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Abstract. This paper introduces a deterministic operational semantics
for functional logic programs including notions like laziness, sharing, con-
currency, non-deterministic functions, etc. Our semantic description is
important not only to provide appropriate language definitions to rea-
son about programs and check the correctness of implementations but
it is also a basis to develop language-specific tools, like program tracers,
profilers, optimizers, etc. Starting from a “big-step” semantics in natural
style which relates expressions and their evaluated results—but it is not
sufficient to cover concurrency, search strategies, or to reason about costs
associated to particular computations—, we define a “small-step” oper-
ational semantics which actually covers the advanced features of modern
functional logic languages.

1 Introduction

This paper is motivated by the fact that there does not exist a precise definition
of an operational semantics covering all aspects of modern functional logic lan-
guages, like laziness, sharing, concurrency, logical variables, non-deterministic
functions, higher-order, constraints, etc. For instance, the report on the multi-
paradigm language Curry [12] contains a fairly precise operational semantics but
covers sharing only informally. The operational semantics of the functional logic
language Toy [16] is based on narrowing and sharing (without concurrency) but
the formal definition is based on a narrowing calculus [9] which does not include
a particular pattern-matching strategy. However, the latter becomes important
if one wants to reason about costs of computations (see [6] for a discussion
about narrowing strategies and calculi). [13] contains an operational semantics
for a lazy narrowing strategy but it addresses neither concurrency nor aspects
of search strategies.
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In order to provide theoretical foundations for reasoning about programs, cor-
rectness of implementations, optimizations, or costs of computations, we define
an operational semantics covering the important aspects of current functional
logic languages. We start from a natural semantic description which defines the
intended results by relating expressions to values [2]. This “big-step” seman-
tics is non-deterministic and does not cover all aspects (e.g., concurrency, search
strategies). However, it accurately models sharing which is important not only to
reason about the space behavior of programs (as in [15]) but also for the correct-
ness of computed results in the presence of non-confluent function definitions [9].
Our main contribution is the formalization of a more implementation-oriented
semantics based on the definition of individual computation steps. Then, we ex-
tend such a semantics to cover concurrency and search strategies. The resulting
semantic description provides a formal framework to reason about operational
aspects of programs, for instance, in order to develop appropriate debugging
tools. In particular, it is a basis to provide a comprehensive definition of Curry
(in contrast to [10, 12] which contain only partial definitions). One can use it
to prove the correctness of implementations by further refinements, as done in
[19]. Furthermore, one can count the costs (time/space) associated to particular
computations in order to justify optimizations [1, 5, 20] or to compare different
search strategies.

The paper is organized as follows. In the next section we introduce some
foundations for understanding the subsequent development. Section 3 recalls a
semantic description for functional logic programs in natural style. This is re-
fined in Section 4 to a semantics describing individual execution steps. Section 5
shows a deterministic version of the latter in order to make the search strategy
explicit. In Section 6, we add concurrency in order to yield the final semantics
for declarative multi-paradigm programs. Finally, we discuss in Section 7 an
implementation of our semantics and conclude in Section 8.

2 Foundations

A main motivation for this work is to provide theoretical foundations for devel-
oping programming tools (like profilers, debuggers, optimizers) for declarative
multi-paradigm languages. In order to be concrete, we consider Curry [10, 12] as
our source language. Curry is a modern multi-paradigm language amalgamat-
ing in a seamless way the most important features from functional, logic, and
concurrent programming. Its operational semantics is based on an execution
model that combines lazy evaluation with non-determinism and concurrency.
This model has been introduced in [10] without formalizing the sharing of com-
mon subterms. The accurate definition of the latter aspect is one of the purposes
of the subsequent sections.

