
 
 
 
 
 
 
 
 
 
 

Improving the AUC of Probabilistic Estimation Trees 

César Ferri1          Peter A. Flach2          José Hernández-Orallo1  

1 Dep. Sistemes Informàtics i Computació, Univ. Politècnica de València, Spain 
{cferri,jorallo}@dsic.upv.es 

2 Department of Computer Science, University of Bristol, United Kingdom 
Peter.Flach@bristol.ac.uk 

Abstract. In this work we investigate several issues in order to improve the per-
formance of probabilistic estimation trees (PETs). First, we derive a new prob-
ability smoothing that takes into account the class distributions of all the nodes 
from the root to each leaf. Secondly, we introduce or adapt some new splitting 
criteria aimed at improving probability estimates rather than improving classifi-
cation accuracy, and compare them with other accuracy-aimed splitting criteria. 
Thirdly, we analyse the effect of pruning methods and we choose a cardinality-
based pruning, which is able to significantly reduce the size of the trees without 
degrading the quality of the estimates. The quality of probability estimates of 
these three issues is evaluated by the 1-vs-1 multi-class extension of the Area 
Under the ROC Curve (AUC) measure, which is becoming widespread for 
evaluating probability estimators, ranking of predictions in particular. 

1. Introduction 

Decision-tree learning has been extensively used in many application areas of ma-
chine learning, especially for classification, because the algorithms developed for 
learning decision trees [3,13] represent a good compromise between comprehensi-
bility, accuracy and efficiency. In the common setting, a classifier is defined as a 
function from a set of m arguments or attributes (which can be either nominal or nu-
meric) to a single nominal value, known as the class. We denote by C the set of c 
classes, usually simply referred by natural numbers 0, 1, 2, ... c-1. By E we denote the 
set of unlabelled examples. A classifier is a function f: E → C. Traditionally, this 
setting was sufficient for most of the classification problems and applications. How-
ever, more and more applications require some kind of reliability, likelihood or nu-
meric assessment of the quality of each classification. In other words, we do not only 
want that the model predicts a class value for each example but also that it can give an 
estimate of the reliability of each prediction. Such classifiers are usually called soft 
classifiers. Soft classifiers are useful in many scenarios, including combination of 
classifiers, cost-sensitive learning and safety-critical applications. The most general 
presentation of a soft classifier is a probability estimator, i.e. a model that estimates 
the probability pi(e) of membership of class i∈C for every example e∈E. 

A trained decision tree can be easily adapted to be a probability estimator by using 
the absolute class frequencies of each leaf of the tree. For instance, if a node has the 
following absolute frequencies n1, n2, ..., nc (obtained from the training dataset) the 
estimated probabilities for that node can be derived as pi = ni / Σni. Every new exam-
ple falling into that leaf will have these estimated class probabilities. Such trees are 



 
 
 
 
 
 
 
 
 
 

called Probability Estimation Trees (PETs). However, despite this simple conversion 
from a decision tree classifier into a PET, the probability estimates obtained by PETs 
are quite poor with respect to other probability estimators [14,2]. 

Some recent works have changed this situation. First, Provost and Domingos [12] 
improve the quality of PETs by reassessing some classical techniques in decision tree 
learning. In particular, they found that frequency smoothing of the leaf probability 
estimates, such as Laplace correction, significantly enhances the estimates, especially 
if they are used for ranking. On the other hand, pruning (or related techniques such as 
C4.5 collapsing) is shown to be unhelpful for increasing probability estimates. Un-
pruned trees usually give the best results. Independently, in an earlier paper [7] we 
also improve the quality of PETs by considering Laplace correction for the leaves. In 
addition, we showed that splitting criteria aimed at increasing accuracy (or reducing 
error), such as GainRatio, GINI or DKM [13,3,10] are not necessarily the best criteria 
for estimating good probabilities. Splitting criteria based on probability ranking, such 
as the new AUC-splitting criterion [7] can produce better results when the aim is to 
obtain good probability estimates. These two works are first steps that show that deci-
sion trees can be successfully used as probability estimators, provided we reassess and 
redefine some of the traditional techniques specifically devised for improving the 
accuracy of decision trees. 

Provost and Domingos [12] “believe that a thorough study of what are the best 
methods for PETs would be a successful contribution to machine-learning research”. 
In this spirit and as a sequel and natural continuation of the above-mentioned works, 
in this paper we present the following enhancements: (i) a new smoothing method (m-
branch smoothing) for estimating probabilities, that not only considers the leaves, but 
all the frequencies from the root to the leaf; (ii) a new splitting criterion (MSEEsplit) 
defined in terms of the minimum squared error of the probability estimates; and (iii) a 
simple pruning criterion based on the cardinalities of nodes that is able to reduce the 
size of trees, without degrading the quality of the probability estimates. 

The paper is organised as follows. In Section 2 we describe in more detail what a 
PET is and how it can be evaluated. Section 3 presents the new smoothing method. 
Section 4 introduces two new splitting criteria, MAUCsplit and MSEEsplit. Section 5 
analyses the use of pruning and presents the influence of the degree of pruning of the 
best pruning method we have found so far for PETs. Finally, Section 6 discusses the 
results, and Section 7 closes the paper and proposes future work. 

