
Forward Slicing of Multi-Paradigm Declarative
Programs Based on Partial Evaluation?

Germán Vidal

DSIC, Technical University of Valencia
Camino de Vera s/n, E-46022 Valencia, Spain

gvidal@dsic.upv.es

Abstract. Program slicing has been mainly studied in the context of
imperative languages, where it has been applied to many software en-
gineering tasks, like program understanding, maintenance, debugging,
testing, code reuse, etc. This paper introduces the first forward slic-
ing technique for multi-paradigm declarative programs. In particular, we
show how program slicing can be defined in terms of online partial eval-
uation. Our approach clarifies the relation between both methodologies
and provides a simple way to develop program slicing tools from existing
partial evaluators.

1 Introduction

Essentially, program slicing [34] is a method for decomposing programs by ana-
lyzing their data and control flow. It has many applications in the field of soft-
ware engineering (e.g., program understanding, maintenance, debugging, merg-
ing, testing, code reuse, etc). This concept was originally introduced by Weiser
[33] in the context of imperative programs. Surprisingly, there are very few ap-
proaches to program slicing in the context of declarative programming (some
notable exceptions are, e.g., [13, 21, 24, 25, 29]). Roughly speaking, a program
slice consists of those program statements which are (potentially) related with
the values computed at some program point and/or variable, referred to as a slic-
ing criterion. Program slices are usually computed from a program dependence
graph [10, 19] that makes explicit both the data and control dependences for
each operation in a program. Program dependences can be traversed backwards
or forwards (from the slicing criterion), which is known as backward or forward
slicing, respectively. Additionally, slices can be dynamic or static, depending on
whether a concrete program’s input is provided or not. A complete survey on
program slicing can be found, e.g., in [30].

The main purpose of partial evaluation techniques is to specialize a given
program w.r.t. part of its input data—hence it is also known as program spe-
cialization. The partially evaluated program will be (hopefully) executed more

? This work has been partially supported by CICYT TIC 2001-2705-C03-01, by the
Generalitat Valenciana under grant CTIDIA/2002/205, and by the MCYT under
grants HA2001-0059, HU2001-0019 and HI2000-0161.

efficiently since those computations that depend only on the known data are
performed—at partial evaluation time—once and for all. Many online partial
evaluation schemes follow a common pattern: given a program and a partial
call, the partial evaluator builds a finite representation—generally a graph—of
the possible executions of the partial call and, then, systematically extracts a
residual program (the partially evaluated program) from this graph. This view
of partial evaluation clearly shows the similarities with program slicing: both
techniques should construct a finite representation of some program execution,
usually with part (or none) of the input data.

In this paper, we present a forward slicing method based on (online) partial
evaluation. While the construction of a graph representing some program exe-
cution is quite similar in both techniques, the extraction of the final program
is rather different. Partial evaluation usually achieves its effects by compressing
paths in the graph and by renaming expressions in order to remove unnecessary
function symbols. Hence, partial evaluation constructs a new, residual program.
In contrast, program slicing should preserve the structure of the original pro-
gram: statements can be (totally or partially) deleted but new statements cannot
be introduced. Following [12], partial evaluators can be classified into the follow-
ing categories:

– monovariant : each function of the original program gives rise to (at most)
one residual function,

– polyvariant : each function of the original program may give rise to one or
more residual functions,

– monogenetic: each residual function stems from one function of the original
program, and

– polygenetic: each residual function may stem from one or more functions of
the original program.

According to this classification, forward slicing can be seen as a particular form
of monovariant and monogenetic partial evaluation (in order to preserve a one-
to-one relation between the functions of the original and residual programs).

Unfortunately, monovariant/monogenetic partial evaluation could be rather
imprecise, thus resulting in an unnecessarily large residual program (i.e., slice).
To overcome this problem, we introduce an extended operational semantics to
perform partial evaluations, which helps us to preserve as much information as
possible while maintaining the monovariant/monogenetic nature of the process.
In order to center the discussion, we present our developments in the context of
a multi-paradigm declarative language which integrates features from functional
and logic programming (like, e.g., Curry [17] or Toy [22]).

The main contributions of this work are the following: (1) We define the first
forward slicing technique for functional logic programs. Moreover, the applica-
tion of our developments to pure (lazy) functional programs would be straight-
forward, since either the syntax and the underlying (online) partial evaluators
(e.g., positive supercompilation [28]) share many similarities. (2) Our method is
defined in terms of an existing partial evaluation scheme; therefore, it is easy to
implement by adapting current partial evaluators. Furthermore, we do not need

to consider separately static/dynamic slicing, since partial evaluation naturally
accepts partially instantiated calls. (3) Our approach helps us to clarify the re-
lation between (forward) slicing and (online) partial evaluation. Also, we discuss
several possibilities to perform backward slicing by extending our developments.