Basically, a Curry program is a set of function definitions (and data defini-
tions for the sake of typing, which we ignore here). Each function is defined by



rules describing different cases for input arguments. For instance, the conjunction
on Boolean values (True, False) can be defined by the rules

and True x = x
and False x = False

(data constructors usually start with uppercase and function application is de-
noted by juxtaposition). Since Curry supports logic programming features, there
are no limitations w.r.t. overlapping rules. In particular, one can also have non-
confluent rules to define functions that yield more than one result for a given
input (these are called non-deterministic or set-valued functions). For instance,
the following function non-deterministically returns one of its arguments as a
result:

choose x y = x
choose x y = y

A subtle question is the meaning of such definitions if function calls are passed as
parameters. Consider, e.g., the definition “double x = x+x” and the expression
“double (choose 1 2)”. Similarly to [9], Curry follows the “call-time choice”
semantics where all descendants of a subterm are reduced to the same value in a
derivation, i.e., the previous expression reduces non-deterministically to one of
the values 2 or 4 (but not to 3). This choice is consistent with a lazy evaluation
strategy where all descendants of a subterm are shared [15]. It is our purpose to
describe the combination of laziness, sharing, and non-determinism in a precise
and understandable manner.

We consider programs where functions are defined by rules of the form
“f t1 . . . tn = e” where f is a function, t1, . . . , tn are data terms (i.e., without oc-
currences of defined functions), the left-hand side f t1 . . . tn is linear (i.e., without
multiple occurrences of variables), and e is a well-formed expression.1 A rule is
applicable if its left-hand side matches the current call. Functions are evaluated
lazily so that the operational semantics of Curry is a conservative extension of
lazy functional programming. It extends the optimal evaluation strategy of [7] by
concurrent programming features. These are supported by a concurrent conjunc-
tion operator “&” on constraints (i.e., expressions of the built-in type Success).
In particular, a constraint of the form “c1 & c2” is evaluated by solving both
constraints c1 and c2 concurrently.

In order to provide an understandable operational description, we assume
that programs are translated into a “flat” form, which is a convenient standard
representation for functional logic programs. The flat form makes the pattern
matching strategy explicit by the use of case expressions, which is important
for the operational description; moreover, source programs can be automatically

1 Although Curry allows rules with conditions, we will only consider unconditional
rules for the sake of simplicity. This is not a real restriction since conditional rules
can be translated into unconditional ones by the introduction of auxiliary functions,
see [6].



translated into this flat form [11]. The syntax for programs in flat form can be
summarized as follows:

P ::= D1 . . . Dm

D ::= f(x1, . . . , xn) = e
e ::= x (variable)

| c(e1, . . . , en) (constructor call)
| f(e1, . . . , en) (function call)
| case e of {p1 → e1; . . . ; pn → en} (rigid case)
| fcase e of {p1 → e1; . . . ; pn → en} (flexible case)
| e1 or e2 (disjunction)
| let x1 = e1, . . . , xn = en in e (let binding)

p ::= c(x1, . . . , xn)

where P denotes a program, D a function definition, p a pattern and e an
arbitrary expression. A program P consists of a sequence of function definitions
D such that the left-hand side has pairwise different variable arguments. The
right-hand side is an expression e composed by variables (e.g., x, y, z,. . . ), data
constructors (e.g., a, b, c,. . . ), function calls (e.g., f , g,. . . ), case expressions,
disjunctions (e.g., to represent set-valued functions), and let bindings where the
local variables x1, . . . , xn are only visible in e1, . . . , en, e. A case expression has
the form2

(f )case e of {c1(xn1) → e1; . . . ; ck(xnk
) → ek}

where e is an expression, c1, . . . , ck are different constructors, and e1, . . . , ek

are expressions. The pattern variables xni
are locally introduced and bind the

corresponding variables of the subexpression ei. The difference between case and
fcase shows up when the argument e is a free variable: case suspends whereas
fcase nondeterministically binds this variable to the pattern in a branch of the
case expression and proceeds with the appropriate branch. Let bindings are in
principle not required for translating Curry programs but they are convenient to
express sharing without the use of complex graph structures. Operationally, let
bindings introduce new structures in memory that are updated after evaluation,
which is essential for lazy computations.