2. PETs, Features and Evaluation 

In this section we present some necessary definitions, the evaluation framework, the 
experimental setting and some previous results in order to set the stage for the rest of 
the paper. The main contributions of this work are presented in subsequent sections. 

Given the set of unlabelled examples E and the set C of c classes, we define a 
probability estimator as a set of c functions pi∈C: E → ℜ  such that ∀pi∈C, e∈E : 0 ≤ 
pi(e) ≤ 1 and ∀e∈E ∑pi∈C (e)= 1. Decision trees are formed of nodes, splits and condi-
tions. A condition is any Boolean function g: E → {true, false}. A split is a set of s 
conditions {gk : 1 ≤ k ≤ s}. In this paper, we consider the conditions of a split to be 
exhaustive and exclusive, i.e., for a given example one and only one of the conditions 



 
 
 
 
 
 
 
 
 
 

of a split is true. A decision tree can be defined recursively as follows: (i) a node with 
no associated split is a decision tree, called a leaf; (ii) a node with an associated split 
{gk : 1 ≤ k ≤ s} and a set of s children {tk}, such that each condition is associated with 
one and only one child, and each child tk is a decision tree, is also a decision tree. 
Given a tree t there is just a single node r that is not child of any other node. This 
special node is called the root of the tree. The sequence of nodes <ν1, ν2, ..., νd> from 
the root to a leaf l, where νd = l and ν1 is the root, is called the branch leading to l. 

In the most straightforward and classical scenario a decision tree is learned by us-
ing a training set T, which is a set of labelled examples, i.e., a set of pairs of the form 
<e, i> where e∈E and i∈C. After the training stage, the examples will have been 
distributed among all the nodes in the tree, where the root node contains all the exam-
ples and downward nodes contain the subset of examples that are consistent with the 
conditions of the specific branch. Therefore, every node has particular absolute fre-
quencies n1, n2, ..., nc for each class. The cardinality of the node is given by Σni. A 
decision tree classifier (DTC) is defined as a decision tree with an associated labelling 
of the leaves with classes. Usually, the assigned class is the most frequent class in the 
leaf (argmaxi{ni}). A probability estimation tree (PET) is a decision tree where each 
leaf is assigned a probability distribution over classes. These probability estimates can 
for instance be relative frequencies pi= ni /

 Σni.  

2.1 DTCs, PETs and their Evaluation 

One of the first questions that may arise is whether a good DTC is always a good PET 
and vice versa. Although there is a high correlation between quality of DTCs and 
quality of PETs, some recent works have shown that many heuristics used for improv-
ing classification accuracy “reduce the quality of probability estimates” [12]. Hence, 
it is worth investigating new heuristics and techniques which are specific to PETs and 
that may have been neglected by previous work in DTCs. 

But first of all, a standard measure for evaluating the quality of PETs must be es-
tablished. As justified and used by [12,7] and other previous work, the AUC (Area 
under the ROC Curve) measure has been chosen for evaluation. The measure can be 
interpreted as the probability that a randomly chosen example e of class 0 will have an 
estimated p0(e) greater than the estimated p1(e). Consequently, this is a measure par-
ticularly suitable for evaluating ranked two-class predictions. Recently, an extension 
of the AUC measure for more than two classes has been proposed by Hand and Till 
[9]. The idea is to simply average the AUC of each pair of classes (1-vs-1 multi-
class). We call this measure MAUC for multi-class AUC (Hand and Till denote the 
function by M). Clearly, MAUC = AUC when c=2. 

In [7] we introduced a new method for efficiently computing MAUC based on the 
ranking of leaves rather than a ranking of examples. Hence, the complexity of the new 
method depends on the number of leaves rather than on the number of examples, 
frequently entailing better performance. In what follows, we use this optimisation. 

2.2 Datasets and Experimental Methodology 

We evaluated the methods presented in this paper on 50 datasets from the UCI reposi-
tory [1]. Half of them have two classes, either originally or by selecting one of the 



 
 
 
 
 
 
 
 
 
 

classes and joining all the other classes, and the rest have more than two classes 
(multi-class datasets). The datasets are described in Table 1 and Table 2. The first two 
columns show the dataset number and name, the size (number of examples), the num-
bers of nominal and numerical attributes and the size of the minority class.  
 

Table 1. Two-class datasets used. 

