
A Rewriting Logic Approach to the Formal

Specification and Verification of Web applicationsI

Maŕıa Alpuentea, Demis Ballisb, Daniel Romeroa

aDSIC-ELP, Universitat Politècnica de València,
Camino de Vera s/n, Apdo 22012,

46071 Valencia, Spain.
bDipartimento di Matematica e Informatica,

Via delle Scienze 206,
33100 Udine, Italy.

Abstract

This paper develops a Rewriting Logic framework for the automatic specifica-
tion and verification of Web applications that considers the critical aspects of
concurrent Web interactions, browser navigation features (e.g., forward/back-
ward navigation, page refresh, and new window/tab opening), and Web
script evaluation. By encompassing the main features of the most popular
Web scripting languages (e.g., PHP, ASP, and Java Servlets), our script-
ing language is powerful enough to model the dynamics of complex Web
applications, where the interactions among Web servers and Web browsers
are formalized through a landmark communicating protocol that abstracts
HTTP. We provide a detailed characterization of browser actions via rewrite
rules and show how our models can be naturally model-checked by using
the Linear Temporal Logic of Rewriting (LTLR), which is a Linear Tem-
poral Logic that is specifically designed for model-checking rewrite theories.
The framework has been completely implemented in Maude, and we report

IThis work has been partially supported by the EU (FEDER) and the Spanish
MEC project ref. TIN2010-21062-C02-02, and by Generalitat Valenciana ref. PROME-
TEO2011/052. This work was carried out during the tenure by Demis Ballis of an ERCIM
”Alain Bensoussan” Postdoctoral Fellowship. The research leading to these results has
received funding from the European Union Seventh Framework Programme (FP7/2007-
2013) under grant agreement n 246016. Daniel Romero was partially supported by FPI-
MEC grant BES-2008-004860.

Email addresses: alpuente@dsic.upv.es (Maŕıa Alpuente), demis@dimi.uniud.it
(Demis Ballis), dromero@dsic.upv.es (Daniel Romero)

Preprint submitted to Science of Computer Programming December 17, 2012

on some successful experiments that we conducted using the Maude LTLR
model-checker.

1. Introduction

Over the past few decades, the web has evolved from being a static
medium to a highly interactive one. Currently, a number of corporations (in-
cluding book retailers, auction sites, travel reservation services, etc.) interact
with their users primarily through the web by means of complex interfaces
that combine static content with dynamic data produced “on-the-fly” by the
execution of server-side scripts (e.g., Java servlets, Microsoft ASP.NET, and
PHP code). A web application typically consists of a series of web scripts
whose execution may involve several interactions between a web browser and
a web server. In a typical scenario, browser/server interactions are chan-
neled by the HyperText Transfer Protocol (HTTP). Specifically, the browser
requests the execution of a script in the server. Then the server executes the
script and finally returns a response that the browser can display. This ex-
ecution model —albeit very simple— hides some subtle intricacies that can
result in erroneous behavior.

First, web browsers commonly support backward and forward navigation
through web application stages and allow users to invoke distinct (instances
of) web scripts in distinct browser windows (or tabs) that run in parallel.
These browser actions may be potentially dangerous since they can change
the browser state without notifying the server and may easily lead to errors or
undesired responses. For instance, [1] reports on a frequent error that is often
called the multiple windows problem, which typically happens when a user
browses a web site by using two or more browser windows. A representative
instance of this problem for an online selling application is one in which a user
displays two items in two different windows in an online store. After clicking
to buy the item on the window that was opened first, the user frequently
finds that s/he has bought the second one.

Second, clicking refresh/forward/backward browser buttons may some-
times produce error messages since these buttons were designed for navigat-
ing static web sites, while navigation through web applications may require
multiple dynamic state changes. In fact, HTTP provides a stateless commu-
nication infrastructure in which application states can only be simulated on
top of HTTP by means of common practice subterfuges (e.g., HTTP cookies,
server-side sessions, hidden variables) that do not offer robust and reliable

2

state implementations. As a consequence, frequent problems have occurred
in popular web sites (e.g., Orbitz, Apple, Continental Airlines, Hertz car
rentals, Microsoft, and Register.com) as reported in [2].

Third, näıvely written web scripts may involve security vulnerabilities
(e.g., unvalidated input errors, access control flaws, and data leaks [3]) that
might represent potential sources of hazard. Also, in many cases, they pro-
duce undesired results that are difficult to debug.

Although the problems mentioned above are well known in the web com-
munity, there are a limited number of tools that provide a guarantee that the
web application design is free of specific flaws by supporting the automated
analysis and verification of web applications.

Our Approach

Model checking [4] is an automated verification technique that can ana-
lyze complicated properties — expressed in temporal or other logics— which
is based on an exhaustive exploration of the reachable states of a program.
If the property does not hold, the model checking algorithm generates a
counter-example that is an execution trace leading to a state in which the
property is violated. Model checking techniques have relatively small com-
plexity compared to heavier formal verification techniques, and they offer
three important benefits: they provide counter-examples that can be used to
debug the system, more precise models, and effective, sound and complete
verification.

One can distinguish two main camps in temporal logic and model checking
[5]: the state-based approach, in which all atoms in formulas are state pred-
icates (e.g., LTL, CTL, and CTL∗ [6]); and the event-based approach, where
the formulas’ atoms are actions or events (e.g., A-CTL [7]). At the seman-
tic level, state-based formulas are evaluated on Kripke structures, whereas
action-based formulas are evaluated on labeled transition systems. Some
properties can be naturally expressed in state-based logics and are difficult
to express in action-based logics, whereas the opposite is the case for other
properties. This means that, when the property does not fit well a given
logic, one has to “cook” in a possibly complex way both the system descrip-
tion (as a Kripke structure or a label transitions system depending on the
logic’s semantics) and the property in order to model check it in the given
logic. The situation is even more challenging for mixed properties such as
fairness/liveness properties, where both state-based predicates and actions
are involved [5]. The Linear Temporal Logic of Rewriting (LTLR) [5, 8] is a

3

state/event-based extension of LTL with spatial action patterns which rep-
resent rewriting events. When used in tandem with rewriting logic (RWL)
[9, 10] —a very general logical and semantic framework that is particularly
suitable for formalizing highly concurrent, complex systems— for system and
property specification, it has substantially more expressive power than purely
state-based logics, or purely event-based logics [5].

RWL has been efficiently implemented in the high-performance language
Maude [9, 11] and a rewriting-based model checker for the linear temporal
logic of rewriting has been developed in [5, 12] and integrated in the Maude
formal environment. In [13], we thoroughly explored the application of RWL
and Maude’s LTLR model checker to the formal specification and automatic
verification of complex, real-size web applications. Specifically, we defined a
RWL-based verification methodology that has been successfully implemented
in the Web-TLR system [14, 15].

Our Contribution

In this article, we advocate a model-based approach to the formal verifi-
cation of web applications. Roughly speaking, we propose to first specify an
abstract —albeit accurate— model of the web application of interest in RWL,
and then analyze the model by using LTLR model checking techniques that
allow us to analyze and prove its properties and perform in-depth, efficient
analyses of many subtle aspects related to web interaction.

The advantages of this modus operandi are threefold:

• The inherent complexity of real web applications can be managed ef-
fectively both in terms of the number of lines of code and in terms
of the number of interacting technologies that are required in a real
implementation;

• Critical aspects, as well as design flaws of the considered web applica-
tion, can be detected during the earlier stages of the software devel-
opment, which simplifies the debugging phase and reduces the overall
cost of the development;

• Model-driven engineering methodologies can be adopted to automati-
cally derive correct-by-construction implementations from the models
that have been formally verified, as advocated in [16, 17].

4

This article offers an up-to-date, comprehensive, and uniform presenta-
tion of the RWL methodology as developed in [13, 14, 15]. We summarize
the main contributions of the article as follows.

• We define a formal, fine-grained web application model that accurately
describes web application behavior and that is suitable for the veri-
fication of the core business logic of complex, dynamic web systems.
Our model is formalized within the Rewriting Logic (RWL) frame-
work by means of a rigorous rewrite theory that i) completely spec-
ifies the interactions among a web server and multiple web browsers
through a request/response protocol that supports the main features
of HTTP; ii) allows us to model browser actions such as refresh, for-
ward/backward navigation, and window/tab openings; iii) supports a
scripting language that abstracts the main common features (e.g., ses-
sion data manipulation, and database interactions) of the most popular
web scripting languages; iv) formalizes adaptive navigation [18], i.e., a
navigational model in which web page transitions may depend on the
user’s data or previous computation states of the web application.

• We show how rewrite theories that specify web application models
can be model checked using LTLR. LTLR allows us to define mixed
state/event properties at a very high description level using RWL rules
and hence can be smoothly integrated into our RWL framework. Our
methodology allows several important classes of properties (e.g., un-
reachability, safety, authentication, mutual exclusion, liveness, and fair-
ness conditions) to be verified w.r.t. a realistic model of a web applica-
tion that includes detailed browser-server protocol interactions, browser
navigation capabilities, and web script evaluations. Moreover, relying
on Maude’s LTLR model checker, any web application property that
can be expressed in LTLR can be effectively verified in Web-TLR,
and this great expressiveness is achieved without compromising per-
formance because the LTLR implementation minimizes the extra costs
involved in handling system events.

• We present and experimentally evaluate the Web-TLR system, which
implements our verification methodology in Maude. In Web-TLR,
web applications are expressed as Maude programs that can be formally
verified by using the LTLR model checker included in the Maude formal
environment. Web-TLR is equipped with a user-friendly, graphical

5

web interface that shields users from unnecessary information and al-
lows them to visualize, in a stepwise manner, the erroneous navigation
traces (i.e., counter-examples) delivered by the model checker.

Plan of the paper

The rest of the paper is organized as follows. Section 2 briefly recalls
some essential notions about Rewriting Logic. Section 3 illustrates a general
model for web interactions which informally describes the navigation through
web applications using HTTP. In Section 4, we specify a rewrite theory that
formalizes the navigation model of Section 3. This model captures the in-
teraction of the server with multiple browsers and fully supports the most
common browser navigation features. In Section 5, we introduce LTLR, and
we show how it can be used to formally verify web applications. Section 6
describes Web-TLR, which is a software tool designed for model checking
web applications that implements our theoretical framework. In Section 7,
we present a thorough experimental evaluation of Web-TLR, which uses a
webmail system application and a virtual forum application as case studies,
to attest the usefulness of our verification technique. The related work is
discussed in Section 8, and Section 9 concludes. Maude specifications that
encode the operational semantics of the web scripting language and the pro-
tocol evaluation mechanism can be found in Appendix A and Appendix B,
respectively. Appendix C describes the virtual forum web application that
is used in Section 7.

2. Preliminaries

We assume some basic knowledge of term rewriting [19] and rewriting
logic [9]. We also require some familiarity with the Maude language [11]
since we adopt a Maude-like notation to express equational as well as rewrite
theories. Let us first recall some fundamental notions that are relevant to
this work.

The static state structure as well as the dynamic behavior of a concurrent
system can be formalized as a RWL specification that encodes a rewrite
theory. More specifically, a rewrite theory is a triple R = (Σ, E,R), where:

(i) (Σ, E) is an order-sorted equational theory that is equipped with a
partial order < that models the usual subsort relation [11]. Σ, which
is called the signature, specifies the operators and sorts that define the

6

type structure ofR, while E is a set of (possibly conditional) equational
definitions that may include algebraic axioms such as commutativity
(comm), associativity (assoc), and unity (id) axioms. Each operator
opname in Σ is defined along with its sort and axiom declarations using
the syntax:

op opname : s0 . . . sn → s [axiom declaration] .

where si, i = 0, . . . , n, and s are sorts, and axiom declaration is a
(possibly empty) list of equational attributes (e.g. assoc, comm) that
denote the algebraic laws that the operator opname must obey. By
default, declared operators adopt the prefix notation; however, we also
let the user specify infix operators, this is done by using underscores as
place fillers for the input arguments. So, for instance, the declaration

op + : Int Int → Int [assoc comm id : 0] .

defines + as a binary, infix operator that takes two integer numbers and
returns an integer number. The operator + is also declared associative,
commutative and its unity is the constant 0.

(ii) R is a set of (possibly conditional) labeled rules of the form [l] : t ⇒
t′ if c such that l is a label that uniquely identifies the rule, t, t′

are terms, and c is an optional boolean term that represents the rule
condition. When a rule has no condition, we simply write [l] : t⇒ t′.

Intuitively, the sorts and operators contained in the signature Σ allow
system states to be formalized as ground terms (i.e. terms not including
variables) of a term algebra τΣ,E that is built upon Σ and E. On the other
hand, the rules in R specify general patterns that are used to model state
transitions and allow the dynamics of the system to be specified. More
specifically, the system evolves by applying the rules of the rewrite theory R
to the system states by means of rewriting modulo E, where E is the set of
equational axioms.

Let us illustrate the two components (Σ, E) and R of a rewrite theory by
means of some examples.