As an example, we show the translation of the functions and and choose into
the flat form:

and(x, y) = case x of {True→ y; False→ False }
choose(x, y) = x or y

Laziness (or neededness) of computations will show up in the description of the
behavior of function calls and case expressions. In a function call, parameters are
not evaluated but directly passed to the function’s body. In a case expression,
the form of the outermost symbol of the case argument is required; therefore,
the case argument should be evaluated to a head normal form (i.e., a variable

2 We write on for the sequence of objects o1, . . . , on and (f)case for either fcase or
case.



or an expression with a constructor at the top). Consequently, our operational
semantics will describe the evaluation of expressions only to head normal form.
This is not a restriction since the evaluation to normal form or the solving of
equations can be reduced to head normal form computations (see [11]). Similarly,
the higher-order features of current functional languages can be reduced to first-
order definitions by introducing an auxiliary “apply” function [21]. Therefore,
we base the definition of our operational semantics on the flat form described
above. This is also consistent with current implementations which use the same
intermediate language [8].

Extra variables are those variables in a rule which do not occur in the left-
hand side. Such extra variables are intended to be instantiated by constraints in
conditions or right-hand sides. They are usually introduced in Curry programs
by a declaration of the form let x free in... As Antoy [6] pointed out,
the use of extra variables in a functional logic language causes no conceptual
problem if these extra variables are renamed whenever a rule is applied. We will
model this renaming similar to the renaming of local variables in let bindings.
For this purpose, we assume that all extra variables x are explicitly introduced
in flat programs by a let binding of the form let x = x in e. Throughout this
paper, we call such variables which are bound to themselves logical variables.
For instance, an expression x + y with logical variables x and y is represented
as let x = x, y = y in x + y. Thus, such a (circular) let binding indicates logical
variables in our semantic treatment. Let us note that circular bindings are also
used in implementations of Prolog to represent logic variables [22].

3 A Natural Semantics

In this section, we recall a natural (big-step) semantics for lazy functional logic
programs [2] which is in the midway between a (simple) denotational semantics
and a (complex) operational semantic description for a concrete abstract ma-
chine. This semantics is non-deterministic and accurately models sharing. Let
us illustrate the effect of sharing by means of an example.

Example 1. Consider the following (flat) program:

foo(x) = addB(x, x)
bit = 0 or 1
addB(x, y) = case x of {0 → y; 1 → case y of {0 → 1; 1 → BO}}

Under a sharing-based implementation, the computation of “foo(e)” must eval-
uate the expression e only once. Therefore, the evaluation of the expression
foo(bit) must return either 0 or BO (binary overflow). Note that, without shar-
ing, the results would be 0, 1, or BO.

The definition of the big-step semantics mainly follows the natural semantics
defined in [15] for the lazy evaluation of functional programs. In this (higher-
order) functional semantics, the let construct is used for the creation and sharing
of closures (i.e., functional objects created as the value of lambda expressions).



The key idea in Launchbury’s natural semantics is to describe the semantics
in two parts: a “normalization” process—which consists in converting the λ-
calculus into a form where the creation and sharing of closures is made explicit—
followed by the definition of a simple semantics at the level of closures. Similarly,
the (first-order) semantics for lazy functional logic programs is described in two
separated phases. In the first phase, a normalization process is applied in order to
ensure that the arguments of functions and constructors are always variables (not
necessarily different) and that all bound variables are completely fresh variables.

Definition 1. The normalization of an expression e proceeds in two stages.
First, we flatten all the arguments of function (or constructor) calls by means
of the mapping e∗, which is defined inductively as follows:

x∗ = x
h(x1, . . . , xn)∗ = h(x1, . . . , xn)

h(x1, . . . , xi−1, ei, ei+1, . . . , en)∗ = let xi = e∗i in h(x1, . . . , xi−1, xi, ei+1, . . . , en)∗

where ei is no variable and xi fresh
(let {xk = ek} in e)∗ = let {xk = ek

∗} in e∗

(e1 or e2)∗ = e1
∗ or e2

∗

((f)case e of {pk → ek})∗ = (f)case e∗ of {pk 7→ ek
∗}

Here, h denotes either a constructor or a function symbol.
The second stage consists in applying α-conversion in order to have fresh

variable names for all bound variables in e. The extension of this normalization
process to programs is straightforward.

Normalization introduces one new let construct for each non-variable argument.
Trivially, this could be modified in order to produce one single let with the
bindings for all non-variable arguments of a function (or constructor) call, which
we assume for the subsequent examples.

For the definition of the natural semantics, we consider that both the program
and the expression to be evaluated have been previously normalized.