ATTRIBUTES # DATASET SIZE 
NOM NUM 

%MIN 
CLASS 

1 MONKS1 566 6 0 50 
2 MONKS2 601 6 0 34.28 
3 MONKS3 554 6 0 48.01 
4 TIC-TAC 958 8 0 34.66 
5 HOUSE-VOTES 435 16 0 38.62 
6 AGARICUS 8124 22 0 48.2 
7 BREAST-WDBC 569 0 30 37.26 
8 BREAST-CAN-WISC 699 0 9 34.48 
9 BREAST-WPBC 194 0 33 23.71 

10 IONOSPHERE 351 0 34 35.9 
11 LIVER-BUPA 345 0 6 42.03 
12 PIMA-ABALONE 768 0 8 34.9 
13 CHESS-KR-VS-KP 3196 36 0 47.78 
14 SONAR 208 0 60 46.63 
15 HEPATITIS 83 14 5 18.07 
16 THYROID-HYPO 2012 19 6 6.06 
17 THYROID-SICK-EU 2012 19 6 11.83 
18 YEAST2C 1484 0 8 31.20 
19 SPECT 267 22 0 20.60 
20 HABERMN-BRST 306 0 3 26.47 
21 SPAM 4601 0 57 39.40 
22 CYL-BANDS 365 19 17 36.99 
23 PIMA-DIABETES 768 0 8 34.90 
24 SICK 2751 21 6 7.92 
25 LYMPH_2C 142 15 3 42.96 

 

Table 2. Multi-class datasets used. 

ATTRIBUTES # DATASET #CLASSES SIZE 
NOM NUM 

%MIN 

26 HYPOTHYROID_3C 3 2750 21 6 3.24 
27 BALANCE-SCALE 3 625 0 4 7.84 
28 CARS 4 1728 6 0 3.76 
29 DERMATOLOGY 6 366 33 1 5.46 
30 NEW-THYROID 3 215 0 5 13.95 
31 NURSERY4C 4 12957 8 0 2.53 
32 PAGE-BLOCKS 5 5473 0 10 0.51 
33 PENDIGITS 10 10992 0 16 9.60 
34 TAE 3 151 2 3 32.45 
35 IRIS 3 150 0 4 33.33 
36 OPTDIGITS 10 5620 0 64 9.86 
37 SEGMENTATION 7 2310 0 19 14.29 
38 WINE 3 178 0 13 26.97 
39 HEART-DIS-ALL 5 920 8 5 3.04 
40 ANNEAL 5 898 32 6 0.89 
41 HAYES-ROTH 3 160 4 0 19.38 
42 WAVEFORM 3 5000 0 21 32.94 
43 CMC 3 1473 7 2 22.61 
44 ECOLI4C 4 336 0 7 7.44 
45 AUTOS-DRVWHLS 3 205 9 16 4.39 
46 SOLAR FLAREC 3 323 10 0 2.17 
47 HORSECOLICOUTC 3 366 13 8 14.21 
48 ANN-THYROID 3 7200 15 6 2.31 
49 SPLICE 3 3190 60 0 24.04 
50 SAT 6 6435 0 36 9.73 

 

All experiments have been done within the SMILES system (http://www.dsic. 
upv.es/~flip/smiles/). The use of the same system for all the methods makes 
comparisons more impartial because all other things remain equal. We used the basic 
configuration of the system, which is a decision-tree learner quite similar to C4.5, but 
without pruning (unless stated), without node “collapsing” [13], and the GainRatio 
splitting criterion used by default (this configuration is sometimes called C4.4).  

We performed a 20 times 5-fold cross-validation, thus making a total of 50 x 100 = 
5,000 runs of SMILES for each method. We have used 5-fold cross-validation instead 
of 10-fold cross-validation because for computing the AUC we need examples of all 
the classes and some datasets have a small proportion of examples for the minority 
class. In what follows, for each dataset we show the arithmetic mean and the standard 
deviation of the 100 runs. Accuracy and AUC are shown as a percentage. 

2.3 Results with Laplace and m-Estimate Smoothing 

Previously, we have stated that, given any node with absolute frequencies n1, n2, ..., nc 
for each class (hence overall cardinality Σni), we can obtain a probability estimation 
tree by obtaining the probabilities as pi = ni / Σni. One problem is that pure nodes with 
small cardinality will have the same probability as pure nodes with much higher car-
dinality. This is especially problematic for ranking predictions of unpruned trees, 



 
 
 
 
 
 
 
 
 
 

because most or all nodes tend to be pure and there are many ties between the rank-
ings. A common solution to this problem is the use of probability smoothing such as 
Laplace correction and m-estimate, defined as follows:  

Laplace 
smoothing  cn

n
p

Ci
i

i
i

+







+

=

∑
∈

1  m-
estimate 

smoothing 
mn

pmn
p

Ci
i

i
i

+







⋅+

=

∑
∈

 

where c is the number of classes. The probability p in the m-estimate is the expected 
probability without any additional knowledge, and it is either assumed to be uniform 
(p = 1/c) or estimated from the training distribution. In the uniform case, which we 
used in our experiments, it is easy to see that Laplace correction is a special case of 
the m-estimate with m=c.  
 

Table 3. Effect of smoothing on AUC for 
two-class datasets (m=4).  