Example 1. Soups (i.e., multisets) of elements of sort S can be easily de-
fined by the equational theory (Σm, Em) that contains two sorts S and Soup,
such that S is a subsort of Soup, together with the following operators [11]:

7

op empty :→ Soup . *** empty soup
op , : Soup Soup→ Soup [comm assoc Id : empty] . *** soup concatenation

The operator empty specifies the empty soup (denoted by ∅ in the sequel),
while , is an associative and commutative, binary operator with identity
element empty that is used to build soups of the form t1, t2, . . . , tn where each
ti, with i = 1, . . . , n, has sort S.

In the following, we denote by =E the least congruence relation induced
on the term algebra τΣ,E by the equational theory (Σ, E).

Example 2. Consider two soups a, b, c and b, c, a defined according to the
equational theory (Σm, Em) of Example 1. Then, a,b,c =Em b,c,a, since the
operator , obeys the associative and commutative laws declared in Em.

In order to define rewriting modulo equational theories, we need the fol-
lowing auxiliary definitions. A context C is a term with a single hole, denoted
by [], which is used to indicate the location where a reduction occurs. C[t]
is the result of placing t in the hole of C. A substitution σ is a finite mapping
from variables to terms, and tσ is the result of applying σ to term t. Vari-
ables may appear in both equational axioms and rules. By notation x : S,
we denote that variable x has sort S.

Given a rule [l] : t ⇒ t′ if c, and two ground terms s1 and s2 denoting
two system states, we say that s1 rewrites to s2 modulo E via l (in symbols

s1
l−→R/E s2), if there exists a context C and a substitution σ such that

s1 =E C[tσ], s2 =E C[t′σ], and cσ holds (i.e., it is equivalent to true modulo

E). When no confusion can arise, we simply write s1
l−→ s2 instead of

s1
l−→R/E s2.

Note that, since −→R/E-reducibility is undecidable in general, a decidable
variant of −→R/E is used instead [20]. This variant is equivalent to −→R/E

for a large class of RWL specifications [21] including those presented in this
paper.

A computation inR is a sequence of rewrites of the form s0
l1−→ s1 . . .

lk−→
sk, with l1, . . . , lk labels that identify rules in R, s0, . . . , sk ∈ τΣ,E.

8

Example 3. Let us assume that the equational theory (Σm, Em) of Exam-
ple 1 includes the (constant) operators

op a :→ S .
op b :→ S .

Let s be a variable of sort Soup. Then, the rewrite rule

[Remove-a] : a, s ⇒ s . (1)

removes an occurrence of a from any soup containing at least one occurrence
of such a constant. Given the rewrite theory Rm = (Σm, Em, {Remove-a})
and the soup b,a,b,a, a possible computation in Rm is

b, a, b, a
Remove-a−→ b, b, a

Remove-a−→ b, b

3. A Navigation Model for Web Applications

A Web application is a collection of related Web pages hosted by a Web
server that contains a mixture of (X)HTML code and executable code (Web
scripts). A Web application is accessed using a web browser which allows
web pages to be navigated by clicking and following (X)HTML links.

Communication between the browser and the server is provided by the
HTTP protocol, which works following a request-response scheme. Basically,
in the request phase, the browser submits to the server the URL of a web page
P that it wants to access, which may include a string of input parameters
(called the query string) . Then, the server retrieves P and, if P contains
a web script α, it executes α w.r.t. the input data specified by the query
string. According to the execution of α, the server defines the web application
continuation (that is, the next page P ′ to be sent to the browser), and enables
the links in P ′ dynamically (adaptive navigation). Finally, in the response
phase, the server delivers P ′ to the browser. Note that the web page P
requested by the browser can be different from the web page P ′ delivered
by the server. This is because, in the request phase, the control flow is
passed from the browser to the server, and therefore, the server is capable of
defining which the next web page is. This behavior is known as continuation.
In other words, continuations support a form of URL server redirection which
is encoded at the script level and depends on script evaluations.

Since HTTP is a stateless protocol, web servers are provided with a session
management technique that allows web application states to be defined via

9

the notion of session. Roughly speaking, the session is a global store that
can be accessed and updated by web scripts during an established connection
between a browser and the server.

The navigation model of a web application can be visually depicted at
a very abstract level by using a graph-like structure as follows. Web pages
are represented by nodes that may contain a web script α to be executed.
Solid arrows that are connecting two web pages model navigation links that
are labeled by a condition and a query string. Conditions provide a simple
mechanism to implement a general form of adaptive navigation: specifically,
a navigation link will be enabled (i.e., clickable) whenever the associated con-
dition holds. The query string represents the input parameter values which
are sent to the web server once the link is clicked. Finally, dashed arrows
model web application continuations, that is, arcs that point to web pages
that are automatically computed through web script executions. Conditions,
that label continuations, allow us to model any possible evolution of the web
application of interest. Web application continuations as well as adaptive
navigations are dynamically computed w.r.t. the values stored in the current
session (i.e., the current application state). Let us illustrate this model by
means of a representative example.

Example 4. Consider the navigation model given in Figure 1, which rep-
resents a generic webmail application that provides some typical functions
such as login/logout actions, email management, system administration ca-
pabilities, etc. The web pages of the application are connected by navigation
links (i.e., solid arrows) or continuations (i.e., dashed arrows). For exam-
ple, the solid arrow between the welcome and the home page whose label is
“∅,[user=x,pass=y]” records the values of two input parameters user and pass,
and defines a navigation link which is always enabled, as its associated condi-
tion is the empty condition ∅. The home page has two possible continuations
“login=ok” and “login=no”. Depending on the user and pass values provided
in the previous transition, only one of them is chosen. In the first case, the
login succeeds and the home page is delivered to the browser, while in the case
when the login fails, the welcome page is sent back to the browser.

An example of adaptive navigation is provided by the navigation link that
connects the home page to the administration page. In fact, navigation through
that link is enabled only when the condition “role=admin” holds, that is, the
role of the logged user is admin.

10

welcome

home

accountSwitching

emailList viewEmail

login=ok
login=no

changeLogin=no

administration

role=admin,[]

logout adminLogout

adm=no

adm=ok

,[user=x,pass=y]

,[emailId=v]

,[user=z,pass=w]

,[]

,[] ,[]

,[]

,[]

,[]

logout emailList viewEmail

home

adminLogout admin� � �

�

� �

,[]

Figure 1: The navigation model of a webmail application.

4. Formalizing the Navigation Model as a Rewrite Theory

In this section, we define a rewrite theory that specifies the navigation
model which we intuitively described in Section 3. The formulation exploits
the rewriting logic infrastructure to rigorously formalize the web applica-
tion of interest along with its dynamic behavior. Our mechanization relies
on a suitable web script evaluation engine and apropos communication pro-
tocol that abstracts HTTP. The communication protocol defines both the
browser/server interaction and the most common browser navigation fea-
tures. More specifically, our framework provides a complete, built-in speci-
fication of the following three components: the web scripting language, the
basic structure of web applications, and the communication protocol.

4.1. The Web Scripting Language

We consider a scripting language which includes the main features of the
most popular web programming languages. Basically, it extends an impera-
tive programming language with some built-in primitives for reading/writing
session data (getSession, setSession), accessing and updating a database (se-
lectDB, updateDB), and capturing values contained in a query string sent by
a browser (getQuery).

The scripting language is formalized by means of an equational theory
(Σs, Es) whose signature Σs specifies the language syntax and type structure.
Figure 2 shows the operators of Σs that model the expressions and statements
of the considered language. A script is a term of sort Script that specifies a
semicolon-separated sequence of statements.

11

*** Signature of the Expression operators

sorts Expression Test Qid .

op TRUE : -> Test .

op FALSE : -> Test .

op _=_ : Expression Expression -> Test .

op _!=_ : Expression Expression -> Test .

op _’+_ : Expression Expression -> Expression .

op _’*_ : Expression Expression -> Expression .

op _’._ : Expression Expression -> Expression .

op getSession : Expression -> Expression .

op getQuery : Qid -> Expression .

op selectDB : Expression -> Expression .

op updateDB : Expression Expression -> Script .

*** Signature of the Statement operators

sorts Script .

op skip : -> Script .

op _;_ : Script Script -> Script

[assoc id: skip] .

op _:=_ : Qid Expression -> Script .

op if_then_else_fi : Test Script Script

-> Script .

op if_then_fi : Test Script -> Script .

op while_do_od : Test Script -> Script .

op repeat_until_od : Script Test ->

Script .

op setSession : Expression

Expression -> Script .

op clearSession : -> Script .

Figure 2: Syntax of the scripting language.

A state-based, operational semantics of the language is implemented by
the equational definitions included in Es, which allow us to formalize script
state changes due to script execution (e.g., changes to the memory and the
database). In our framework, a script state is a tuple (α,m, s, q, db) such
that α is a script, m represents a private memory (i.e., a local memory that
can only be accessed by the script α), s is a session (i.e., a global memory
that can be accessed by any web script), q specifies a query string, and db
models a database. We encode a script state by means of the operator

op (, , , ,) : Script PrivateMemory Session Query DB → ScriptState .

We represent sessions, private memories, query strings and databases by
means of sets of pairs of the form id = val, where id is an identifier whose
value is represented by val.

Furthermore, the set Es contains the equational definition of the evalua-
tion operator [[]] : ScriptState→ ScriptState that implements the operational
semantics.

Intuitively, given a Web script a;as, whose first statement is a and as is
a sequence of statements that represents the rest of the script, the operator
[[]] takes a script state (a; as,m, s, q, db) as input and returns a new script
state (as,m′, s′, q, db′) in which the statement a of a;as has been completely
evaluated and the private memory, the session and the database might have
been changed. The operator [[]] is defined by cases over any legal statement
of the language. For instance, Figure 3 shows the small-step equational

12

*** Statement evaluation: if _ then _ else _ fi

ceq [[((if t then p1 else p2 fi) ; ps , m, s, q , db)]]=

[[(p1 ; ps , m, s, q, db)]] if (TRUE == evlEx(t, m, s, q, db) == true .

ceq [[((if t then p1 else p2 fi) ; ps , m, s, q , db)]] =

[[(p2 ; ps , m, s, q, db)]] if (TRUE == evlEx(t, m, s, q, db) =/= true .

Figure 3: Equational definition of the if then else fi statement.

definition of [[]] for the if then else fi statement. This definition consists of
two conditional equations. Given a statement sif = if t then p1 else p2 fi, the
first equation reduces the evaluation of sif to the evaluation of the statement
p1 whenever the guard t is fulfilled. Similarly, the second equation formalizes
the case when the guard t is not fulfilled. The evaluation of the guard t is
implemented by the operator evlEx, which assigns a denotation to each legal
expression.

For the sake of completeness, the full formalization of the syntax and
operational semantics of our scripting language can be found in Appendix A.

4.2. The Web Application Structure

The web application structure is formalized by using an equational theory
(Σw, Ew) such that (Σw, Ew) ⊇ (Σs, Es). The equational theory (Σw, Ew)
includes the specific sort Soup, defined in Example 1, for representing soups
of elements.

A web application is modeled as a soup of web pages whose structure is
specified by means of the following operators of (Σw, Ew):

op (, , { }, { }) : PageName Script Continuation Navigation→ Page .
op (,) : Condition PageName→ Continuation .
op , [] : PageName Query→ Url .
op (,) : Condition Url→ Navigation .

where we enforce the following subsort relations Page < Soup, Query < Soup,
Continuation < Soup, Navigation < Soup, Condition < Soup. Each subsort re-
lation S < Soup allows us to automatically define soups of sort S.

Basically, a web page is a tuple (n, α, {cs}, {ns}) ∈ Page such that n is
a name that identifies the web page, α is a term of sort Script that speci-
fies the web script included in the page n, cs represents a soup of possible

13

continuations, and ns defines a soup of navigation links that occur in the
page.

Each continuation that appears in cs is a term of the form (cond, n′)
stating that the computation must reach the web page n′ whenever the
condition cond holds. Each navigation link in ns is a term of the form
(cond, n′, [q1, . . . , qn]) that specifies a link to the web page n′ which can be fol-
lowed using the input provided by the query string [q1, . . . , qn] if the condition
cond holds. A condition is either ∅ or a soup of the form id1 = val1, . . . , idk =
valk. Given a session s, we say that a continuation (cond, n′) is enabled in
s iff cond ⊆ s, and a navigation link (cond, n′, [q1, . . . , qn]) is enabled in s
iff cond ⊆ s. It is worth noting that any continuation/link with an empty
condition is always enabled in any session s.

A web application is formally defined as a soup of terms of sort Page by
means of the operator op 〈 〉 : Page→ WebApplication .