Example 2. The normalization of the program and expression of Example 1 re-
turns the program unchanged and the following expression:

let x1 = bit in foo(x1)

The state transition semantics is shown in Figure 1. The rules obey the following
naming conventions:

Γ,∆,Θ ∈ Heap = Var → Exp v ∈ Value ::= x | c(en)

where V ar and Exp represent the domain of variables and expressions, respec-
tively. Furthermore, we use x, y to denote variable names, t for constructor-
rooted terms, and e for arbitrary expressions. A heap is a partial mapping
from variables to expressions. The empty heap is denoted by [ ]. A value is a
constructor-rooted term or a logical variable (w.r.t. the associated heap). We
use judgements of the form “Γ : e ⇓ ∆ : v”, which should be interpreted as



(VarCons) Γ [x 7→ t] : x ⇓ Γ [x 7→ t] : t

(VarExp)
Γ [x 7→ e] : e ⇓ ∆ : v

Γ [x 7→ e] : x ⇓ ∆[x 7→ v] : v

where e is not constructor-rooted
and e 6= x

(Val) Γ : v ⇓ Γ : v
where v is constructor-rooted

or a variable with Γ [x] = x

(Fun)
Γ : ρ(e) ⇓ ∆ : v

Γ : f(xn) ⇓ ∆ : v
where f(yn) = e ∈ R and ρ = {yn 7→ xn}

(Let)
Γ [yk 7→ ρ(ek)] : ρ(e) ⇓ ∆ : v

Γ : let {xk = ek} in e ⇓ ∆ : v

where ρ = {xk 7→ yk}
and yk are fresh variables

(Or)
Γ : ei ⇓ ∆ : v

Γ : e1 or e2 ⇓ ∆ : v
where i ∈ {1, 2}

(Select)
Γ : e ⇓ ∆ : c(yn) ∆ : ρ(ei) ⇓ Θ : v

Γ : (f)case e of {pk → ek} ⇓ Θ : v

where pi = c(xn)
and ρ = {xn 7→ yn}

(Guess)
Γ : e ⇓ ∆ : x ∆[x 7→ ρ(pi), yn 7→ yn] : ρ(ei) ⇓ Θ : v

Γ : fcase e of {pk → ek} ⇓ Θ : v
where pi = c(xn), ρ = {xn 7→ yn}, and yn are fresh variables

Fig. 1. Natural Semantics for Lazy Functional Logic Programs

“the expression e in the context of the heap Γ evaluates to the value v with the
(modified) heap ∆”. Let us briefly explain the rules in Figure 1.

(VarCons). If a variable is bound to a constructor-rooted term in the heap, this
rule simply returns the associated term; the heap remains unchanged.

(VarExp). This rule achieves the effect of sharing. If the variable to be evaluated
is bound to some expression in the heap, then the expression is evaluated and
the heap is updated with the computed value; finally, this value is returned
as the result. In contrast to [15], the binding for the variable is not removed
from the heap; this becomes useful to generate fresh variable names easily.

(Val). For the evaluation of a value, this rule trivially returns it without modi-
fying the heap.

(Fun). This rule corresponds to the unfolding of a function call. The result is
obtained by reducing the right-hand side of the corresponding rule.

(Let). In order to reduce a let construct, this rule adds the bindings to the heap
and, then, proceeds with the evaluation of the main argument of the let.
Note that the variables introduced by the let construct are renamed with
fresh names to avoid variable name clashes.

(Or). It non-deterministically evaluates an or expression by either evaluating
the first argument or the second argument.



[x2 7→ bit] : 1 ⇓ [x2 7→ bit] : 1
Val

[x2 7→ bit] : 0 or 1 ⇓ [x2 7→ bit] : 1
Or

[x2 7→ bit] : bit ⇓ [x2 7→ bit] : 1
Fun

[x2 7→ bit] : x2 ⇓ [x2 7→ 1] : 1
VarExp sub-proof

[x2 7→ bit] : case x2 of {0 → 0; 1 → case x2 . . .} ⇓ [x2 7→ 1] : BO
[x2 7→ bit] : addB(x2,x2) ⇓ [x2 7→ 1] : BO
[x2 7→ bit] : foo(x2) ⇓ [x2 7→ 1] : BO