WITHOUT 
SMOOTHING 

LAPLACE 
SMOOTHING 

M-ESTIMATE 
SMOOTHING # 

AUC SD AUC SD AUC SD 
1 96.8 3.7 97.9 2.7 97.9 2.7 
2 71.2 4.3 70.2 4.8 70.2 4.8 
3 97.7 1.3 99.1 0.9 99.1 0.9 
4 76.2 3.6 87.2 2.8 87.2 2.8 
5 93.6 2.5 98.2 1.4 98.2 1.4 
6 100.0 0.0 100.0 0.0 100.0 0.0 
7 91.9 2.9 96.8 1.8 96.8 1.8 
8 93.3 2.1 97.9 1.1 97.9 1.1 
9 59.6 8.9 64.2 9.5 64.2 9.5 
10 90.8 4.2 94.6 3.7 94.6 3.7 
11 61.1 6.1 67.0 6.8 67.0 6.8 
12 67.2 1.7 79.0 1.4 79.0 1.4 
13 99.5 0.3 100.0 0.1 100.0 0.1 
14 66.0 7.6 73.5 7.2 73.5 7.2 
15 65.5 11.6 75.7 9.1 75.7 9.1 
16 90.5 3.9 97.9 1.0 97.9 1.0 
17 80.7 3.1 85.1 2.6 84.6 2.7 
18 64.8 2.9 74.3 2.8 74.3 2.8 
19 67.4 7.1 74.3 7.1 75.0 7.2 
20 56.3 6.6 64.3 7.5 64.3 7.5 
21 91.7 0.9 96.9 0.5 96.9 0.5 
22 66.6 5.4 68.5 5.1 68.5 5.1 
23 65.9 4.2 75.3 3.8 75.3 3.8 
24 89.3 3.1 98.7 0.8 98.7 0.8 
25 78.7 7.8 87.3 6.9 87.3 6.9 

ARITM 79.3  85.0  85.0  
GEOM 78.0  83.9  84.0  

 

Table 4. Effect of smoothing on AUC for 
multi-class datasets (m=4). 

WITHOUT 
SMOOTHING 

LAPLACE 
SMOOTHING 

M-ESTIMATE 
SMOOTHING 

# 

AUC SD AUC SD AUC SD 
26 97.9 1.4 99.8 0.3 99.8 0.3 
27 75.0 1.8 82.9 2.7 82.9 2.7 
28 94.7 2.1 95.4 1.6 95.4 1.6 
29 98.4 0.8 99.0 0.6 99.0 0.6 
30 94.3 3.5 97.1 2.7 97.1 2.7 
31 99.4 0.3 99.7 0.1 99.7 0.1 
32 94.4 1.8 97.8 1.0 97.8 1.0 
33 99.3 0.1 99.7 0.0 99.7 0.0 
34 75.0 7.9 74.7 8.5 74.7 8.5 
35 97.3 2.2 98.5 1.8 98.5 1.8 
36 98.2 0.2 99.0 0.1 99.0 0.1 
37 99.3 0.2 99.7 0.1 99.7 0.1 
38 96.6 2.7 97.8 1.9 97.8 1.9 
39 63.7 3.7 65.6 3.6 65.6 3.6 
40 98.6 2.0 99.2 1.1 99.2 1.1 
41 89.8 4.2 90.5 4.3 90.5 4.3 
42 83.4 1.0 88.8 0.9 88.8 0.9 
43 62.0 2.6 65.5 2.7 65.5 2.7 
44 93.0 2.9 95.3 2.5 95.3 2.5 
45 88.1 8.4 93.0 5.8 93.0 5.8 
46 57.5 8.1 58.6 10.4 58.6 10.4 
47 66.3 5.4 70.5 4.9 70.5 4.9 
48 98.1 1.0 99.8 0.2 99.8 0.2 
49 95.6 0.6 98.1 0.4 98.1 0.4 
50 95.1 0.3 96.9 0.3 96.9 0.3 

ARITM 88.4  90.5  90.5  
GEOM 87.3  89.5  89.5  

 

Tables 3 and 4 show the results (mean and standard deviation for the 5 × 20 itera-
tions) without smoothing, with Laplace smoothing and with the m-estimate with uni-
form prior (the best experimental value for m, m=4 is used). These results are similar 
to those of [12,7] and they are shown here to serve as a reference from which we will 
illustrate our own improvements. The improvement of Laplace and m-estimate 
smoothing over no smoothing is obvious — especially for two-class datasets — and 
there is no need to perform a significance test. On the other hand, there is virtually no 
difference between Laplace smoothing and the best m-estimate. 



 
 
 
 
 
 
 
 
 
 

3. m-Branch Smoothing 

We continue to investigate whether the previous results can be further improved. In 
this section we propose a more sophisticated smoothing method called m-branch 
smoothing. In the next section we consider alternative splitting criteria that are de-
signed specifically for probability estimation trees.  

First of all, the previous m-estimate and Laplace smoothing methods consider a 
uniform class distribution of the sample. That is, they consider the global population 
uniform whereas in many cases the class probabilities are unbalanced. However, just 
taking this into account does not improve the measures significantly, since each node 
takes a subsample from the upper node, and this, once again, makes a subsample of 
the upper node, until the root is reached. Usually, this means that the sample used to 
obtain the probability estimate in a leaf is the result of many sampling steps, as many 
as the depth of the leaf. It makes sense, then, to consider this history of samples when 
estimating the class probabilities in a leaf. The idea is to assign more weight to nodes 
that are closer to the leaf. 