Example 5. Consider again the web application in Example 4. Its web ap-
plication structure can be defined as a soup of web pages

wapp = 〈p1, p2, p3, p4, p5, p6, p7, p8〉

as follows:

p1 =(welcome, skip, {∅}, {(∅, home, [user = x, pass = y])})
p2 =(home, αhome, {(login = no,welcome), (changeLogin = no, accountSwitching),

(login = ok, home)},
{(∅, accountSwitching, []), (role = admin, administration, [])

(∅, emailList, []), (∅, logout, [])})
p3 =(emailList, αemailList, {∅}, {(∅, viewEmail, [emailId = v]), (∅, home, [])})
p4 =(viewEmail, αviewEmail, {∅}, {(∅, emailList, []), (∅, home, [])})
p5 =(accountSwitching, skip, {∅}, {(∅, home, [user = z, pass = w])})
p6 =(administration, αadmin, {(adm = no, home), (adm = ok, administration)},

{∅, adminLogout, []})
p7 =(adminLogout, αadminLogout, {(∅, home)}, {∅})
p8 =(logout, αlogout, {(∅,welcome)}, {∅})

where we define the web scripts that occur in wapp in the following way:

14

αadmin =

u := getSession(”user”) ;
adm := selectDB(”admPage”) ;
if (adm = ”free”)∨(adm = u) then

updateDB(”admPage”, u) ;
setSession(”adm”, ”ok”)

else
setSession(”adm”, ”no”)

fi

αemailList =
u := getSession(”user”) ;
es := selectDB(u . ”-email) ;
setSession(”email-found”, es)

αviewEmail =
u := getSession(”user”) ;
id := getQuery(idEmail) ;
e := selectDB(id) ;
setSession(”text-email”, e)

αadminLogout = updateDB(”admPage”, ”free”)

αlogout = clearSession

αhome =

forbid := getSession(”forbid”);
if (forbid = ”true”) then

setSession(”login”,”no”)
else

login := getSession(”logged”) ;
if (login = null) then

u := getQuery(user) ;
p := getQuery(pass) ;
p1 := selectDB(u) ;
if (p = p1) then

r := selectDB(u.”-role”) ;
setSession(”user”,u) ;
setSession(”role”,r) ;
setSession(”login”,”ok”) ;
setSession(”logged”,”yes”)

else
setSession(”login”,”no”) ;
f := getSession(”failed”) ;
if (f = null) then f := 0 fi ;
f := f + 1 ;
setSession(”failed”,f) ;
if (f = 3) then

setSession(”forbid”,”true”)
fi fi fi fi

4.3. The Communication Protocol
We define the communication protocol by means of a rewrite theory

(Σp, Ep, Rp), where (1) (Σp, Ep) is an equational theory that formalizes the
web application states, and (2) Rp is a set of rewrite rules that specifies web
script evaluations and request/response protocol actions.

4.3.1. The Equational Theory (Σp, Ep)

This theory extends the equational theory (Σw, Ew) (i.e., (Σp, Ep) ⊇
(Σw, Ew)) as follows. On the one hand, it models the entities in play, i.e., the
web server, the web browser and the protocol messages. On the other hand,
it provides a formal mechanism to evaluate enabled continuations as well as
enabled adaptive navigations that are generated at runtime.

More formally, (Σp, Ep) includes the following operators.

op B(, , , { }, { }, , ,) : Id Id PageName URL Session Message
History Nat→ Browser .

op S(, { }, { }, ,) : WebApplication BrowserSession DB Message
Message→ Server .

op H(, { },) : PageName URL Message→ History .
op B2S(, , , [],) : Id Id PageName Query Nat→ Message .

op S2B(, , , { }, { },) : Id Id PageName URL Session Nat→ Message .
op BS(, { }) : Id Session→ BrowserSession .

op || || : Browser Message Server→WebState .

15

where we enforce the following subsort relations History < List, URL < Soup,
BrowserSession < Soup, Browser < Soup, and Message < Queue1

A web browser is modeled by means of a rich data structure that sup-
ports tabbed browsing — that is, a browser feature that allows a user to load
multiple web pages in separate tabs of a single browser window without the
need to open a new session.

Formally, a web browser is specified by a term of sort Browser of the form

B(idb, idt, n, {url1, . . . , urll}, {id1 = val1, . . . , idm = valm},m, h, i)

where

• idb is an identifier that represents the browser;

• idt is an identifier that models an open browser tab of idb;

• n is the name of the web page that is currently displayed in the tab idt

of browser idb;

• url1, . . . , urll represent the navigation links that appear in the web page n;

• {id1 = val1, . . . , idm = valm} is the last session that the server has sent
to the browser;

• m is the last message that the browser has sent to the server;

• h is a bidirectional list that records the history of the visited web pages;

• i is an internal counter that is used to distinguish among several re-
sponse messages generated by repeated refresh actions (e.g., if a user
pressed the refresh button twice, only the second refresh is displayed
in the browser window).

The web server is formalized by using a term of the form

S(〈p1, . . . , pl〉, {BS(idb1, {s1}), ..,BS(idbn, {sn})}, {db}, fiforeq, fifores)

where

1We represent a queue with elements e1, . . . , en by the term (e1, . . . , en) of sort Queue,
where e1 is the first element of the queue.

16

• 〈p1, . . . , pl〉 defines the web application that is currently in execution;

• si = {id1 = val1, . . . , idmi
= valmi

} is the session of the browser idbi,
i = 1, . . . , n, which is used to implement the web application state;

• db = {id1 = val1, . . . , idk = valk} specifies the database that is hosted
by the web server and used by the application 〈p1, . . . , pl〉;

• fiforeq and fifores are two queues of messages that both implement the
FIFO queuing policy. Basically, they respectively model the request
messages that still have to be processed by the server and the pending
response messages that the server has not yet sent to the browsers.

We assume the existence of a bidirectional channel through which the
server and browsers communicate by message passing. In this context, terms
of the form

B2S(idb, idt, n, [id1 = val1, . . . , idm = valm], i)

represent request messages, that is, messages sent from the browser idb (and
tab idt) to the server asking for the web page n with query parameters [id1 =
val1, . . . , idm = valm]. Instead, terms of the form

S2B(idb, idt, n, {url1, . . . , urll}, {id′1 = val′1, . . . , id
′
m = val′m}, i)

model response messages, that is, messages sent from the server to the
browser idb (and tab idt), including the computed web page n along with
the navigation links {url1, . . . , urll} that occur in n, and the current session
information2. The value i, which appears in request as well as in response
messages, specifies a time stamp which is used to manage multiple responses
that are originated by repeated refresh requests of a given web page.

Using the operators described so far, we can precisely formalize the notion
of web application state as a term of the form

br || m || sv

where br is a soup of browsers, m is a channel that is modeled as a queue of
messages, and sv is a server that interacts with browsers in br 3. Intuitively, a

2Session information is typically represented by HTTP cookies, which are textual data
sent from the server to the browser to let the browser know the current application state.

3For the sake of simplicity, a web application state models interactions with a single
web server. However, multiple web servers might be supported with little effort in our
framework.

17

web application state can be interpreted as a snapshot of the system captur-
ing the current configurations of the browsers, the server, and the channel.

The equational theory (Σp, Ep) also defines the operator

op eval : WebApplication Session DB Message→ Session DB Message

whose semantics is specified by means of the equations in Ep (see Appendix B
for the precise formalization of eval).

Given a web application w, a session s, a database db, and a request
message b2s = B2S(idb, idt, n, [q], k), the operator eval(w, s, db, b2s) generates
a triple (s′, db′, s2b) that contains an updated session s′, an updated database
db′, and a response message s2b = S2B(idb, idt, n

′, {url1, . . . , urlm}, s′, k).
Roughly speaking, the operator eval executes the web script, which is in-
cluded in the web page n, and dynamically determines (i) which web page
n′ is computed by the continuation enabled in the session s, and (ii) which
links of n′ are enabled w.r.t. the current session s′.

4.3.2. The Rewrite Rule Set Rp

The term rewriting system Rp defines a collection of rewrite rules of the
form [label] : WebState⇒ WebState that formalize

• an abstraction of the standard request-response behavior of the HTTP
protocol;

• some browser navigation features that are typically supported by web
browsers (e.g., forward/backward navigation and page refresh).

First, we give the rules that model the considered kernel version of the HTTP
protocol, and then we present a rule-based formalization of the browser nav-
igation features of interest.

Our protocol specification is shown in Figure 4 and includes five rewrite
rules that specify web browser requests, web script evaluations, and web
server responses.

Roughly speaking, the request phase is split into two parts, which are
respectively formalized by rules ReqIni and ReqFin. Initially, when a browser
with identifier idb requests the navigation link (np, [q]) that appears in a
web page pc of the tab idt, rule ReqIni is fired. The execution of ReqIni
generates a request message midb,idt that is enqueued in the channel and
saved in the browser as the last message sent. The history list is updated

18

[ReqIni] : B(idb, idt, pc, {(np, [q]), urls}, {s}, lm, h, i), br ||m || sv⇒
B(idb, idt, emptyPage, ∅, {s},midb,idt, hc, i), br || (m,midb,idt) || sv

if midb,idt := B2S(idb, idt, np, [q], i) and hc := push((pc, {(np, [q]), urls},midb,idt), h)

[ReqFin] : br || (midb,idt,m) || S(w, {bs}, {db}, fiforeq, fifores)⇒ br ||m || S(w, {bs}, {db}, (fiforeq,midb,idt), fifores)

if midb,idt := B2S(idb, idt, np, [q], i)

[Evl] : br ||m || S(w, {BS(idb, {s}), bs}, {db}, (midb,idt, fiforeq), fifores)⇒
br ||m || S(w, {BS(idb, {s′}), bs}, {db′}, fiforeq, (fifores,m

′))

if (s′, db′,m′) := eval(w, s, db,midb,idt)

[ResIni] : br ||m || S(w, {bs}, {db}, fiforeq, (midb,idt, fifores))⇒ br || (m,midb,idt) || S(w, {bs}, {db}, fiforeq, fifores)

[ResFin] : B(idb, idt, emptyPage, ∅, {s}, lm, h, i), br || (S2B((idb, idt, p
′, urls, {s′)}, i),m) || sv⇒

B(idb, idt, p
′, urls, {s′}, lm, h, i), br ||m || sv

with variables idb, idt : Id, br : Browser, sv : Server, urls : URL, i : Nat, q : Query, h : History,
w : WebApplication, m,m′,midb,idt, fiforeq, fifores : Message, pc, p

′, np : PageName, s, s′ : Session, and
bs : BrowserSession.

Figure 4: Protocol specification.

by adding the requested link (np, [q]). Rule ReqFin simply dequeues the first
request message midb,idt of the channel and inserts it into fiforeq, which is the
server queue that contains pending requests (i.e., requests not yet processed).
Rule Evl consumes the first request message midb,idt of the queue of request
messages, evaluates midb,idt w.r.t. the corresponding browser session (idb, {s}),
and generates the response message that is enqueued in fifores, i.e., the server
queue that contains the responses to be sent to the browsers. Finally, rules
ResIni and ResFin implement the response phase. First, rule ResIni dequeues
the response message midb,idt from the queue (midb,idt, fifores) and sends it to
the channel m. Then, rule ResFin takes the first response message from
the channel queue and sends it to the corresponding browser tab. Figure 5
provides a high-level picture of our rule-based protocol model that highlights
the interactions among the three entities in play (i.e. the web browser, the
channel and the web server) and their temporal sequencing during a typical
request/response communication process.

It is worth noting that the whole protocol semantics is elegantly defined
by means of only five, high-level rewrite rules without making any implemen-

19

C
H
A
N
E
E
L

ReqIni

ReqFin

 Eval

ResIni

ResFin

B
R
O
W
S
E
R

S
E
R
V
E
R

Figure 5: Request/response phase of the communication protocol.

tation detail explicit. In fact, implementation technicalities are automatically
managed by the rewriting logic engine which is based on rewriting modulo
equational theories. For instance, in the rule ReqIni, no tricky function is
needed to select an arbitrary navigation link (np, [q]) from the URLs that
are available in a web page since they are modeled as associative and com-
mutative soups of elements (i.e., URL < Soup), hence, a single URL can
be extracted from the soup by simply applying pattern matching modulo
associativity and commutativity.

Now, we are ready to formalize the browser navigation features by means
of the rewrite rules shown in Figure 6.

Rules Refresh and OldMsg model the typical behavior of the refresh but-
ton of a web browser. Rule Refresh applies when a page refresh is invoked.
Basically, it first increments the browser internal counter i, and then a new
version of the last request message lm, which contains the updated counter,
is inserted into the channel queue. Intuitively, the internal counter of the
browser keeps track of the number of repeated refresh button clicks. Rule
OldMsg is used to consume all those response messages in the channel that
correspond to repeated clicks of the refresh button, with the exception of the
last one, which is identified by the timestamp i. Therefore, only the last page
refresh will be executed.

Finally, rules NewTab, Backward and Forward are quite intuitive: an appli-
cation of NewTab simply generates a new web application state that contains
a new fresh tab in the soup of browsers with identifier NewID, while Backward
(resp. Forward)) extracts the previous (resp. next) web page from the history
list and sets it as the current browser web page.