[ ] : let x1 = bit in foo(x1) ⇓ [x2 7→ 1] : BO
Let

Fun
Fun
Select

where sub-proof has the following form:

[x2 7→ 1] : x2 ⇓ [x2 7→ 1] : 1
VarCons

[x2 7→ 1] : BO ⇓ [x2 7→ 1] : BO
Val

[x2 7→ 1] : case x2 of {0 → 1; 1 → BO} ⇓ [x2 7→ 1] : BO
Select

Fig. 2. Big-step semantics of Example 2

(Select). This rule corresponds to the evaluation of a case expression whose
argument reduces to a constructor-rooted term. In this case, the appropriate
branch is selected and, then, the evaluation of the expression in this branch
proceeds by applying the corresponding matching substitution.

(Guess). This rule corresponds to the evaluation of a flexible case expression
whose argument reduces to a logical variable. It non-deterministically binds
this variable to one of the patterns and proceeds with the evaluation of the
corresponding branch. Renaming of pattern variables is also necessary in
order to avoid variable name clashes. Additionally, the heap is updated with
the (renamed) logical variables of the pattern.

A proof of a judgement corresponds to a derivation sequence using the rules
of Figure 1. Given a normalized program R and a normalized expression e (to
be evaluated), the initial configuration has the form “[ ] : e.” A derivation is
successful if it computes a value. The computed answer can be extracted by
composing the bindings for the logical variables in the initial expression e. If we
try to construct a derivation (starting from the left-bottom), then it may fail
because of two different situations: there may be no finite proof that a reduction
is valid—which corresponds to an infinite loop—or there may be no rule which
applies in a (sub-part) of the proof. In the latter case, we have two possibilities:
either rule Select is not applicable because there is no matching branch or rule
Guess cannot be applied because a logical variable has been obtained as the
argument of a rigid case expression. The natural semantics of Figure 1 does not
distinguish between all the above failures. However, they will become observable
in the small-step operational semantics of the next section.

Figure 2 illustrates the sharing behavior of the semantic description with one
of the possible (non-deterministic) derivations for the program and expression
of Example 2. Let us note that the heap in the final configuration, [x2 7→ 1] : BO,
does not contain bindings for the variable x1 of the initial expression (due to the
renaming of local variables in let expressions), which means that the computed
answer is the empty substitution.



4 A Small-Step Semantics

From an operational point of view, an evaluation in the natural semantics builds
a proof for “[ ] : e0 ⇓ Γ : e1”, whereas a computation by using a small-step
semantics builds a sequence of states [19]. In order to transform a natural (big-
step) semantics into a small-step one, we need to represent the context of sub-
proofs in the big-step semantics. For instance, when applying the VarExp rule, a
sub-proof for the premise is built. The context (i.e., the rule) indicates that we
must update the heap ∆ at x with the computed value v for the expression e.
This context must be made explicit in the small-step semantics. In our case, the
context is extensible [19] (i.e., if P ′ is a sub-proof of P , then the context of P ′

is an extension of the context of P ) and, thus, the representation of the context
is made by a stack.

A configuration Γ : e consists of a heap Γ and an expression e to be evaluated.
Now, a state (or goal) of the small-step semantics is a triple (Γ, e, S), where Γ
is the current heap, e is the expression to be evaluated (often called the control
of the small-step semantics), and S is the stack which represents the current
context. Goal denotes the domain Heap × Control × Stack .

The complete small-step semantics is presented in Figure 3. Let us briefly
describe the transition rules. Rule varcons is perfectly analogous to rule VarCons
in the natural semantics. In rule varexp, the evaluation of a variable x which
is bound to an expression e (which is neither constructor-rooted nor a logical
variable) proceeds by evaluating e and, then, adding to the stack the reference to
variable x. Here, the stack S is a list and the empty stack is denoted by [ ]. When
a variable x is on top of the stack, rule val updates the heap with x 7→ v once a
value v is computed. Rules fun, let and or are quite similar to their counterparts
in the natural semantics. Rule case initiates the evaluation of a case expression
by evaluating the case argument and pushing the alternatives (f){pk → ek} on
top of the stack. If we reach a constructor-rooted term, then rule select is used to
select the appropriate branch and continue with the evaluation of this branch. If
we reach a logical variable, then rule guess is used to non-deterministically choose
one alternative and continue with the evaluation of this branch; moreover, the
heap is updated with the binding of the logical variable to the corresponding
pattern.