Definition 1 (m-Branch Smoothing). Given a leaf node l and its associated branch 
<ν1, ν2, ..., νd> where νd = l and ν1 is the root, denote with ni

j the cardinality of 
class i at node νj. Define pi

0 = 1/c. We recursively compute the probabilities of the 
nodes from 1 to d as follows: 

mn

pmn
p

Ci

j
i

j
i

j
ij

i

+







⋅+

=

∑
∈

−1  

The m-branch smoothed probabilities of leaf l are given by pi
d.  

We note that m-branch smoothing is a recursive root-to-leaf extension of the m-
probability estimate used by Bratko and Cestnik for decision tree pruning [5]. 

Since this is an iteration of the m-estimate, we could use a fixed value of m. How-
ever, if we use a small m the smoothing would almost be irrelevant for upper nodes, 
which have high cardinality. On the other hand, if we use a large m the small cardinal-
ities at the bottom of the branch would have low relevance. In order to solve this we 
use a variable value, which depends on the size of the dataset and the depth. Define 
the height of a node as h= d+1– j where d is the depth of the branch and j the depth of 
the node. The normalised height of a node is defined as ∆= 1 – 1/h in order to increase 
the correction closer to the root. We then parametrise the m value as follows: 

( )NMm ⋅∆+⋅= 1  
where M is a constant and N is the global cardinality of the dataset. The use of the 
square root of N is inspired by “the square root law”, which connects the error and the 
sample size. The previous expression means that m-branch smoothing is performed 
with a value of M at the leaves, the next node up is done with M + ½ ·M · vN, the next 
M + 2/3 ·M ·vN until the root with M + (d−1)/d ·M ·vN. 

In Tables 5 and 6 we compare m-branch smoothing (with the best experimental 
value for M=4) compared with the best previous results (m-estimate). We also per-
form a paired t-test to test the significance of the results. The ‘Better?’ column indi-
cates whether m-branch smoothing performs significantly better (ü) or worse (x) than 



 
 
 
 
 
 
 
 
 
 

m-estimate smoothing, according to t-test with level of confidence 0.1. A tie (-) indi-
cates the difference is not significant at this level.  
 

Table 5. Comparison of m-estimate and m-
branch smoothing on two-class datasets.  

M-ESTIMATE 
SMOOTHING 

M-BRANCH 
SMOOTHING BETTER? # 

AUC SD AUC SD  
1 97.9 2.7 97.2 3.4 × 
2 70.2 4.8 67.4 5.0 × 
3 99.1 0.9 99.1 1.0 - 
4 87.2 2.8 86.9 2.7 - 
5 98.2 1.4 98.5 1.4 - 
6 100.0 0.0 100.0 0.0 - 
7 96.8 1.8 96.9 1.6 - 
8 97.9 1.1 98.0 1.1 - 
9 64.2 9.5 65.9 10.0 - 

10 94.6 3.7 94.4 3.7 - 
11 67.0 6.8 70.0 7.1 ü 
12 79.0 1.4 82.2 1.4 ü 
13 100.0 0.1 99.9 0.1 × 
14 73.5 7.2 75.7 6.3 ü 
15 75.7 9.1 77.5 9.4 - 
16 97.9 1.0 98.1 1.0 - 
17 84.6 2.7 86.1 2.7 ü 
18 74.3 2.8 75.7 2.6 ü 
19 75.0 7.2 77.9 7.0 ü 
20 64.3 7.5 67.3 7.0 ü 
21 96.9 0.5 97.0 0.5 - 
22 68.5 5.1 68.5 5.2 - 
23 75.3 3.8 78.8 3.3 ü 
24 98.7 0.8 98.7 0.8 - 
25 87.3 6.9 87.4 6.9 - 

ARITMEAN 85.0  85.8  8 wins, 14 ties, 
GEOMEAN 84.0  84.9  3 losses 

 

Table 6. Comparison of m-estimate and m-
branch smoothing on multi-class datasets. 

4-ESTIMATE 
SMOOTHING 

4-BRANCH 
SMOOTHING BETTER? # 

AUC SD AUC SD  
26 99.8 0.3 99.8 0.2 ü 
27 82.9 2.7 81.3 2.9 × 
28 95.4 1.6 95.3 1.5 - 
29 99.0 0.6 99.2 0.5 ü 
30 97.1 2.7 97.4 2.7 - 
31 99.7 0.1 99.7 0.1 × 
32 97.8 1.0 98.8 0.7 ü 
33 99.7 0.0 99.8 0.0 ü 
34 74.7 8.5 75.0 8.7 - 
35 98.5 1.8 98.5 1.8 - 
36 99.0 0.1 99.3 0.1 ü 
37 99.7 0.1 99.7 0.1 ü 
38 97.8 1.9 97.8 1.8 - 
39 65.6 3.6 69.1 3.6 ü 
40 99.2 1.1 98.6 2.2 × 
41 90.5 4.3 91.7 4.2 ü 
42 88.8 0.9 95.0 0.5 ü 
43 65.5 2.7 71.1 2.4 ü 
44 95.3 2.5 95.6 2.6 - 
45 93.0 5.8 91.7 7.1 - 
46 58.6 10.4 59.3 12.0 - 
47 70.5 4.9 76.2 5.2 ü 
48 99.8 0.2 99.8 0.3 - 
49 98.1 0.4 98.7 0.3 ü 
50 96.9 0.3 98.3 0.2 ü 

ARITMEAN 90.5  91.5  13 wins, 9 ties,  
GEOMEAN 89.5  90.6  3 losses 

 

The results (21 wins, 23 ties, 6 losses) show that there are many cases where the dif-
ference is not significant (especially when the AUC was close to 100) but there are 
many more cases where the results are improved than degraded. In overall geometric 
means, m-branch smoothing improves AUC with 1% from 86.7% to 87.7%. 