20

[Refresh] : B(idb, idt, pc, {urls}, {s}, lm, h, i), br ||m || sv⇒
B(idb, idt, emptyPage, ∅, {s},midb,idt, h, i + 1), br || (m,midb,idt) || sv

if lm := B2S(idb, idt, np, q, i) and midb,idt := B2S(idb, idt, np, q, i + 1)

[OldMsg] : B(idb, idt, pc, {urls}, {s}, lm, h, i), br || (S2B(idb, idt, p
′, urls′, {s′}, k),m) || sv⇒

B(idb, idt, pc, {urls}, {s}, lm, h, i), br ||m || sv if i 6= k

[NewTab] : B(idb, idt, pc, {urls}, {s}, lm, h, i), br ||m || sv⇒
B(idb, idt, pc, {urls}, {s}, lm, h, i),B(idb,NewID, pc, {urls}, {s}, ∅, ∅, 0), br ||m || sv

where NewID is a new fresh value of the sort Id.

[Backward] : B(idb, idt, pc, {urls}, {s}, lm, h, i), br ||m || sv⇒ B(idb, idt, ph, {urlsh}, {s}, lmh, h, i), br ||m || sv

if (ph, {urlh}, lmh) := prev(h)

[Forward] : B(idb, idt, pc, {urls}, {s}, lm, h, i), br ||m || sv⇒ B(idb, idt, ph, {urlsh}, {s}, lmh, h, i), br ||m || sv

if (ph, {urlsh}, lmh) := next(h)

with variables idb, idt : Id, br : Browser, sv : Server, urls, url′, urlsh : URL, q : Query, h : History
m, lm, lmh,midb,idt : Message, i, k : Nat, pc, p

′, np, ph : PageName, and s, s′ : Session.

Figure 6: Specification of the browser navigation features.

It is worth noting that applications of rules in Rp might produce an
infinite number of (reachable) web application states. For instance, an infinite
number of applications of rule NewTab would produce an infinite number of
web application states, each of which would represent a finite number of
open tabs. Therefore, to make the analysis and verification feasible, we set
some restrictions in our prototypical implementation to limit the number of
reachable states (e.g., we fixed upper bounds on the length of the history list
and on the number of tabs that the user is permitted to open). An alternative
approach that we plan to pursue in the future is to define state abstractions
by means of a suitable equational theory in the style of [22]. This should
allow us to produce finite (and, hence, effective) descriptions of infinite state
systems.

5. Model Checking Web Applications Using LTLR

The formal specification framework presented so far allows us to specify a
number of subtle aspects of the web application semantics that can be verified
by using model checking techniques. To this purpose, the Linear Temporal

21

Logic of Rewriting (LTLR)[8] can be fruitfully employed to formalize prop-
erties that are either not expressible or difficult to express by using other
logical frameworks, and that we can easily verify by using an existing LTLR
model checker.

5.1. The Linear Temporal Logic of Rewriting

LTLR is a logic of the family of the Temporal Logics of Rewriting TLR∗ [8],
which allows properties of a given rewrite theory to be specified in a simple
and natural way. In the following, we provide an intuitive explanation of the
main features of LTLR; for a thorough discussion, we refer to [8].

LTLR extends the traditional Linear Temporal Logic (LTL), originally
introduced by Pnueli [23], with state predicates (SP) and spatial action pat-
terns (Π). A LTLR formula w.r.t. SP and Π can be defined by means of the
following BNF-like syntax:

ϕ ::= δ | p | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | © ϕ | ϕ U ϕ | ♦ϕ |�ϕ
where δ ∈ SP, p ∈ Π, and ϕ is an LTLR formula w.r.t. SP and Π

Since LTLR generalizes LTL, the modalities and semantic definitions of
the temporal operators above are entirely similar to those for LTL. The
symbols � is the always operator, ♦ is the eventually operator, © is the
next operator, and U is the until operator. LTL semantics is defined over
non-terminating computations (e.g., see [23]). Informally, given an infinite

computation S = s0
l1−→ s1

l2−→ s2, . . ., �ϕ means that ϕ is true at any state
of S. ♦ϕ means that ϕ becomes true in a certain state of S. ©ϕ means that
ϕ is true in the next state after the initial one, that is, at s1. ϕ1 U ϕ2 means
that ϕ1 remains true in S until ϕ2 becomes true.

As mentioned above, the key new addition in LTLR w.r.t. the standard
LTL framework is the semantics of state predicates and spatial actions.

State predicates. Given a system that is modeled as a rewrite theory R, a
state predicate is an expression of a specific sort Prop whose form is

statePattern |= property(a1, . . . , an) = booleanValue

where statePattern is a term (possibly with variables) that represents a class
of system states, and property(a1, . . . , an) = booleanValue is an equation for
a boolean function that specifies a property of interest. Roughly speaking, a
state predicate allows the condition property(a1, . . . , an) = booleanValue to

22

be checked over all the states specified by R that match statePattern (i.e.,
all the states that are instances of statePattern).

Example 6. Let (Σp, Ep, Rp) be the rewrite theory specified in Section 4 that
models the web application states as terms br||m||sv of sort WebState. Then,
the state predicate

B(idb, idt, page, {urls}, {s},m, h, i), br||m||sv |= curPage(idb, page) = true

holds (i.e., evaluates to true) for each state of (Σp, Ep, Rp) such that page is
the current web page displayed in a tab of browser idb.

Note that, in standard propositional LTL, state propositions are defined via
atomic constants. On the contrary, LTLR supports the definition of para-
metric state propositions (i.e., state predicates) that allow us to formalize
complex state propositions in a very concise and simple way.

Spatial action patterns. Spatial action patterns allow rewrite steps to be de-
tected within a computation by using contexts and partial substitutions as
search criteria. More precisely, given a rewrite rule [l] : t ⇒ t′ if c, a spatial
action pattern has the general form

C[l(x1 7→ t1, . . . , xn 7→ tn)]

where C is a context, and {x1 7→ t1, . . . , xn 7→ tn} is a substitution such
that x1, . . . , xn are variables that appear in the rule l. The pattern C[l(x1 7→
t1, . . . , xn 7→ tn)] allows us to select the rewrite steps of the form C[tσ]

l−→
C[t′σ] that use the rule l and σ ⊇ {x1 7→ t1, . . . , xn 7→ tn}. Formally, a spatial
action pattern C[l(x1 7→ t1, . . . , xn 7→ tn)] is true in an infinite computation

s0
l−→ s1 −→ . . . if and only if the rewrite step s0

l−→ s1 performs a reduction
using the rule l in the given context C with a computed substitution σ that
includes the bindings x1 7→ t1, . . . , xn 7→ tn. When the context is empty,
the spatial action reduces to [l(x1 7→ t1, . . . , xn 7→ tn)] and specifies the
applications of rule l where only the constraints given by the substitution
have to be fulfilled.

Example 7. Let (Σp, Ep, Rp) be the rewrite theory of Section 4 that speci-
fies the proposed web application model. Then, given a computation S over
(Σp, Ep, Rp), the spatial action pattern ReqIni(idb 7→A) is true in S, if the
first rewrite step in S is an application of the rule ReqIni that refer to the
browser with identifier A.

23

5.2. LTLR properties for Web Applications

This section shows the main advantages of coupling LTLR with web ap-
plication models that are specified via rewrite theories. First, we show the
advantages of defining parametric properties in LTLR. Then, we describe
how unreachability properties can be used to analyze an interesting group
of properties that are critical in our setting. Finally, we discuss an example
of a liveness property that successfully exploits the spatial action patterns
provided by LTLR.

5.2.1. Parametric properties

LTLR is a highly parametric logic that allows complex properties to be
defined in a concise way by means of state predicates and spatial action
patters. As an example, consider the webmail application given in Example 4,
together with the property “Incorrect login info is allowed only 3 times, and
then login is forbidden”. This property might be formalized as the following
standard LTL formula [24]:

♦(welcomeA)→ ♦(welcomeA ∧©(¬(forbiddenA) ∨ (welcomeA ∧©(¬(forbiddenA)
∨(welcomeA ∧©(¬(forbiddenA) ∨©(forbiddenA ∧�(¬welcomeA))))))))

where welcomeA and forbiddenA are atomic propositions respectively asserting
that (i) user A is displaying the welcome page, and (ii) login is forbidden for
user A. We assume that the welcome page includes the login script. Although
the property to be modeled is conceptually rather simple, the resulting LTL
formula is textually large and requires a great effort to be specified and
verified. Also, the complexity of the formula would rapidly grow if a higher
number of login attempts were considered4.

By using LTLR, we can simply define a sign-in property that is parametric
w.r.t. the number of login attempts as follows. We define the state predicates:
(i) failedAttempt(idb, n), which holds when n failed login attempts have been
tried from browser idb; (ii) userForbidden(idb), which holds when the user
of browser idb has the login onto the system forbidden. The satisifiability of
both state predicates depends on some idb’s session variables that are encoded
in the web state data structure. Specifically, failAttempt(idb, n) holds if the
session variable failed, included in the idb’s browser session, is set to the

4An LTL formula for a looser authentication policy that permits 10 login attempts
could be too large.

24

value n, whereas userForbidden(idb) holds when the value true is assigned to
the session variable forbid.

Formally,

br ||m || S(w, {BS(idb, {failed=n}), bs}, {db}, freq, fres) |= failedAttempt(idb, n) = true

br ||m || S(w, {BS(idb, {forbid=true}), bs}, {db}, freq, fres) |= userForbidden(idb) = true

Then, the security policy mentioned above is elegantly formalized by means
of the following LTLR formula

�(failedAttempt(A, 3)→©(�userForbidden(A)))

Observe that the previous formula can be easily modified to deal with a dis-
tinct number of login attempts —it is indeed sufficient to change the param-
eter that counts the login attempts in the state predicate failedAttempt(A, 3).
Also, note that we can define state predicates (and more general LTLR for-
mulae) that depend on web script evaluations. For instance, the predicate
failedAttempt depends on the execution of the login script αhome which may
or may not set the forbid value to true in the user’s browser session.

5.2.2. Unreachability properties using state predicates

Unreachability properties can be specified as LTLR formulae of the form
�¬ 〈State〉, where State is an unwanted state that the system should not
reach. By analyzing unreachability properties over the rewrite theory
(Σp, Ep, Rp), we can detect very subtle errors such as intricate instances of
the multiple windows problem mentioned in Section 1.

Example 8. Consider again the webmail application of Example 4. Assume
that a user may interact with the application by using two email accounts
MA and MB. Let us consider a web application state in which the user is
logged in the home page with the account MA. Now, assume that the following
sequence of actions is executed: (1) the user opens a new browser tab; (2) the
user changes the account in one of the two open tabs and logs in using MB
credentials; (3) the user accesses the emailList page from both tabs.

After applying the previous sequence of actions, you expect to see the
emails that correspond to the accounts MA and MB in the two open tabs.
However, the webmail application of Example 4 displays the emails of MB
in both tabs. This is basically caused by action (2) which makes the server

25

override the browser session with MB data without notifying the state change
to the tab associated with the MA account.

This unexpected behavior can be recognized by testing the following LTLR
unreachability formula �¬ sessionClash where sessionClash is a state predicate
defined as:

B(id, idA, pA, {urlsA}, {(user = MA), sA}, lmA, hA, iA),

B(id, idB, pB, {urlsB}, {(user = MB), sB}, lmB, hB, iB), br ||m|| sv

|= sessionClash = true if(MA 6= MB)

Roughly speaking, the property �¬ sessionClash states that we do not want to
reach a web application state in which two browser tabs refer to distinct user
sessions. If this happens, one of the two sessions is out-of-date and hence
inconsistent.

Finally, it is worth noting that by means of LTLR formulae expressing
unreachability statements, we can formalize an entire family of interesting
properties such as:

• mutual exclusion (e.g., �¬ (curPage(A, administration) ∧
curPage(B, administration)),

• link accessibility (e.g., �¬ curPage(A,PageNotFound)),

• access control (e.g., �¬ (curPage(A, home) ∧ userForbidden(A))).

5.2.3. Liveness

Liveness properties state that something good keeps happening in the sys-
tem. In our framework, we can employ mixed properties, that involve both
spatial actions patterns and state predicates, to detect good rule applica-
tions. For example, consider the following property “user A always succeeds
in accessing her home page from the welcome page”5. This amounts to saying
that, whenever the protocol rule ReqIni is applied to request the home page
of user A, the browser will eventually display the home page of user A. This
property can be specified by the following LTLR formula:

�([ReqIni(Idb 7→ A, pc 7→ welcome, np 7→ home)]→ ♦curPage(A, home))

5In this example, we assume that the browser identifier univocally identifies the user.

26

which can be satisfactorily verified by invoking the Maude LTLR model
checker in our system, as we discuss in Section 7.