In order to evaluate an expression e, we construct an initial goal of the form
([ ], e, [ ]) and apply the rules of Figure 3. We denote by =⇒∗ the reflexive and
transitive closure of =⇒. A derivation ([ ], e, [ ]) =⇒∗ (Γ, e′, S) is successful if e′

is in head normal form (the computed value) and S is the empty list. Similarly
to the natural semantics, the computed answer can be extracted from Γ by
composing the bindings for the logical variables in the initial expression e. The
equivalence of the small-step semantics and the natural semantics is stated as
follows [2]:

Theorem 1. ([ ], e, [ ]) =⇒∗ (∆, v, [ ]) if and only if [ ] : e ⇓ ∆ : v (up to
variable renaming).



Rule Heap Control Stack

varcons Γ [x 7→ t] x S
=⇒ Γ [x 7→ t] t S

varexp Γ [x 7→ e] x S
=⇒ Γ [x 7→ e] e x : S

val Γ v x : S
=⇒ Γ [x 7→ v] v S

fun Γ f(xn) S
=⇒ Γ ρ(e) S

let Γ let {xk = ek} in e S

=⇒ Γ [yk 7→ ρ(ek)] ρ(e) S

or Γ e1 or e2 S
=⇒ Γ ei S

case Γ (f)case e of {pk → ek} S
=⇒ Γ e (f){pk → ek} : S

select Γ c(yn) (f){pk → ek} : S
=⇒ Γ ρ(ei) S

guess Γ [x 7→ x] x f{pk → ek} : S
=⇒ Γ [x 7→ ρ(pi), yn 7→ yn] ρ(ei) S

where in varexp: e is not constructor-rooted and e 6= x
val: v is constructor-rooted or a variable with Γ [y] = y
fun: f(yn) = e ∈ R and ρ = {yn 7→ xn}
let: ρ = {xk 7→ yk} and yk fresh
or: i ∈ {1, 2}
select: pi = c(xn) and ρ = {xn 7→ yn}
guess: i ∈ {1, . . . k}, pi = c(xn), ρ = {xn 7→ yn}, and yn fresh

Fig. 3. Non-Deterministic Small-Step Semantics for Functional Logic Programs

5 A Deterministic Operational Semantics

The semantics presented in the previous section is still non-deterministic. In ac-
tual functional logic languages, this non-determinism is implemented by some
search strategy. For debugging or profiling functional logic programs, it is nec-
essary to model search strategies as well. Therefore, we extend the relation =⇒
as follows: =⇒⊆ Goal ×Goal∗. The idea is that a computation step yields a se-
quence consisting of all possible successor states instead of non-deterministically
selecting one of these states. Non-determinism occurs only in the rules or and
guess of Figure 3. Thus, the deterministic semantics, presented in [3], consists
of all rules of Figure 3 except for the rules or and guess which are replaced
by the deterministic versions of Figure 4. The main difference is that, in the
deterministic versions, all possible successors are listed in the result of =⇒.



Rule Heap Control Stack (Heap × Control × Stack)∗

or Γ e1 or e2 S =⇒ (Γ, e1, S) (Γ, e2, S)

guess Γ [x 7→ x] x f{pk → ek} : S =⇒ (Γ [x 7→ ρ1(p1), yn1 7→ yn1 ], ρ1(e1), S)
...(Γ [x 7→ ρk(pk), ynk 7→ ynk ], ρk(ek), S)

where in guess: pi = ci(xni), ρi = {xni 7→ yni}, and yni fresh

Fig. 4. Deterministic Small-Step Semantics for Functional Logic Programs

With the use of sequences, a search strategy (denoted by “◦”) can be defined
as a function which composes two sequences of goals. The first sequence repre-
sents the new goals resulting from the last evaluation step. The second sequence
represents the old goals which must be still explored. For example, a (left-to-
right) depth-first search strategy (◦d) and a breadth-first search strategy (◦b)
can be specified as follows:

w ◦d v = wv and w ◦b v = vw

A small-step operational semantics (including search) which computes the first
leaf in the search tree w.r.t. a search function ◦ can be defined as the smallest
relation −→ ⊆ Goal∗ ×Goal∗ satisfying