4. Splitting Criteria for PETs 

A crucial factor for the quality of a decision tree learner is its splitting criterion. A 
variety of splitting criteria, including Gini [3], Gain, Gain Ratio and C4.5 criterion 
[13], and DKM [10] have been presented to date. However, all these were designed 
and evaluated for classifiers, not for probability estimators. In this section we propose 
and investigate two splitting criteria specifically designed for PETs.  

4.1 MAUC Splitting Criterion 

In [7] we introduced a novel splitting criterion, which was aimed at maximising the 
AUC of the resulting tree rather than its accuracy. It simply computes the quality of 
each split as the AUC of the nodes resulting from that split, assuming a two-class 



 
 
 
 
 
 
 
 
 
 

problem. This can be generalised to more than two classes using Hand and Till’s 1-vs-
1 average [9]. 

Definition 2 (MAUCsplit). Given a split s, the quality of the split is defined as: 
MAUCsplit (s) = MAUC (ts) 

where ts indicates the tree with the node being split as root.  

The idea of using the same measure for splitting that is used as well for evaluation 
seems straightforward. Nonetheless, in the same way that accuracy (expected error) is 
not necessarily the best splitting criterion for accuracy, MAUCsplit may not the best 
splitting criterion for MAUC. 

4.2 MSEE Splitting Criterion 

A different approach is to consider that the tree really predicts probabilities. It thus 
makes sense to minimise the quadratic error committed when guessing these prob-
abilities. Consider a split where each of the children has estimated probabilities pi for 
each class. Assume that nodes assign classes according to pi. Consequently, pi means 
the probability of examples of class i falling into the node but also means the prob-
ability of being classified as i. Assuming these two interpretations of pi are independ-
ent, the probability that an example of class i is misclassified, denoted by pe,i, can be 
estimated as follows: 

)1(, ii
ij

jiie ppppp −⋅=⋅= ∑
≠

 

In words, this combines the probability that an example is of class pi and the probabil-
ity that it is not classified accordingly (the sum of the rest of probabilities, which is 1 
− pi). This is similar to the Gini index. However, we want to measure the quadratic 
error of the prediction, which in our case is not a class but a probability. Hence, given 
a misclassification: 
− pi should have been 1 but is pi. Thus, the error can be estimated as (1 − pi)

2. 
− pj (j ≠ i) should have been 0 and is pj. The error can be estimated as (0 − pj)

2. 
Consequently, we have a total quadratic error of: 









+−−⋅=








−+−−⋅= ∑∑

≠≠ ij
jiii

ij
jiiii ppppppppError 2222 )1()1()0()1()1(  

Therefore, if we consider a split of n nodes, then we can compute the quality of the 
split as the negative value of the total error for all the nodes: 

Definition 3 (MSEEsplit). Given a split s, the quality of the split is defined as: 

∑ ∑
= =









−⋅=

nk ci
ik ErrorqsMSEEsplit

..1 ..1

)(  

where qk indicates the relative cardinality of the k-th child in the split.  

The way in which the error is obtained gives the name for the criterion: Minimum 
Squared Expected Error (MSEE). Note that this expression is similar to the Brier 
score [4], which has also been used recently as a measure for predictive models in 
similar applications as where AUC is used.  



 
 
 
 
 
 
 
 
 
 

Both MAUCsplit and MSEEsplit are modified in order to penalise splits with a 
high number of children, in a similar way as GainRatio is a modification of the Gain 
criterion. The precise correction we have used in the experiments can be found in [8]. 

4.3 Splitting Criteria Comparison 

We have compared several splitting criteria: GainRatio (as implemented in C4.5, i.e., 
considering only the splits with Gain greater than the mean [13]), MGINI (as imple-
mented in CART [3]), DKM (as presented in [10]), MAUCsplit with children correc-
tion and MSEEsplit with children correction. We will show the results with the split 
smoothing that gives better results for each criterion. This smoothing has not to be 
confused with the smoothing used for computing the AUC for evaluating the PETs, 
which will always be m-branch smoothing. Table 7 summarises the results (the com-
plete results can be found in [8]).  

Table 7. Summary of Accuracy and AUC for several splitting criteria (geometric means). 