6. The Web-TLR system

The verification framework described above has been implemented in the
prototypical system Web-TLR, which is publicly available together with
several examples in [25]. Web-TLR is the first verification engine that is
based on the versatile and well-established Rewriting Logic/LTLR tandem
for specifying web systems and properties. The implementation of Web-
TLR consists of approximately 750 lines of Maude code and 1500 lines of
Java code. The system architecture of our tool is depicted in Figure 7, and
includes four main software components named Web User Interface, Web
Application Execution Environment, Verification/Slicing Engine, and Output
Module.

6.1. Web User Interface

Web-TLR is equipped with a user-friendly, graphical web interface (GWI)
written in JSP (Java Server Page) that hides unnecessary information to the
user, and supports the online usage of the verification system. Through the
GWI, the user can feed the system with a web application specification and
a LTLR specification, and define an initial state that describes the system at
the beginning of the model checking process6. The web application specifi-
cation basically formalizes the underlying application navigation model and
is defined as a rewrite theory that is expressed by means of a suitable Maude
program. The LTLR specification consists of all the distinctive elements
to be used in the formalization of the properties of interest to be checked.
Specifically, it may include the specification of multiple state predicates,
spatial action patterns, and LTRL formulae.

6.2. Web Application Execution Environment

This module encodes the Maude common infrastructure that is required
to run the web application specifications. It contains the rule-based formal-
ization of the kernel HTTP-like communication protocol and the browser
actions described in Section 4.3. Also, it implements a dedicated interpreter

6Actually, in Web-TLR, it is possible to define multiple initial states, which are uni-
vocally identified by their distinct labels.

27

LTLR
model checker

HTTP Protocol

Trace slicer

Web script
interpreter

W
EB

 U
SE

R
 IN

TE
R

FA
C

E

WEB APPLICATION
EXECUTION ENVIRONMENT

W
eb app specification

LTLR
 specification

VERIFICATION/SLICING ENGINE

OUTPUT MODULE

Slide-show
viewer

Trace slice
viewer

Figure 7: Web-TLR system architecture

for the evaluation of the web scripts that are included in the web application
specifications.

6.3. Verification/Slicing Engine

In Web-TLR, a LTLR property can be automatically verified against
the considered web application specification by using the Maude built-in
operator tlr check[5] that supports model checking of rewrite theories w.r.t.
a given LTLR specification. When a property is refuted, a counter-example
trace is delivered that consists of the erroneous computation leading from
the initial state to the state that violates the given property. This module
provides a software layer that allows the web application specification and its
execution environment to be interconnected with the LTLR model checking
functionality provided by the tlr check operator.

Since counter-examples are often complex, textually-large objects to deal
with, this module also endows Web-TLR with a novel slicing technique for
rewrite sequences [26, 27, 28] that allows very large counter-examples to be
debugged in an easy and effective way. Roughly speaking, the slicing facility
allows the specific pieces of information that we are interested in (target data)
to be traced back through a given counter-example, while irrelevant data

28

are discarded. The slicing process drastically simplifies the counter-example
trace by dropping useless data that do not influence the target data. By
using this feature, the web engineer can focus on the relevant fragments of
the failing application, which greatly reduces the manual debugging effort and
also decreases the number of iterative verifications. A detailed description
regarding the use of the slicing technique for debugging web applications can
be found in [15, 29].

6.4. Output Module

This module makes available a graphical facility that favors a better
inspection of the outcomes computed by Web-TLR. Specifically, when a
LTRL property is refuted, the delivered counter-example is presented as an
interactive slideshow (where each slide is the outcome of processing a chunk
of the counter-example), which allows the erroneous trace to be visually
navigated step by step. Each slide contains a graph that is generated on-
the-fly and shows a part of the web application navigation model; namely,
the nodes of the graph represent web pages and the edges specify web links
or web script continuations. The graphical representation is combined with
a detailed textual description, which is a portion of the provided counter-
example that shows the current configurations of the web server and the
active web browsers. Such a textual description can be simplified by invok-
ing the built-in trace slicing facility which allows the user to automatically
extract all and only the information needed to produce the target data she
intends to observe.

Example 9. Consider the specification of the webmail application of Exam-
ple 5. Let us consider two administrator users whose identifiers are bidAdm1
and bidAdm2, respectively, together with the following mutual exclusion prop-
erty

�¬ (curPage(bidAdm1, administration) ∧ curPage(bidAdm2, administration))

which states that “no two administrators can access the administration page
simultaneously”. In this example, the predicate state curPage(bidUser, ad-
ministration) holds when the user bidUser logs into the administration page.
After checking the above property with Web-TLR, we get a outsize counter-
example that proves that the property is not satisfied. Note that this is because
the web scripts in the webmail example do not implement any mutual exclu-
sion control.

29

Figure 8: A snapshot of the interactive slideshow of Web-TLR

Figure 8 shows a snapshot of Web-TLR for this example. The figure
presents the considered LTLR formula and the label of the chosen initial state
that was used together with a slide of the generated interactive slideshow.
Also, note that the content of the graph node administration in the slide testi-
fies that two users (bidAdm1 and bidAdm2) are logged into the administration
web page, which proves that the considered mutual exclusion property has been
violated.

30

7. Experimental evaluation

In order to evaluate the usefulness of our approach, we have benchmarked
our prototype w.r.t. two complex case studies: the webmail application model
of Example 5, and the specification of a virtual forum application whose full
formal specification, which includes the web scripts that encode the system
behavior, is given in Appendix C. The former case study examines and
formally checks several LTLR properties that aim at ascertaining the correct
operation of the considered webmail system, while the latter provides an
exhaustive analysis of the access control policies supported by the virtual
forum. The described experiments are available at the Web-TLR website
[25] and can be reproduced by accessing the system through its online web
interface.

7.1. Formal Verification of a Webmail system

Let us consider again the webmail application of Example 5 and a scenario
that engages two administrator users, one registered user, and one intruder
who does not have permission to access the application. Assume that these
four actors are identified as bidAdm1, bidAdm2, bidRegUsr, and bidIntruder,
respectively. We consider the following properties.

IncorrectLogin: Incorrect login info is allowed only 3 times, and then login is
forbidden (security policy)
�(failedAttempt(bidIntruder, 3)→©(�userForbidden(bidIntruder)))

NoTwoAdmin: No two administrators can access the administration page si-
multaneously (mutual exclusion)
�¬ (curPage(bidAdm1, administration) ∧ curPage(bidAdm2, administration))

LinksAccess: Link accessibility
�¬ curPage(bidRegUsr,PageNotFound)

BannedUser: Banned user cannot access the home page (access control)
�¬ (curPage(bidIntruder, home) ∧ userForbidden(bidIntruder))

EmailLiveness: A registered user always succeeds in accessing the home page
from the welcome page (liveness)
�([ReqIni(Idb 7→ bidRegUsr, pc 7→ welcome, np 7→ home)]→

♦curPage(bidRegUsr, home))

31

Property Time (ms) Outcome # states Size (Kb) Slice (Kb)

IncorrectLogin 1 Yes − − −
NoTwoAdmin 4 No 51 178 [10− 16]

Link accessibility 4 Yes − − −
BannedUser 8 Yes − − −

EmailLiveness 8 Yes − − −
EmailFakeFairness 1 No 25 73 [6− 8]

Table 1: Experimental results for the webmail application

EmailFakeFairness: A registered user accesses her email infinitely often in any
infinite computation7 (fake fairness)
�♦curPage(bidRegUsr, email-list)

Table 1 summarizes the results that we achieved. For each property, Ta-
ble 1 shows the average execution time, which is measured in milliseconds,
for a sufficiently large number of executions, and the outcome of the verifi-
cation process, which is Yes if the property is satisfied, or No if the property
is refuted and a counter-example is delivered. In the case when the prop-
erty is refuted, we also show the number of states and the size (in Kb) of
the provided counter-example as well as the size of the smallest and biggest
counter-example trace slice produced for that specific experiment.

The figures we obtain are very encouraging and show that the execution
times are reasonable in all cases. Indeed, since Web-TLR is based on the
Maude model checker, the performance of our tool is ensured by the high-
performance of the Maude model checker itself (see [30] for an experimental
evaluation of the Maude model checker regarding time and memory con-
sumption). Moreover, trace slicing results show impressive reduction rates
for distinct slicing criteria, ranging from 80% to 95%, as shown in the last
column of the table. Actually, sometimes the trace slices are so small that
they can be manually inspected with little effort in order to explain the rea-
sons of the detected wrong behavior. A thorough experimental evaluation of
our trace slicing technique can be found in [31].

7This property is refuted by the Maude model checker, since a registered user may
access only a finite number of times her email across an infinite computation.

32

Figure 9: Virtual forum navigation model

7.2. Formal Verification of a Virtual Forum System

We consider a virtual forum web application that is equipped with some
typical features such as topic and comment management. The security of
the system is enforced by a role-based access control engine that includes
moderator, administrator, registered user and guest roles.

A high-level graphical representation of the navigation model for the con-
sidered application is depicted in Figure 9. The application allows the web
administrator to set different privilege levels for each role and comes with
four predefined forum security models.

Standard Forum. Guest users, registered users and moderators can read
comments, while only registered users and moderators can write com-
ments and create new topics.

Open Forum. Guest users, registered users and moderators can read/write
comments and create new topics.

Closed Forum. Only registered users, and moderators can read/write com-
ments and create new topics. Guest users are not allowed.

Newspaper-like Forum. Guest users, registered users and moderators can
read/write comments, while only moderators can create new topics.

In all considered models, comments and topics can be removed only by mod-
erators; furthermore, the administration page can be accessed only by ad-
ministrators.

The access control policies implemented by the four different forum mod-
els have been fully verified by using the Web-TLR system. Table 2, whose

33

structure is entirely similar to the one of Table 1, shows the experimental re-
sults that we obtained. Basically, we have checked 76 properties, partitioned
in 19 properties for each forum model. Moreover, several initial states have
been defined to rigorously specify the different forum models and the users
acting on the system. Each property is a LTLR unreachability formula named
〈R 〉-No-〈P 〉 that formally models the question: Is it impossible for the user
with role R to access the web page P? By instantiating the parameters R
and P with suitable roles and web pages, we were able to formalize questions
about the privilege level of each role in each forum model. For instance, the
property Guest-No-AddComment can be used to establish whether a guest
user can write comments in a given forum model.

We observed that the virtual forum specification correctly implements
the considered access control policies in all cases but one. Specifically, we de-
tected that moderators were not able to create new topics in the newspaper-
like forum (see Property Mod-No-NewTopic in Table 2), while they should be
allowed to perform this task. The wrong behavior was due to an erroneous
definition of the privileges for the moderator role that was easily recognized
by inspecting the database specification encoding the newspaper-like forum
model.

Finally, it is worth noting that the Web-TLR system shows a good per-
formance even for the more complex virtual forum case study, where checking
the considered LTLR properties takes less than a few milliseconds.

8. Related Work

Web applications are complex software systems that today play a ma-
jor role. Not surprisingly many different authors have already addressed
the modeling and verification of these systems. A variant of the µ-calculus
(called constructive µ-calculus) is proposed in [32] which allows connectiv-
ity properties to be model checked over the static graph-structure of a web
system. However, this methodology does not support the verification of dy-
namic properties —e.g., reachability over sequences of web pages that are
generated by means of web script execution.