(Expand)
g =⇒ G

g G′ −→ G ◦G′ where g ∈ Goal and G, G′ ∈ Goal∗

The evaluation starts with the initial goal g0 = ([ ], e0, [ ]) where e0 is the ex-
pression to be evaluated. The relation −→ is deterministic and it may reach four
kinds of final states:

Solution: when =⇒ does not yield a successor because the first goal is a solu-
tion, i.e., it has the form (Γ, v, [ ]), where v is the computed value. Further-
more, the computed answer can be obtained from the bindings in Γ for the
variables of the initial expression e0.

Suspension: when =⇒ does not yield a successor because the expression of the
first goal is a rigid case expression with a logical variable in the argument
position. This situation represents a suspended goal and will be discussed in
more detail in the next section.

Fail: when =⇒ does not yield a successor because the value in the case expres-
sion of the first goal does not match any of the patterns.

No more goals: All goals have been explored and there are no solutions.

In order to distinguish the different situations, we add a label to the relation −→
which classifies the leaves of the search tree. The label is computed by means of



the following function:

type(Γ, e, S) =


SUCC if e = v, S = [ ]
SUSP if e = x, S = {pk → ek} : S′, and Γ [x] = x
FAIL if e = c(yn), S = (f){pk → ek} : S′,

and ∀i = 1, . . . , k. pi 6= c(. . .)
EXPAND otherwise

With this function we can now define the complete evaluation of an expression:

(Expand)
g =⇒ G

g G′ EXPAND−→ G ◦G′
(Discard)

g 6=⇒

g G′ type(g)−→ G′

(g ∈ Goal and
G, G′ ∈ Goal∗)

The (decidable) condition g 6=⇒ of rule Discard means that none of the rules
for =⇒ matches. In this case, −→ does not perform an EXPAND step as the
following lemma states (it can be shown by a simple case analysis over =⇒):3

Lemma 1. If g0 −→∗ g G′ and g 6=⇒, then type(g) 6= EXPAND.

Now, one can extract the information of interest from the set of (possibly infinite)
derivations. For example, the set of all solutions is defined by

solutions(g0) = {g | g0 −→∗ g G
SUCC−→ G}.

6 Adding Concurrency

Modern declarative multi-paradigm languages like Curry support concurrency.
This makes multi-threading with communication on shared logical variables pos-
sible. The simplest semantics for concurrency is interleaving, which is usually
defined at the level of a small-step semantics. The definition of a concurrent
natural semantics would be much more complicated because of the additional
don’t-care non-determinism of interleaving.

For the formalization of concurrency, we extend the expressions and stacks in
the goals to sequences of expressions and stacks, i.e., Goal = Heap × (Control ×
Stack)∗. Each element of (Control×Stack)∗ represents a thread and these threads
can non-deterministically perform actions (which is the idea of the interleaving
semantics). New threads are created with the conjunction operator “&” by ex-
tending the sequence with a new thread. The heap is a global entity for all
threads in a goal, thus threads communicate with each other by means of vari-
able bindings in this global heap.

The rules for the concurrent semantics, presented in [3], appear in Figure 5,
where T, T ′ ∈ (Control × Stack)∗. The following possibilities for discarding a
goal are distinguished in the context of the interleaving semantics:

(Fail) A goal fails if one of its threads fails.
(Succ) A goal is a solution if all threads terminate successfully.
(Deadlock) At least one thread suspends and all other threads suspend

or succeed.