This paper is organized as follows. In the next section we introduce some foun-
dations for understanding the subsequent developments. Section 3 introduces
the forward slicing technique. First, we recall the narrowing-driven approach to
partial evaluation (Sect. 3.1); then we introduce an algorithm for computing
program dependences by partial evaluation (Sect. 3.2); finally, we present our
method to extract program slices (Sect. 3.3). Section 4 discusses two possible
extensions of the scheme in order to perform backward slicing. Finally, we report
in Sect. 5 an implementation of our program slicing tool and conclude in Sect. 6
with a comparison to related work. More details and proofs of all technical results
can be found in [32].

2 Foundations

Recent proposals for multi-paradigm declarative programming (including fea-
tures from the functional, logic and concurrent paradigms) consider inductively
sequential rewrite systems [6] as source programs and a combination of needed
narrowing [7] (the counterpart of call-by-name evaluation) and residuation as
operational semantics [14]. In actual implementations, e.g., the PAKCS envi-
ronment [15] for Curry [17], programs may also include a number of additional
features: calls to external (built-in) functions, concurrent constraints, higher-
order functions, overlapping left-hand sides, guarded expressions, etc. In order
to ease the compilation of programs as well as to provide a common interface for
connecting different tools working on source programs, a flat representation for
programs has recently been introduced. This representation is based on the for-
mulation of [16] to express pattern-matching by case expressions. The complete
flat representation is called FlatCurry [15, 17] and is used as an intermediate
language during the compilation of source programs.

In order to simplify the presentation, we will only consider the core of the
flat representation. Extending the developments in this work to the remaining
features is not difficult and, indeed, the implementation reported in Sect. 5 covers
most of the additional features. The syntax of flat programs is summarized in
Fig. 1, where on stands for the sequence of objects o1, . . . , on. We consider the
following domains:

x, y, z ∈ X (variables) a, b, c ∈ C (constructor symbols)
f, g, h ∈ F (defined functions) e1, e2, . . . ∈ E (expressions)
t1, t2, . . . ∈ T (terms) v1, v2, . . . ∈ V (values)

The only difference between terms and expressions is that the latter may con-
tain case expressions. We say that a term is operation-rooted (resp. constructor-
rooted) if it has a defined function symbol (resp. a constructor symbol) at the
outermost position. Values are terms in head normal form, i.e., variables or

R ::= D1 . . . Dm (program) t ::= x (variable)
D ::= f(xn) = e (rule) | c(tn) (constructor call)
e ::= t (term) | f(tn) (function call)

| case x of {pm → em} (rigid case) p ::= c(xn) (flat pattern)
| fcase x of {pm → em} (flexible case)

Fig. 1. Syntax of Flat Programs

constructor-rooted terms. A program R consists of a sequence of function defi-
nitions D such that each function is defined by a single rule whose left-hand side
contains only different variables as parameters. The right-hand side is an expres-
sion e composed by variables, constructors, function calls, and case expressions
for pattern-matching. The general form of a case expression is:1

(f)case x of {c1(xn1) → e1; . . . ; cm(xnm
) → em}

where x is a variable, c1, . . . , cm are different constructors of the type of x, and
e1, . . . , em are expressions (possibly containing nested (f)case’s). The variables
xni are local variables which occur only in the corresponding subexpression ei.
The difference between case and fcase only shows up when the argument, x, is
a free variable (within a particular computation): case suspends—which corre-
sponds to residuation, i.e., pure functional reduction—whereas fcase nondeter-
ministically binds this variable to a pattern in a branch of the case expression—
which corresponds to either narrowing [7] and driving [31]. Note that our func-
tional logic language mainly differs from typical (lazy) functional languages in
the presence of flexible case expressions.

Example 1. Consider the well-known function app to concatenate two lists. It
can be defined in the flat representation as follows:2

app x y = case x of { [] → y ;
(z : zs) → z : app zs y }

where [] denotes the empty list and x : xs a list with first element x and tail xs.

An automatic transformation from source (inductively sequential [6]) programs
to flat programs is introduced in [16]. Translated programs always fulfill the
following restrictions: case expressions in the right-hand sides of program rules
appear always in the outermost positions (i.e., there is no case expression inside a
function or constructor call) and all case arguments are variables, thus the syntax
of Fig. 1 is general enough for our purposes. We shall assume these restrictions
on flat programs in the following.

1 We write (f)case for either fcase or case.
2 Although we consider in this work a first-order representation, we use a curried

notation in concrete examples (as it is common practice in functional languages).