Both Linear Temporal Logic (LTL) and Computational Tree Logic (CTL)
have been used for the verification of dynamic web applications. For instance,
[24] and [33] support the model checking of LTL properties w.r.t. web ap-
plication models that are represented as Kripke structures. In particular,
[33] defines two automata, encoded in PROMELA [34], that respectively

34

Property Forum Type Time (ms) Outcome # States Size (Kb) Slice (Kb)
Guest-No-AddComment Standard 12 Yes − − −

Open 19 No 30 140 14–35
Closed 14 Yes − − −

Newspaper-like 11 No 25 116 8–32
Guest-No-DelComment Standard 18 Yes − − −

Open 13 Yes − − −
Closed 15 Yes − − −

Newspaper-like 20 Yes − − −
Guest-No-DelTopic Standard 7 Yes − − −

Open 6 Yes − − −
Closed 10 Yes − − −

Newspaper-like 11 Yes − − −
Guest-No-AdminPage Standard 19 Yes − − −

Open 19 Yes − − −
Closed 18 Yes − − −

Newspaper-like 14 Yes − − −
Guest-No-ViewTopic Standard 18 No 30 140 14–42

Open 13 No 25 116 12–32
Closed 7 Yes − − −

Newspaper-like 19 No 25 184 6–46
Guest-No-NewTopic Standard 6 Yes − − −

Open 14 No 25 116 16–35
Closed 8 Yes − − −

Newspaper-like 8 Yes − − −
Reg-No-AddComment Standard 16 No 55 256 18–77

Open 11 No 40 188 6–56
Closed 9 No 40 184 9–52

Newspaper-like 19 No 35 184 4–55
Reg-No-DelComment Standard 15 Yes − − −

Open 15 Yes − − −
Closed 13 Yes − − −

Newspaper-like 17 Yes − − −
Reg-No-DelTopic Standard 8 Yes − − −

Open 12 Yes − − −
Closed 17 Yes − − −

Newspaper-like 16 Yes − − −
Reg-No-AdminPage Standard 12 Yes − − −

Open 13 Yes − − −
Closed 7 Yes − − −

Newspaper-like 19 Yes − − −
Reg-No-ViewTopic Standard 21 No 50 232 9–60

Open 18 No 35 164 8–48
Closed 15 No 35 164 16–41

Newspaper-like 25 No 55 256 23–77
Reg-No-NewTopic Standard 16 No 50 232 5–70

Open 17 No 35 164 3–43
Closed 18 No 35 164 7–43

Newspaper-like 24 Yes − − −
Mod-No-AddComment Standard 25 No 65 300 21–78

Open 17 No 50 232 20–70
Closed 15 No 45 232 21–58

Newspaper-like 13 No 60 208 8–54
Mod-No-DelComment Standard 28 No 70 324 6–94

Open 22 No 55 256 20–77
Closed 24 No 55 256 5–67

Newspaper-like 25 No 60 280 28–81
Mod-No-DelTopic Standard 12 No 30 140 14–41

Open 16 No 30 140 13–41
Closed 15 No 30 140 3–35

Newspaper-like 19 No 30 140 7–38
Mod-No-AdminPage Standard 6 Yes − − −

Open 7 Yes − − −
Closed 13 Yes − − −

Newspaper-like 9 Yes − − −
Mod-No-ViewTopic Standard 23 No 60 280 11–73

Open 13 No 45 208 6–58
Closed 13 No 45 208 4–52

Newspaper-like 17 No 50 232 14–70
Mod-No-NewTopic Standard 21 No 60 280 11–76

Open 14 No 45 208 6–56
Closed 12 No 45 208 12–56

Newspaper-like 16 Yes − − −
Admin-No-AdminPage Standard 16 No 30 140 13–35

Open 16 No 30 140 14–36
Closed 13 No 30 140 6–42

Newspaper-like 19 No 30 140 8–38

Table 2: Experimental results for the virtual forum application

35

model the web application business logic and the transitions among web
pages. Properties of interest are expressed as LTL formulae, and checked on
the PROMELA specifications by using the SPIN model checker [34]. Similar
methodologies have been developed in [35] and [36] to verify web applications
by using CTL formulae. All these model checking approaches are based on
coarse web application models that are not concerned with the communi-
cation protocol underlying the web interactions or the browser navigation
features. Moreover, Section 5 shows that CTL and LTL property specifi-
cations are very often textually large and hence difficult to formulate and
understand. [18] presents a modeling and verification methodology that uses
CTL and considers some basic adaptive navigation features. In contrast, our
framework provides a complete formalization that supports more advanced
adaptive navigation capabilities.

Finally, both [2] and [37] provide accurate analyses of web interactions
that point out typical unexpected application behaviors that are essentially
caused by the uncontrolled use of the browser navigation buttons as well as
the shortcomings of HTTP. However, their approach is different from ours
since it is based on defining a novel web programming language that allows
safe web applications to be written: [2] exploits type-checking techniques to
ensure application correctness, whereas [37] adopts a semantic approach that
is based on program continuations.

9. Conclusion

In this paper, we have developed a detailed navigation model that ac-
curately formalizes the behavior of web applications by means of rewriting
logic. The proposed model allows several critical aspects of web applications
such as concurrent web interactions, browser navigation features, and web
scripts evaluations to be specified as an elegant, high-level rewrite theory.

We have also coupled our formal specification framework with a model
checking technique based on LTLR, which is a linear temporal logic designed
to model check rewrite theories. This marriage has proven to be particularly
beneficial for the verification task, since it allows quite sophisticated prop-
erties, that are very often difficult to express, to be specified and efficiently
verified within our framework.

Our methodology has been fully implemented in the Web-TLR system
and tested on several complex cases, including a webmail application and a
virtual forum. All the examples considered are available at the Web-TLR

36

web site [25] and can be tested online through the graphical web interface
(GWI) provided with our tool. The results obtained are very encouraging
and demonstrate the practicality of our approach.

Web-TLR distinguishes itself from related tools in a number of salient
aspects.

• It encompasses a rich web application core model which considers the
communication protocol underlying web interactions as well as common
browser navigation features.

• It provides efficient and accurate model checking of dynamic proper-
ties at low cost (e.g., properties of Web pages generated by means of
Web script executions). The verification process includes the automatic
generation of diagnostic information (in the form of counter-example
traces) for those properties that are refuted. This information demon-
strates why a property does not hold and can be fruitfully exploited to
debug faulty web applications.

• It is equipped with a slicing facility that greatly reduces the size of
counter-example traces, thus making their analysis feasible even in the
case of complex, real-size web systems.

• Counter-examples are visualized via an interactive slideshow, which
allows the user to explore the model by performing forward and back-
ward transitions. At each slide, the interface shows both a graphical
representation of the web application state and the values of the more
relevant variables. This on-the-fly exploration does not require the local
installation of the verification system itself since it is entirely provided
by the Web-TLR’s GWI.

Let us conclude by mentioning some directions for future work. Our
priority is to improve the usability of Web-TLR and we plan to do this by
addressing the following tasks.

• Supplementing the system with proper support to the correct-by-con-
struction synthesis of web applications [16, 17]. Actually, we are cur-
rently investigating a model-driven transformation technique that al-
low correct PHP-based web applications to be automatically generated
from Maude specifications.

37

• Providing Web-TLR with a model extraction facility to help web en-
gineers verify existing web applications. The facility aims at deriving
formal Maude models, which can be analyzed by our tool, from PHP-
based web applications.

• Enriching the Web-TLR user interface by implementing an editor for
the specification of LTLR properties based on temporal patterns in the
style of [24, 38, 39]. Basically, the idea is to define a catalogue of tem-
poral LTLR templates (expressed via a simplified structured English
grammar) that can ease the definition and reuse of LTLR properties
even for those practitioners that are unfamiliar with formal method
idioms.

We also intend to extend our framework in order to deal with more so-
phisticated web systems that support client-side scripts (defined for example
by JavaScript-like languages) and that are based on web service architectures
conforming to the REST (REpresentational State Transfer) framework [40].

Finally, in order to improve the scalability of our technique, we plan to
consider the approach of encoding model checking problems into SAT, and
the related issues of determining the efficiency of solving different encodings
in Maude.

Acknowledgments

We would like to thank Maŕıa del Mar Gallardo for many useful comments
and suggestions. We also gratefully acknowledge Javier Espert and Francisco
Frechina for their helpful discussions concerning the design of Web-TLR and
their valuable involvement in the implementation.

References

[1] R. Message, A. Mycroft, Controlling Control Flow in Web Applications,
in: 4th Int’l Workshop on Automated Specification and Verification of
Web Sites, WWV 2008, volume 200(3) of Electronic Notes in Theoretical
Computer Science, pp. 119–131.

[2] P. Graunke, R. Findler, S. Krishnamurthi, M. Felleisen, Modeling Web
Interactions, in: 12th European Symposium on Programming, ESOP
2003, volume 2618 of Lecture Notes in Computer Science, Springer, 2003,
pp. 238–252.

38

[3] Open Web Application Security Project, Top ten security flaws,
2007. Available at http://www.owasp.org/index.php/OWASP_Top_

Ten_Project.

[4] E. M. Clarke, E. A. Emerson, A. P. Sistla, Automatic Verification
of Finite State Concurrent Systems Using Temporal Logic Specifica-
tions: A Practical Approach, in: Conference Record of the Tenth An-
nual ACM Symposium on Principles of Programming Languages, POPL
1983, ACM Press, 1983, pp. 117–126.

[5] K. Bae, J. Meseguer, A Rewriting-Based Model Checker for the Lin-
ear Temporal Logic of Rewriting, in: 9th International Workshop on
Rule-Based Programming, RULE 2008, Electronic Notes in Theoretical
Computer Science, Elsevier, 2008.

[6] M. Huth, M. Ryan, Logic in Computer Science, Cambridge University
Press, 2004.

[7] R. D. Nicola, F. Vaandrager, Action versus State Based Logics for Tran-
sition Systems, in: LITP Spring School on Theoretical Computer Sci-
ence on Semantics of Systems of Concurrent Processes, Springer, 1990,
pp. 407–419.

[8] J. Meseguer, The Temporal Logic of Rewriting: A Gentle Introduction,
in: Concurrency, Graphs and Models: Essays Dedicated to Ugo Monta-
nari on the Occasion of his 65th Birthday, volume 5065, Springer, 2008,
pp. 354–382.

[9] J. Meseguer, Conditional Rewriting Logic as a Unified Model of Con-
currency, Theoretical Computer Science 96 (1992) 73–155.

[10] N. Mart́ı-Oliet, J. Meseguer, Rewriting Logic: Roadmap and Bibliogra-
phy, Theoretical Computer Science 285(2) (2002) 121–154.

[11] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer,
C. Talcott, All About Maude: A High-Performance Logical Framework,
volume 4350 of Lecture Notes in Computer Science, Springer, 2007.

[12] K. Bae, J. Meseguer, The linear temporal logic of rewriting maude model
checker, in: P. C. Ölveczky (Ed.), Rewriting Logic and Its Applications
- 8th International Workshop, WRLA 2010, Revised Selected Papers,

39

volume 6381 of Lecture Notes in Computer Science, Springer, 2010, pp.
208–225.

[13] M. Alpuente, D. Ballis, D. Romero, Specification and Verification of
Web Applications in Rewriting Logic, in: Formal Methods, Second
World Congress, FM 2009, volume 5850 of Lecture Notes in Computer
Science, Springer, 2009, pp. 790–805.

[14] M. Alpuente, D. Ballis, J. Espert, D. Romero, Model-checking Web Ap-
plications with Web-TLR, in: 8th Int’l Symp. on Automated Technology
for Verification and Analysis, ATVA 2010, volume 6252 of Lecture Notes
in Computer Science, Springer, 2010, pp. 341–346.

[15] M. Alpuente, D. Ballis, J. Espert, F. Frechina, D. Romero, Debugging
of Web Applications with Web-TLR, in: 7th International Workshop on
Automated Specification and Verification of Web Systems, WWV 2011,
volume 61 of Electronic Proceedings in Theoretical Computer Science,
pp. 66–80.

[16] M. Bordin, T. Vardanega, Correctness by Construction for High-
Integrity Real-Time Systems: A Metamodel-Driven Approach, in:
12th International Conference on Reliable Software Technologies, vol-
ume 4498 of Lecture Notes in Computer Science, Springer, 2007, pp.
114–127.

[17] I. Poernomo, J. Terrell, Correct-by-Construction Model Transforma-
tions from Partially Ordered Specifications in Coq, in: 12th Int’l Con-
ference on Formal Engineering Methods, ICFEM 2010, volume 6447 of
Lecture Notes in Computer Science, Springer-Verlag, 2010, pp. 56–73.

[18] M. Han, C. Hofmeister, Modeling and Verification of Adaptive Navi-
gation in Web Applications, in: 6th International Conference on Web
Engineering, ICWE 2006, ACM, 2006, pp. 329–336.

[19] TeReSe (Ed.), Term Rewriting Systems, Cambridge University Press,
Cambridge, UK, 2003.

[20] J. P. Jouannaud, C. Kirchner, H. Kirchner, Incremental Construction
of Unification Algorithms in Equational Theories, in: Automata, Lan-
guages and Programming, 10th Colloquium, ICALP 1983, volume 154
of Lecture Notes in Computer Science, Springer, 1983, pp. 361–373.

40

[21] P. Viry, Equational Rules for Rewriting Logic, Theoretical Computer
Science 285 (2002) 487–517.

[22] J. Meseguer, M. Palomino, N. Mart́ı-Oliet, Equational abstractions,
Theoretical Computer Science 403 (2008) 239–264.

[23] Z. Manna, A. Pnueli, The Temporal Logic of Reactive and Concurrent
Systems, Springer, 1992.

[24] M. Haydar, H. Sahraoui, A. Petrenko, Specification Patterns for Formal
Web Verification, in: 2008 Eighth International Conference on Web
Engineering, ICWE 2008, IEEE Computer Society, 2008, pp. 240–246.

[25] The Web-TLR Web site, 2012. Available at: http://users.dsic.

upv.es/grupos/elp/soft.html.

[26] M. Alpuente, D. Ballis, J. Espert, D. Romero, Backward Trace Slic-
ing for Rewriting Logic Theories, in: 23rd International Conference
on Automated Deduction CADE 23, volume 6803 of Lecture Notes in
Computer Science, Springer, 2011, pp. 34–48.

[27] M. Alpuente, D. Ballis, F. Frechina, D. Romero, Backward trace slicing
for conditional rewrite theories, in: Logic for Programming, Artificial
Intelligence, and Reasoning - 18th International Conference, LPAR 18,
volume 7180 of Lecture Notes in Computer Science, Springer, 2012, pp.
62–76.

