Theories. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011.
LNCS, vol. 6803, pp. 34–48. Springer, Heidelberg (2011)

3. Alpuente, M., Ballis, D., Frechina, F., Romero, D.: Backward Trace Slicing for
Conditional Rewrite Theories. In: Bjørner, N., Voronkov, A. (eds.) LPAR-18 2012.
LNCS, vol. 7180, pp. 62–76. Springer, Heidelberg (2012)

4. Alpuente, M., Ballis, D., Frechina, F., Romero, D.: Julienne: A Trace Slicer for
Conditional Rewrite Theories. In: Giannakopoulou, D., Méry, D. (eds.) FM 2012.
LNCS, vol. 7436, pp. 28–32. Springer, Heidelberg (2012)

5. Alpuente, M., Ballis, D., Frechina, F., Romero, D.: Using Conditional Trace Slicing
for Improving Maude Programs. Science of Comp. Progr. (to appear, 2013)

6. The ijulienne website (2013), http://safe-tools.dsic.upv.es/iJulienne
7. Korel, B., Laski, J.: Dynamic Program Slicing. Inf. Process. Lett. 29(3), 155–163

(1988)

http://safe-tools.dsic.upv.es/iJulienne

	Slicing-Based Trace Analysis of Rewriting Logic Specifications with iJulienne
	Introduction
	iJulienne at Work