3 Forward Slicing

This section presents a forward slicing technique based on (online) partial eval-
uation. In our context, any program expression may play the role of slicing
criterion. Therefore, we do not need to distinguish between dynamic and static
slicing, it only depends on the degree of instantiation of the slicing criterion.
Given a program and a (possibly incomplete) call—the slicing criterion—, we
return a program slice containing those parts of the original program which are
reachable from the slicing criterion, i.e., which are needed to evaluate the slicing
criterion. Functions in the slice should belong to the original program, although
we accept the removal of alternatives in case expressions and the elimination of
(unnecessary) function calls.

Example 2. Let us consider the following simple program:

foo x y z = fst (len (app x y), snd z)
len x = case x of { [] → Z; (y:ys) → Succ (len ys) }
app x y = case x of { [] → y; (z:zs) → z:app zs y }
fst (x,y) = x
snd (x,y) = y

where natural numbers are build from constructors Z and Succ. Function “foo”
computes the length of the list resulting from the concatenation of its two first
arguments. The unnatural definition of this function will be useful to illustrate
the effects of program slicing. Standard functions “len”, “app”, “fst”, and
“snd” return, respectively, the length of a list, the concatenation of two lists,
the first element of a tuple, and the second element of a tuple. Let us consider
that the slicing criterion is the expression “foo [] y z”. Then the computed slice
should be as follows:

foo x y z = fst (len (app x y), >)
len x = case x of { [] → Z; (y:ys) → Succ (len ys) }
app x y = case x of { [] → y }
fst (x,y) = x

Here, the second alternative of the case expression in the right-hand side of
function “app” has been removed, since it is not needed to execute the slic-
ing criterion. Also, the evaluation of the call to “snd” in the right-hand side of
function “foo” is not needed—the outermost function, “fst”, only demands the
evaluation of the first component of the tuple—and, thus, it has been replaced
by >, a special symbol denoting that some subterm is missing due to the slic-
ing process. Since function “snd” is no longer necessary, its definition has been
completely deleted. Note that this slice could not be constructed by using a sim-
ple graph of functional dependencies (e.g., function “snd” depends on function
“foo” but it does not appear in the computed slice).

Usually, slicing criteria are program calls whose execution traces we are inter-
ested in (e.g., to correct a bug or to extract a program fragment which we want
to reuse in another context).

As discussed in the introduction, our developments rely on the fact that
forward slicing can be regarded as a form of monovariant/monogenetic partial
evaluation. This requirement is necessary in order to ensure that there is a one-to-
one relation between the functions of the original and residual programs, which is
crucial to produce a fragment of the original functions rather than a specialized
version. Basically, the following two points should be taken into account:

– Since monovariant/monogenetic partial evaluation propagates information
poorly, we need a carefully designed operational mechanism which avoids
the loss of information (i.e., program dependences) as much as possible.

– The extraction of residual rules should be modified in order to ensure that
the residual program is always a fragment of the original one.

The rest of this section introduces our program slicing technique based on an
appropriate extension of a monovariant/monogenetic partial evaluator. We pro-
ceed in a stepwise manner: first, we recall an online partial evaluation scheme;
then we modify the kernel of this algorithm in order to compute program de-
pendences; finally, we present a method to construct the desired program slice
from the computed program dependences.

3.1 Monovariant/Monogenetic Partial Evaluation

In this section, we recall the main algorithm of narrowing-driven partial evalua-
tion [3, 4]. Essentially, it proceeds by iteratively unfolding a set of function calls,
testing the closedness of the unfolded expressions, and adding to the current
set those calls (in the derived expressions) which are not closed. This process
is repeated until all the unfolded expressions are closed, which guarantees the
correctness of the transformation process [5], i.e., that the resulting set of ex-
pressions covers all the possible computations for the initial call. This iterative
style of performing partial evaluation was first described by Gallagher [11] for
the partial evaluation of logic programs. The computation of a closed set of ex-
pressions can be regarded as the construction of a graph with all the program
points which are reachable from the initial call. Intuitively, an expression is closed
whenever its maximal operation-rooted subterms (function calls) are instances
of the already partially evaluated terms. Formally, the closedness condition is
defined as follows:

Definition 1. Let E be a finite set of expressions. We say that an expression e
is closed w.r.t. E (or E-closed) iff one of the following conditions hold:

– e is a variable;
– e = c(e1, . . . , en) is a constructor call and e1, . . . , en are recursively E-closed;
– e = (f)case e′ of {pk → ek} is a case expression and e′, e1, . . . , ek are re-

cursively E-closed;
– e is operation-rooted, there is an expression e′ ∈ E, a matching substitution

σ, with e = σ(e′), and for all x 7→ e′′ ∈ σ, e′′ is recursively E-closed.