[28] M. Alpuente, D. Ballis, F. Frechina, D. Romero, Julienne: A Trace
Slicer for Conditional Rewrite Theories, in: FM 2012: Formal Methods
- 18th International Symposium, Paris, France, August 27-31, 2012. Pro-
ceedings, volume 7436 of Lecture Notes in Computer Science, Springer,
2012, pp. 28–32.

[29] M. Alpuente, D. Ballis, F. Frechina, D. Romero, Using Conditional
Trace Slicing for improving Maude programs, Science of Computer Pro-
gramming (2012). Submitted.

[30] S. Eker, J. Meseguer, A. Sridharanarayanan, The Maude LTL Model
Checker, Electronic Notes in Theoretical Computer Science 71 (2002)
162–187.

41

[31] M. Alpuente, D. Ballis, J. Espert, D. Romero, Dynamic Backward
Slicing of Rewriting Logic Computations, ArXiv e-prints. (2011).

[32] L. Alfaro, Model Checking the World Wide Web, in: 13th Int’l. Confer-
ence on Computer Aided Verification, CAV 2001, Paris, France, Lecture
Notes in Computer Science, Springer, 2001, pp. 337–349.

[33] K. Homma, S. Izumi, K. Takahashi, A. Togashi, Modeling, Verification
and Testing of Web Applications Using Model Checker, IEICE Trans-
actions 94-D (2011) 989–999.

[34] G. J. Holzmann, The Spin Model Checker, Addison-Wesley, 2003.

[35] H. Miao, H. Zeng, Model Checking-based Verification of Web Applica-
tion, in: 12th IEEE International Conference on Engineering Complex
Computer Systems, ICECCS 2007, IEEE Computer Society, 2007, pp.
47–55.

[36] F. M. Donini, M. Mongiello, M. Ruta, R. Totaro, A Model Checking-
based Method for Verifying Web Application Design, Electronic Notes
in Theoretical Computer Science 151 (2006) 19–32.

[37] C. Queinnec, Continuations and Web Servers, Higher-Order and Sym-
bolic Computation 17 (2004) 277–295.

[38] S. Konrad, B. H. C. Cheng, Real-time Specification Patterns, in: 27th
International Conference on Software Engineering, ICSE 2005, ACM,
2005, pp. 372–381.

[39] G. S. Avrunin, J. C. Corbett, M. B. Dwyer, Patterns in Property Speci-
fications for Finite-State Verification, in: 1999 International Conference
on Software, ICSE 1999, ACM, 1999, pp. 411–420.

[40] T. R. Fielding, R. N. Taylor, Principled Design of the Modern Web
Architecture, ACM Trans. Internet Technol. 2 (2002) 115–150.

42

Appendix A. Formal Specification of the Operational Semantics
of the Web Scripting Language

The equational theory (Σs, Es), which we presented in Section 4, is for-
mally defined by means of the following Maude specification that consists of
two functional modules. The former module (called EXPRESSION) specifies
the syntax as well as the semantics of the language expressions. The lat-
ter module (called SCRIPT) formalizes the syntax and semantics of the lan-
guage statements. The evaluation function [[]] : ScriptState → ScriptState,
described in Section 4, is encoded via the operator evlSt : ScriptState

-> ScriptState which is contained in the functional module SCRIPT.

(fmod EXPRESSION is inc MEMORY + QUERY + SESSION + DATABASE .

sorts Expression Test .

subsorts Test Value Qid < Expression .

--- Signature of the Expression operators

op TRUE : -> Test .

op FALSE : -> Test .

op _=_ : Expression Expression -> Test .

op _!=_ : Expression Expression -> Test .

op _’+_ : Expression Expression -> Expression .

op _’*_ : Expression Expression -> Expression .

op _’._ : Expression Expression -> Expression .

op getSession : Expression -> Expression .

op getQuery : Qid -> Expression .

op selectDB : Expression -> Expression .

op updateDB : Expression Expression -> Script .

op evlEx : Expression Memory Session Query DB -> Expression .

--- Semantics of the Expression operators

vars ex ex1 ex2 : Expression .

vars m ms : Memory .

vars db dbs : DB .

vars s ss : Session .

vars q qs : Query .

vars x y : Int .

vars qid : Qid .

vars v : Value .

vars str : String .

vars sql : SqlDB .

vars t : Test .

--- Exp: value

eq evlEx (v , m , s , q , db) = v .

--- Exp: boolean conditions = and !=

ceq evlEx (ex1 = ex2 , m , s, q, db) = TRUE

43

if ((evlEx(ex1, m, s, q, db)) == (evlEx(ex2, m, s, q, db))) .

ceq evlEx (ex1 = ex2 , m , s, q, db) = FALSE

if ((evlEx(ex1, m, s, q, db)) =/= (evlEx(ex2, m, s, q, db))) .

ceq evlEx (ex1 != ex2 , m , s, q, db) = FALSE

if ((evlEx(ex1, m, s, q, db)) == (evlEx(ex2, m, s, q, db))) .

ceq evlEx (ex1 != ex2 , m , s, q, db) = TRUE

if ((evlEx(ex1, m, s, q, db)) =/= (evlEx(ex2, m, s, q, db))) .

--- Exp: evaluation of private memory identifiers

eq evlEx (qid , ([qid, v] : ms), s, q , db) = v .

ceq evlEx (qid , m, s, q, db) = null if qid in m =/= true .

--- Exp: arithmetic operators

eq evlEx (ex1 ’+ ex2 , m , s, q, db) = evlEx(ex1, m, s, q, db) + evlEx(ex2, m, s, q, db) .

eq evlEx (ex1 ’* ex2 , m , s, q, db) = evlEx(ex1, m, s, q, db) * evlEx(ex2, m, s, q, db) .

--- Exp: attribute selector

eq evlEx (ex1 ’. ex2 , m , s, q, db) = evlEx(ex1, m, s, q, db) v+ evlEx(ex2, m, s, q, db) .

-- Exp: getSession

eq evlEx (getSession(ex) , m , s , q, db) = getSessionValue(s, evlEx(ex, m, s, q, db)) .

-- Exp: getQuery

eq evlEx (getQuery(qid) , m , s , (qid ’= str) : qs , db) = s(str) .

ceq evlEx (getQuery(qid) , m , s , q , db) = null if qid in q =/= true .

--- Exp: selectDB

eq evlEx (selectDB(ex) , m , s , q, db) = select(db, evlEx(ex, m, s, q, db)) .

--- Exp: null value

eq evlEx (ex , m , s , q , db) = null [owise] .

endfm)

(fmod SCRIPT is inc EXPRESSION .

--- Signature of the Statement operators

sorts Script ScriptState .

op skip : -> Script .

op _;_ : Script Script -> Script [prec 61 assoc id: skip] .

op _:=_ : Qid Expression -> Script .

op if_then_else_fi : Test Script Script -> Script .

op if_then_fi : Test Script -> Script .

op while_do_od : Test Script -> Script .

op repeat_until_od : Script Test -> Script .

op ‘[_‘,_‘,_‘,_‘,_‘] : Script Memory Session Query DB -> ScriptState .

44

op setSession : Expression Expression -> Script .

op clearSession : -> Script .

op evlSt : ScriptState -> ScriptState .

--- Semantics of the Statement operators

vars ex ex1 ex2 : Expression .

vars m ms : Memory .

vars db dbs : DB .

vars s ss : Session .

vars q qs : Query .

vars x y : Int .

vars qid : Qid .

vars v : Value .

vars str : String .

vars p p1 p2 ps : Script .

vars t : Test .

vars sql : SqlDB .

--- Statement: skip

eq evlSt ([skip , m , s , q , db]) = [skip , m , s , q , db] .

--- Statement: assignment (:=)

eq evlSt ([(qid := ex); ps , [qid, v] : ms, s, q , db]) =

evlSt ([ps , [qid, evlEx(ex, [qid, v] : ms, s, q , db)] : ms, s, q , db]) .

ceq evlSt ([(qid := ex); ps , ms, s, q , db]) =

evlSt ([ps , [qid, evlEx(ex, ms, s, q, db)] : ms, s, q, db])

if qid in ms =/= true .

--- Statement: if then else fi

ceq evlSt ([(if t then p1 else p2 fi) ; ps , m, s, q , db]) =

evlSt ([p1 ; ps , m, s, q, db]) if (TRUE == evlEx(t, m, s, q, db)) == true .

ceq evlSt ([(if t then p1 else p2 fi) ; ps , m, s, q , db]) =

evlSt ([p2 ; ps , m, s, q, db]) if (TRUE == evlEx(t, m, s, q, db)) =/= true .

--- Statement: while do od

ceq evlSt ([(while t do p od); ps , m, s, q , db]) =

evlSt ([p ; while t do p od ; ps , m, s, q, db])

if (TRUE == evlEx(t, m, s, q, db)) == true .

ceq evlSt ([(while t do p od); ps , m, s, q , db]) = evlSt ([ps , m, s, q, db])

if (TRUE == evlEx(t, m, s, q, db)) =/= true .

--- Statement: setSession

eq evlSt ([(setSession(ex1, ex2)); ps , m, s , q , db]) =

evlSt ([ps , m, setSessionValue (s , evlEx(ex1, m, s, q, db) ,

evlEx(ex2, m, s, q, db)) , q , db]) .

--- Statement: clearSession

eq evlSt ([clearSession ; ps , m, s , q , db]) = evlSt ([ps , m, session-empty , q , db]) .

--- Statement: updateDB

45

eq evlSt ([(updateDB (ex1, ex2)); ps , m, s , q , db]) =

evlSt ([ps , m, s , q , update (db, evlEx(ex1, m, s, q, db) ,

evlEx(ex2, m, s, q, db))]) .

endfm)

46

Appendix B. Formal Specification of the Evaluation Protocol Func-
tion

The protocol evaluation function eval, presented in Section 4.3.1, is for-
mally specified by means of the following Maude functional module.

(fmod EVAL is inc WEB_MODEL .

vars page wapp wapps w : Page .

vars np qid np1 np2 nextPage : Qid .

vars q q1 : Query .

vars sc sc1 : Script .

vars cont conts : Continuation .

vars nav : Navigation .

vars ss nextS : Session .

vars cond conds : Condition .

vars url urls nextURLs : URL .

vars id idw : Id .

vars uss : UserSession .

vars db nextDB : DB .

vars m : Memory .

vars idmes : Nat .

op pageNotFound : -> Qid .

op pageNotContinuaton : -> Qid .

op holdContinuation : Qid Continuation Session -> Qid .

op holdNavigation : Qid Page Session -> URL .

op holdCont : Qid Continuation Session -> Qid .

op whichQid : Qid Qid -> Qid .

op getURLs : Navigation Session -> URL .

op evalScript : Page UserSession Message DB -> ReadyMessage .

--- Evaluation of the enabled continuations

eq holdContinuation(np, (cond => np) : conts, ss) = holdCont (np, (cond => np) : conts , ss) .

ceq holdContinuation(np, conts, ss) = qid

if np1 := holdCont (np, conts , ss) /\

qid := whichQid (np , np1) [owise] .

eq holdCont (np, cont-empty, ss) = pageNotContinuaton .

ceq holdCont (np, (cond => qid) : conts, ss) = qid if (holdCondition(cond,ss)) == true .

eq holdCont (np, (cond => qid) : conts, ss) = holdCont (np, conts, ss) [owise] .

eq whichQid (np , pageNotContinuaton) = np .

eq whichQid (np , np1) = np1 [owise] .

--- Evaluation of the enabled navigations

eq holdNavigation(np , ((np , sc , { cont } , { nav }) : wapp), ss) = getURLs (nav, ss) .

eq holdNavigation(np , wapp , ss) = url-empty [owise] .

eq getURLs (nav-empty , ss) = url-empty .

ceq getURLs ((cond -> url) : nav , ss) = url : getURLs (nav , ss)

if (holdCondition(cond,ss)) == true .

eq getURLs ((cond -> url) : nav , ss) = getURLs (nav , ss) [owise] .

--- Eval definition

47

ceq eval (((np , sc , { cont } , { nav }) : wapps) , us(id, ss) : uss ,

m(id , idw , (np ? q) , idmes) , db)

= rm(m(id, idw, nextPage, nextURLs, idmes), nextS, nextDB)

if [sc1, m, nextS, q1, nextDB] := eval([sc, none, ss, q, db]) /\

nextPage := holdContinuation (np, cont, nextS) /\

nextURLs := holdNavigation (nextPage, ((np , sc , { cont } , { nav }) : wapps) , nextS)

.

eq eval (wapp , us(id, ss) : uss , m(id , idw , (np ? q) , idmes) , db) =

rm(m(id , idw , pageNotFound , url-empty , idmes) , ss , db) [owise] .

endfm)

48

Appendix C. Virtual Forum Formal Specification

This Web-TLR specification models a typical virtual forum. It allows
four different privilege levels (guest, registered user, moderator and admin-
istrator), each being a superset of the preceding levels.