  C4.5SPLIT GAIN MGINI DKM MAUCSPLIT MSEE SPLIT BETTER? MSEE VS C4.5 
ACCURACY 81.4 81.6 81.4 81.7 81.8 82.0 11 wins, 9 ties, 5 losses 2-CLASS 

AUC 84.9 84.8 84.6 84.8 85.0 85.3 7 wins, 13 ties, 5 losses 
ACCURACY 82.8 83.0 83.1 83.1 82.4 83.0 10 wins, 11 ties, 4 losses 

>2-CLASS 
AUC 90.6 90.9 90.8 91.1 90.8 90.9 7 wins, 13 ties, 5 losses 

ACCURACY 82.1 82.3 82.2 82.4 82.1 82.5 21 wins, 20 ties, 9 losses ALL 
AUC 87.7 87.8 87.7 87.9 87.8 88.1 14 wins, 26 ties, 10 losses 

 

According to these and previous results, the best DTC splitting criterion is DKM, but 
the difference is not significant with the rest of DTC criteria (MGINI, C4.5). The new 
criterion MAUCsplit is slightly better than C4.5 and MGINI, although differences are 
small and not significant. Finally, MSEEsplit appears to be the best, although differ-
ences are smaller with respect to C4.5 and even smaller with respect to DKM. The 
good behaviour of both MSEE and DKM may be explained because both methods use 
quadratic terms. 

5. Pruning and PETs 

As we have discussed in the introduction, in [12] it is argued that pruning is counter-
productive for obtaining good PETs and, consequently, pruning (and related tech-
niques) should be disabled. However, it is not clear whether the reason is that pruning 
is intrinsically detrimental for probability estimation, or that existing pruning methods 
are devised for accuracy and not for increasing AUC. 

Independently, we have evaluated some classical pre-pruning and post-pruning 
methods, such as Expected Error Pruning and Pessimistic Error Pruning (see e.g. [6] 
for a comparison). Our results match those of [12]; even slight pruning degrades the 
quality (measured in terms of AUC) of the probability estimates. It seems that 
smoothing has a relevant effect here: if we disable smoothing, pruning is beneficial in 
some cases. Consequently, it looks as though the better the smoothing at the leaves is, 
the worse pruning will be. It appears that this will be especially true for our m-branch 
smoothing, since it takes into account all the branch nodes probabilities. Pruning will 



 
 
 
 
 
 
 
 
 
 

reduce the available information for estimating the probabilities. As a result, we do 
not expect to obtain new pruning methods that will increase the AUC of a PET, but 
we might be interested in designing pruning methods that reduce the size of the tree 
without degrading too much the quality of the PET.  

One of the most important issues for estimating good probabilities is the size of the 
sample. Consequently, the poorest estimates of a PET will be obtained by the smallest 
nodes. If we have to decide to prune some nodes it makes sense to prune the smallest 
ones first. This would suggest a very simple pre-pruning method: nodes will not be 
expanded when their cardinality is lower than a certain constant. However, datasets 
with a large number of classes can have poor probability estimates with medium-large 
nodes if there are many small classes. Hence, we can refine cardinality-based pruning, 
by using the following definition: 

Definition 4 (CardPerClass Pruning). Given a node l, it will be pruned when: 

c
K

lCard 2)( <  

where Card(l) is the cardinality of node l, K is a constant (K=0 means no pruning) 
and c is the number of classes. 

In the following graph, we show the effect of CardPerClass pruning (with K-values 
ranging from 16 to 0). The results are shown for MSEEsplit with m-branch smooth-
ing. 

80,7

82
82,482,682,682,5

82,5

85

86,8

87,7
88

88,1

88,188,1 94,5

82,1

66,9

32,2

101,2103,8

49,4

78

79

80

81

82

83

84

85

86

87

88

89

90

NO PRN. K=0.5 K=1 K=2 K=4 K=8 K=16
30

40

50

60

70

80

90

100

Accuracy

AUC

# rules

 
Fig. 1. Accuracy, AUC and number of rules for several pruning degrees (geometric mean). 

As can be seen in Figure 1, only strong pruning is counterproductive for accuracy 
(and even behaves worse than other pruning methods). It is more interesting to ob-
serve the evolution of the AUC curve. The graph suggests that the quality of a PET is 
not significantly decreased until K=4, which, on the other hand, leads to a consider-
able decrease in the complexity of the trees. 



 
 
 
 
 
 
 
 
 
 

6. Summary 

In previous sections we have presented several enhancements in order to improve the 
AUC of PETs. In order to see the whole picture, we show below the accumulated 
progress of the techniques presented before. 

Although there is a considerable improvement obtainable by using a simple 
smoothing such as Laplace smoothing (as shown previously [12,7]), there was still 
place for further improvement, as can be seen in Table 8. According to the nature and 
number of the datasets, and the quantity and quality of work developed for improving 
decision trees, we think that this is a significant result. 

Table 8. Summary Table of AUC (only AUC and geomeans shown). 