3 We write −→∗ for the reflexive and transitive closure of −→ including all labels.



(Expand)
(Γ, e, S) =⇒ (Γ1, e1, S1) . . . (Γn, en, Sn)

(Γ, T (e, S)T ′) : G
EXPAND−→ (Γ1, T (e1, S1)T

′) . . . (Γn, T (en, Sn)T ′) ◦G

(Fork)
−

(Γ, T (e1&e2, S)T ′) : G
EXPAND−→ (Γ, T (e1, S)(e2, S)T ′) ◦G

(Fail)
type(Γ, e, S) = FAIL

(Γ, T (e, S)T ′) : G
FAIL−→ G

(Succ)
∀1 ≤ i ≤ k : type(Γ, ei, Si) = SUCC

(Γ, (e1, S1) . . . (ek, Sk)) : G
SUCC−→ G

(Deadlock)

∀1 ≤ i ≤ k : type(Γ, ei, Si) ∈ {SUCC ,SUSP}
and ∃1 ≤ j ≤ k : type(Γ, ej , Sj) = SUSP

(Γ, (e1, S1) . . . (ek, Sk)) : G
SUSP−→ G

Fig. 5. Concurrent Semantics for Multi-Paradigm Programs

Our concurrent semantics is indeterministic (i.e., don’t-care non-deterministic).
An evaluation represents one trace of the system. During the evaluation of a goal,
several threads may suspend and later be awoken by variable bindings produced
by other threads. Then a step with =⇒ is again possible for the awoken process.
A goal is only discarded in any of the three cases discussed above.

The rule Expand allows computation steps in an arbitrary thread of the first
goal. If such a step is don’t-know non-deterministic, i.e., yields more than one
goal, the entire process structure is copied. Although this is necessary to compute
all solutions, it could be more efficient to perform a non-deterministic step only if
a deterministic step in another thread is not possible. This strategy corresponds
to stability in AKL [14] and Oz [18] and could also be specified in our framework
without any problem.

We conjecture that −→ is confluent up to variable renaming because the
heap can only be extended. If the variable bindings of different threads in the
shared heap clash, then this will happen in any scheduling policy since there is
no committed choice construct.

7 Implementation

Our semantic description does not only provide the theoretical foundation to
reason about lazy functional logic programs, but it can also be used as a ba-
sis to implement interpreters, debuggers, and optimization tools in a high-level
manner. In order to get confidence in the latter aspect, we have implemented an
interpreter for Curry based on the operational description shown in this paper
and a depth-first search strategy. The interpreter is written in Haskell [17] and,
thus, it can be easily adapted to Curry in order to obtain a meta-interpreter
for Curry. The entire implementation consists of a front-end to compile Curry
programs into the flat form introduced in Section 2 and an evaluator for expres-
sions based on our small-step semantics. The implementation of the heap uses



balanced search trees to ensure efficient access and update operations. In addi-
tion to our small-step semantics, the implementation also provides equational
constraints and a garbage collector on the heap to execute larger examples. The
results are quite encouraging. Standard functional programs are executed (using
the Glasgow Haskell compiler) with approximately 24000 reductions per second
on a 1.3 GHz Linux-PC (AMD Athlon with 256 KB cache). For logic programs
involving search more than 2000 non-deterministic steps are executed per sec-
ond. Although our interpreter is much slower than compilers based on back-ends
implemented in low-level (non-declarative) languages, it is comparable to other
meta-interpreters. In particular, it is faster than previous meta-interpreters for
Curry (e.g., [4]) due to an improved handling of variable sharing. Thus, our
implementation can be an appropriate basis for developing further tools like
program optimizers based on partial evaluators, visualization tools, etc.

8 Conclusions and Future Work

We have presented an operational semantics for functional logic languages based
on lazy evaluation with sharing, concurrency, and non-determinism implemented
by some search strategy. Such a semantic description is important for a precise
definition of various constructs of a language, like the combination of set-valued
functions, laziness, and concurrency, as well as tools related to operational as-
pects, like profilers and debuggers. Moreover, we have proved its equivalence with
the natural semantics of [2]. Our semantics provides an appropriate foundation
to define lazy functional logic programming languages like Curry.

In order to obtain a complete operational description of a practical lan-
guage like Curry, one has to add descriptions for solving equational constraints
and evaluating external functions and higher-order applications to the semantics
presented in this paper. This is subject of ongoing work [3].

For future work, we plan to enhance this operational semantics with the
computation of cost information (which is useful, e.g., for profiling [5, 17]). Fur-
thermore, it could be interesting to use our operational semantics as a basis to
develop debugging and optimization tools (like partial evaluators [4]), and to
check or derive new implementations (like in [19]) for Curry.
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