Some missing features are a profile page for registered users, and the capa-
bility to manage subfora. These have been omitted for the sake of simplicity,
and are left as an open exercise for adventurous Web-TLR users.

mod WEBAPP is inc PROTOCOL .

--- Names of the web pages

ops INDEX LOGIN ACCESS LOGOUT ADMIN ADDCOMMENT

DELCOMMENT VIEWTOPIC NEWTOPIC DELTOPIC : -> Qid .

eq INDEX = ’Index .

eq LOGIN = ’Login .

eq ACCESS = ’Access .

eq LOGOUT = ’Logout .

eq ADMIN = ’Admin .

eq ADDCOMMENT = ’Add-Comment .

eq DELCOMMENT = ’Delete-Comment .

eq VIEWTOPIC = ’View-Topic .

eq NEWTOPIC = ’New-Topic .

eq DELTOPIC = ’Delete-Topic .

--- INDEX page definition ---

--- The index page lists the available topics.

--- In addition, it allows guest users to login, logged users to

--- log out, moderators to remove threads and administrators to

--- enter the administration page.

op indexPage : -> Page .

eq indexPage = (INDEX,

indexScript,

{cont-empty},

{ ((s("reg") ’== s("no")) -> (LOGIN ? query-empty))

: ((s("reg") ’== s("yes")) -> (LOGOUT ? query-empty))

: ((s("adm") ’== s("yes")) -> (ADMIN ? query-empty))

: ((s("can-read") ’== s("yes")) -> (VIEWTOPIC ? (’topic ’= "")))

: ((s("can-create") ’== s("yes")) -> (NEWTOPIC ? (’topic ’= "")))

: ((s("mod") ’== s("yes")) -> (DELTOPIC ? (’topic ’= ""))) }

) .

--- set initial session values

op indexScript : -> Script .

eq indexScript =

setSession(s("adminPage"), s("free")) ;

--- Set default levels

’r := getSession(s("reg")) ;

if (’r = null) then

setSession(s("reg"), s("no")) ;

49

setSession(s("mod"), s("no")) ;

setSession(s("adm"), s("no")) ;

setSession(s("can-create"), s("no")) ;

setSession(s("can-write"), s("no")) ;

setSession(s("can-read"), s("no"))

fi ;

--- Set capabilities available to all users (guests included)

’createlvl := selectDB(s("create-level")) ;

’writelvl := selectDB(s("write-level")) ;

’readlvl := selectDB(s("read-level")) ;

if (’createlvl = s("all")) then

setSession(s("can-create"), s("yes"))

fi ;

if (’writelvl = s("all")) then

setSession(s("can-write"), s("yes"))

fi ;

if (’readlvl = s("all")) then

setSession(s("can-read"), s("yes"))

fi .

--- LOGIN page definition---

--- The login page asks the user for a username and a password

--- that are submitted to the access page. It can also

--- go back to the index page.

op loginPage : -> Page .

eq loginPage = (LOGIN,

skip,

{cont-empty},

{ (TRUE -> (INDEX ? query-empty))

: (TRUE -> (ACCESS ? (’user ’= "")

: (’pass ’= ""))) }

) .

--- ACCESS page definition ---

--- The access page processes the login request. On success, the

--- user is redirected to the index page. Otherwise, it is

--- redirected back to the login page with an error message.

op accessPage : -> Page .

eq accessPage = (ACCESS,

accessScript,

{ ((s("reg") ’== s("yes")) => INDEX)

: ((s("reg") ’== s("no")) => LOGIN) },

{nav-empty}

) .

op accessScript : -> Script .

eq accessScript =

setSession(s("adm"), s("no")) ; --- no capabilities by default

setSession(s("mod"), s("no")) ;

setSession(s("reg"), s("no")) ;

’u := getQuery(’user) ; --- get submitted user name

50

’p := getQuery(’pass) ; --- get submitted password

’p1 := selectDB(’u) ; --- get the actual password

’createlvl := selectDB(s("create-level")) ; --- get minimum privilege levels

’writelvl := selectDB(s("write-level")) ;

’readlvl := selectDB(s("read-level")) ;

if (’p = ’p1) then --- check password

’r := selectDB(’u ’. s("-role")) ; --- get user role (adm, mod, reg)

setSession(s("reg"), s("yes")) ; --- set user capabilities

if (’createlvl = s("reg")) then

setSession(s("can-create"), s("yes"))

fi ;

if (’writelvl = s("reg")) then

setSession(s("can-write"), s("yes"))

fi ;

if (’readlvl = s("reg")) then

setSession(s("can-read"), s("yes"))

fi ;

if (’r = s("adm")) then

setSession(s("adm") , s("yes")) ;

setSession(s("mod") , s("yes")) ;

setSession(s("can-create"), s("yes")) ;

setSession(s("can-write"), s("yes")) ;

setSession(s("can-read"), s("yes"))

else

setSession(s("adm") , s("no")) ;

if (’r = s("mod")) then

setSession(s("mod"), s("yes")) ;

if (’createlvl = s("mod")) then

setSession(s("can-create"), s("yes"))

fi ;

if (’writelvl = s("mod")) then

setSession(s("can-write"), s("yes"))

fi ;

if (’readlvl = s("mod")) then

setSession(s("can-read"), s("yes"))

fi

else

setSession(s("mod"), s("no"))

fi

fi

fi

.

--- LOGOUT page definition ---

--- The logout page processes the log out action and redirects

--- the user to the index page.

op logoutPage : -> Page .

eq logoutPage = (LOGOUT,

logoutScript,

{ (TRUE => INDEX) },

{nav-empty}

) .

op logoutScript : -> Script .

eq logoutScript =

51

setSession(s("reg"), s("no")) ; --- remove all capabilities

setSession(s("mod"), s("no")) ;

setSession(s("adm"), s("no")) ;

setSession(s("can-create"), s("no")) ;

setSession(s("can-write"), s("no")) ;

setSession(s("can-read"), s("no"))

.

--- ADMIN page definition

--- The administration page is only available to administrators.

--- It should provide actions affecting fora and user accounts,

--- but they have made not explicit for the sake of simplicity.

op adminPage : -> Page .

eq adminPage = (ADMIN,

adminScript,

{cont-empty},

{ (TRUE -> (INDEX ? query-empty)) }

) .

op adminScript : -> Script .

eq adminScript =

setSession(s("adminPage"), s("busy"))

.

--- ADDCOMMENT page definition ---

--- Processes the action of adding a comment to a topic. The comment

--- dialog is supposed to be integrated with the view topic page.

op addCommentPage : -> Page .

eq addCommentPage = (ADDCOMMENT,

skip,

{ cont-empty },

{ (TRUE -> VIEWTOPIC ? query-empty) }

) .

--- DELCOMMENT page definition ---

--- Processes the action of deleting a comment from a topic. In a

--- practical implementation, a button in the view topic page,

--- next to each message, would trigger this action for the selected

--- message. It is only available to moderators.

op delCommentPage : -> Page .

eq delCommentPage = (DELCOMMENT,

skip,

{ cont-empty },

{ (TRUE -> VIEWTOPIC ? query-empty) }

) .

--- VIEWTOPIC page definition ---

--- Pages that shows the messages in a given topic

op viewTopicPage : -> Page .

eq viewTopicPage = (VIEWTOPIC,

52

skip,

{ cont-empty },

{ (TRUE -> (INDEX ? query-empty))

: ((s("can-write") ’== s("yes")) -> (ADDCOMMENT ? query-empty))

: ((s("mod") ’== s("yes")) -> (DELCOMMENT ? query-empty)) }

) .

--- NEWTOPIC page definition ---

--- Processes the action of creating a new topic. The actual dialog is

--- supposed to be in the index page.

op newTopicPage : -> Page .

eq newTopicPage = (NEWTOPIC,

skip,

{ cont-empty },

{ (TRUE -> VIEWTOPIC ? query-empty) }

) .

--- DELTOPIC page definition ---

--- Processes the action of deleting a new topic. The actual button is

--- supposed to be in the index page.

op delTopicPage : -> Page .

eq delTopicPage = (DELTOPIC,

skip,

{ cont-empty },

{ (TRUE -> INDEX ? query-empty) }

) .

--- VIRTUAL FORUM Web Application: soup containing the pages of the web application

op wapp : -> Page .

eq wapp = adminPage : addCommentPage : delCommentPage

: indexPage : loginPage : accessPage : logoutPage

: viewTopicPage : newTopicPage : delTopicPage .

endm

mod WEBAPP-PROPERTIES is inc WEBAPP-CHECK .

--- D A T A B A S E ---

op users : -> DB .

eq users =

--- administrators

(s("alfred") ; s("secretAlfred"))

(s("alfred-role") ; s("adm"))

(s("anna") ; s("secretAnna"))

(s("anna-role") ; s("adm"))

--- moderators

(s("maude") ; s("secretMaude"))

53

(s("maude-role") ; s("mod"))

(s("marc") ; s("secretMarc"))

(s("marc-role") ; s("mod"))

--- registered users

(s("robert") ; s("secretRobert"))

(s("robert-role") ; s("reg"))

(s("rachel") ; s("secretRachel"))

(s("rachel-role") ; s("reg"))

.

--- standard forum

op db1 : -> DB .

eq db1 =

--- include user data

users

--- required privilege level to read comments in a topic

(s("read-level") ; s("all"))

--- required privilege level to write a comment in a topic

(s("write-level") ; s("reg"))

--- required privilege level to start a new topic

(s("create-level") ; s("reg"))

.

--- full-open forum

op db2 : -> DB .

eq db2 =

--- include user data

users

--- required privilege level to read comments in a topic

(s("read-level") ; s("all"))

--- required privilege level to write a comment in a topic

(s("write-level") ; s("all"))

--- required privilege level to start a new topic

(s("create-level") ; s("all"))

.

--- closed forum

op db3 : -> DB .

eq db3 =

--- include user data

users

--- required privilege level to read comments in a topic

(s("read-level") ; s("reg"))

--- required privilege level to write a comment in a topic

(s("write-level") ; s("reg"))

54

--- required privilege level to start a new topic

(s("create-level") ; s("reg"))

.

--- newspaper-like forum

op db4 : -> DB .

eq db4 =

--- include user data

users

--- required privilege level to read comments in a topic

(s("read-level") ; s("all"))

--- required privilege level to write a comment in a topic

(s("write-level") ; s("all"))

--- required privilege level to start a new topic

(s("create-level") ; s("adm"))

.

--- B R O W S E R S ---

--- browser IDs for each user registered user

ops bidAlfred bidAnna bidMaude bidMarc bidRobert bidRachel : -> Id .

ops bidGuido bidGreta : -> Id .

--- tab IDs for each user

ops tidAlfred tidAnna tidMaude tidMarc tidRobert tidRachel : -> Id .

ops tidGuido tidGreta : -> Id .

--- sigmas for each user

ops zAlfred zAnna zMaude zMarc zRobert zRachel zGuest : -> Sigma .

eq zAlfred = (’user / "alfred") : (’pass / "secretAlfred") .

eq zAnna = (’user / "anna") : (’pass / "secretAnna") .

eq zMaude = (’user / "maude") : (’pass / "secretMaude") .

eq zMarc = (’user / "marc") : (’pass / "secretMarc") .

eq zRobert = (’user / "robert") : (’pass / "secretRobert") .

eq zRachel = (’user / "rachel") : (’pass / "secretRachel") .

eq zGuest = sigma-empty .

--- browser definitions

ops brAlfred brAnna brMaude brMarc brRobert brRachel : -> Browser .

eq brAlfred = newBrowser (bidAlfred, tidAlfred, (INDEX ? query-empty), zAlfred) .

eq brAnna = newBrowser (bidAnna, tidAnna, (INDEX ? query-empty), zAnna) .

eq brMaude = newBrowser (bidMaude, tidMaude, (INDEX ? query-empty), zMaude) .

eq brMarc = newBrowser (bidMarc, tidMarc, (INDEX ? query-empty), zMarc) .

eq brRobert = newBrowser (bidRobert, tidRobert, (INDEX ? query-empty), zRobert) .

eq brRachel = newBrowser (bidRachel, tidRachel, (INDEX ? query-empty), zRachel) .

ops brGuido brGreta : -> Browser .

eq brGuido = newBrowser (bidGuido, tidGuido, (INDEX ? query-empty), zGuest) .

eq brGreta = newBrowser (bidGreta, tidGreta, (INDEX ? query-empty), zGuest) .

55

--- S E R V E R ---

--- default user session

op uss : -> UserSession .

eq uss = usersession-empty .

--- server

ops server-1 server-2 server-3 server-4 : -> Server .

eq server-1 = S(wapp, uss, mes-empty, readymes-empty, db1) .

eq server-2 = S(wapp, uss, mes-empty, readymes-empty, db2) .

eq server-3 = S(wapp, uss, mes-empty, readymes-empty, db3) .

eq server-4 = S(wapp, uss, mes-empty, readymes-empty, db4) .

endm

56