C4.5SPLIT WITH-
OUT SMOOTH 

C4.5SPLIT WITH 
LAPLACE SMOOTH 

C4.5SPLIT WITH 
MBRANCH SMOOTH 

MSEESPLIT WITH 
MBRANCH SMOOTH 

C4.5LAP VS MSEESPLIT 
MBRANCH + K=1 PRUNING  

ACC AUC ACC AUC ACC AUC ACC AUC BETTER IN AUC? 
2-CLASS 81.4 78.0 81.4 83.9 81.4 84.9 82.1 85.4 11 wins, 9 ties, 5 losses 

>2-CLASS 82.8 87.3 82.8 89.5 82.8 90.6 83.1 90.9 16 wins, 4 ties, 5 losses 
ALL 82.1 82.5 82.1 86.7 82.1 87.7 82.6 88.1 27 wins, 13 ties, 10 losses 

7. Conclusions and Future Work 

In this work we have reassessed the construction of PETs, evaluating and introducing 
new methods for the three issues that are most important in PET construction: leaf 
smoothing, splitting criteria and pruning. We have introduced a new m-branch 
smoothing method that takes the whole branch of decisions into account, as well as a 
new MSEE splitting criterion aimed at reducing the squared error of the probability 
estimate. 

Our new m-branch smoothing is significantly better than previous classical 
smoothings (Laplace or m-estimate). With respect to the splitting criteria, there are 
few works that compare existing splitting criteria for accuracy. Moreover, to our 
knowledge, this is the first work that compares the ranking of probability estimates of 
several splitting criteria for PETs. At this point, the conclusion is that all the good 
criteria presented so far are also good criteria for AUC and the differences between 
them are negligible. Nonetheless, pursuing new measures, we have found new split-
ting criteria such as AUCsplit and MSEEsplit comparable to the best known criterion 
(or even better, although this is not conclusive). Finally, we have shown that a simple 
cardinality pruning method can be applied (to a certain extent) to obtain simpler PETs 
without degrading their quality too much. Consequently, the idea that pruning is in-
trinsically bad for PETs is still in question, or, at least, we reiterate that a statement of 
its negative influence is “inconclusive” [12]. A very recent work has also suggested 
that a mild pruning could be beneficial [11]. 

As future work, other methods for improving the estimates (without modifying the 
structure of a single tree) such as the method presented in [11] (which uses the fre-
quencies of all the leaves on the trees) could yield a method that takes into account all 
the information in the tree. Additionally, we think that better pruning methods for 
PETs could still be developed (considering the size of the dataset as an additional 



 
 
 
 
 
 
 
 
 
 

factor) — these might include the use of the m-branch estimate for pruning (as similar 
measures were originally introduced [5]).  

Acknowledgments 

This work has been partially supported by CICYT grant TIC2001-2705-C03-01. We 
would also like to thank the referees for their useful suggestions and references. 

References 
1. Blake, C., Merz, C. UCI repository of machine learning databases, University of Califor-

nia (http://www.ics.uci.edu/∼mlearn/MLRepository.html), 1998. 
2. Bradley, A.P. The use of the area under the ROC curve in the evaluation of machine learn-

ing algorithms. Pattern Recognition, 30(7): 1145-1159, 1997. 
3. Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J. Classification and regression trees. 

Belmont, CA, Wadsworth, 1984. 
4. Brier, G.W. Verification of forecasts expressed in terms of probability. Monthly Weather 

Rev., 78: 1-3, 1950. 
5. Cestnik, B., Bratko, I. On estimating probabilities in tree pruning. In Proc. European 

Working Sessions on Learning (EWSL-91), Lecture Notes in Artificial Intelligence 482,  
pp.138-150, Springer-Verlag, 1991. 

6. Esposito, F., Malerba, D., Semeraro, G. A Comparative Analysis of Methods for Pruning 
Decision Trees. IEEE Trans. on Pattern Analysis and Machine Intelligence, 19(5): 476-
491, 1997. 

7. Ferri, C., Flach, P., Hernández-Orallo, J. Learning Decision Trees using the Area Under 
the ROC Curve. In C. Sammut; A. Hoffman (eds.), Proc. Int. Conf. on Machine Learning 
(ICML2002), pp. 139-146, Morgan Kaufmann, 2002. 

8. Ferri, C., Flach, P., Hernández-Orallo, J.. Decision Trees for Ranking: Effect of new 
smoothing methods, new splitting criteria and simple pruning methods. Tech. Rep. Dep. 
de Sistemes Informàtics i Computació, Univ. Politècnica de València, 2003. 

9. Hand, D.J., Till, R.J. A Simple Generalisation of the Area Under the ROC Curve for Mul-
tiple Class Classification Problems. Machine Learning, 45: 171-186, 2001. 

10. Kearns, M., Mansour, Y. On the boosting ability of top-down decision tree learning algo-
rithms. Journal of Computer and Systems Sciences, 58(1): 109-128, 1999. 

11. Ling, C.X., Yan, R.J. Decision Tree with Better Ranking. In Proc. Int. Conf. on Machine 
Learning (ICML2003), AAAI Press, 2003. 

12. Provost, F., Domingos, P. Tree Induction for Probability-based Ranking. Machine Learn-
ing 52(3), 2003. 

13. Quinlan, J.R. C4.5. Programs for Machine Learning. San Francisco, Morgan Kaufmann, 
1993. 

14. Smyth, P., Gray, A., Fayyad, U. Retrofitting decision tree classifiers using kernel density 
estimation. In Proc. Int. Conf. on Machine Learning (ICML1995), pp. 506-514, Morgan 
Kaufmann, 1995. 