Input: a program R and a term t
Output: a residual program R′

Initialization: i := 0; E0 := {t}
Repeat

E′ := unfold(Ei,R);
Ei+1 := abstract(Ei, E

′);
i := i + 1;

Until Ei = Ei−1 (modulo renaming)
Return:

R′ := build residual program(Ei,R)

Fig. 2. Narrowing-Driven Partial Evaluation Procedure

The basic partial evaluation procedure is shown in Fig. 2. The operator unfold
takes a program and a set of expressions, computes a finite set of (possibly in-
complete) finite derivations, and returns the set of derived expressions. Function
abstract is used to properly add the new expressions to the current set of (to
be) partially evaluated expressions. The main loop of the algorithm can be seen
as a pre-processing stage whose aim is to find a closed set of expressions. Note
that no residual rules are actually constructed during this phase. Only when a
closed set of expressions is eventually found, residual rules are built (usually, by
applying one more time the unfolding operator, followed by a post-processing of
renaming and some post-unfolding transformations).

Basically, a monovariant/monogenetic partial evaluation algorithm can be
designed from the procedure in Fig. 2 by imposing several restrictions:

1. Expressions in the current set should be operation-rooted terms without
nested function calls (i.e., of the form f(tn), where f is a defined function
symbol and t1, . . . , tn are constructor terms). This is necessary to ensure
that partial evaluation is monogenetic.

2. The unfolding operator should perform only a one-step evaluation of each
call. This condition is required to guarantee that no reachable function is
hidden by the unfolding process.

3. Finally, the abstraction operator should ensure that the current set of terms
contains at most one term for each function symbol. In this way, we enforce
the monovariant nature of the partial evaluation process.

A trivial partial evaluator fulfilling the above restrictions could proceed by flat-
tening all terms containing nested function symbols and by replacing those
terms rooted by the same function symbol with some appropriate generaliza-
tion (e.g., their most specific generalization). For instance, a term of the form
“len (app [] [])” would be replaced by the terms “len y” and “app [] []”.
However, this naive treatment would imply a serious loss of precision, e.g., the
fact that len is only called with the result of “app [] []” (an empty list).

To avoid this loss of precision, we drop the first restriction above, i.e., we
consider arbitrary operation-rooted terms (possibly) containing nested function

calls. Also, we extend the partial evaluation mechanism in order to work on states
rather than on expressions. States have the form 〈e, S〉, where e is the expression
to be evaluated and S is the stack (a list) which represents the current “evalua-
tion context”.3 The empty stack is denoted by []. An important property of our
flat language is that it evaluates function calls lazily: an expression containing
nested function calls is evaluated by first unfolding the outermost function; in-
ner function calls are only evaluated on demand, i.e., when they appear as the
argument of some case expression. For instance, “len (app [] [])” is unfolded to
“case (app [] []) of {. . .}”; then the evaluation of function “len” cannot continue
until the inner call to “app” is reduced to a value. Unfortunately, this interleaved
evaluation is problematic in our context since it would give rise to a polygenetic
partial evaluation. In contrast, we should perform a complete one-step unfold-
ing of each function call separately (i.e., a function unfolding followed by the
reduction of all the case structures in the unfolded expression). Here, the stack
becomes relevant in order to store outer function calls until a complete one-step
unfolding is possible. The next section introduces an extended semantics which
is appropriate to deal with states.

3.2 Computing Program Dependences

In our context, the computation of program dependences boils down to comput-
ing the set of functions which are reachable from the slicing criterion, i.e., the
functions which are needed to evaluate the slicing criterion. For this purpose, we
introduce the extended operational semantics of Fig. 3. Let us briefly explain the
rules of this operational semantics. Rule select is used to select the appropriate
branch and continue with the evaluation of this branch. When the argument of
a case expression is a free variable, rule guess is used to non-deterministically
choose one alternative and continue with the evaluation of this branch; thus,
the resulting calculus becomes non-deterministic as well. Rule flatten is used to
avoid the unfolding of those (operation-rooted) terms whose unfolding would
demand the evaluation of some inner call. In this case, we delay the function
unfolding and continue evaluating the demanded inner call. Auxiliary function
flat is used to flatten these states. Here, we use subscripts in the arrows to indi-
cate the application of some concrete rule(s). Function flat proceeds as follows:
When the expression in the input state can be reduced by using rules select and
guess to a case expression with a function call in the argument position (which
is thus demanded), function flat returns a new state whose first component is
the demanded call, g(t′m), and whose stack is augmented by adding a new pair
(f(tn)[g(t′m)/x], x). Here, f(tn)[g(t′m)/x] denotes the term obtained from f(tn)
by replacing the selected occurrence of the inner call, g(t′m), with a fresh variable
x. This pair contains all the necessary information to reconstruct the original
expression once the inner call is evaluated to a value (in rule replace). Rule fun
performs a simple function unfolding when rule flatten does not apply, i.e., when

3 Similar operational semantics which make use of a stack can be found in [2, 27].

(select) 〈 (f)case c(tn) of {pk → ek}, S 〉 =⇒ 〈 ρ(ei), S 〉
if pi = c(xn) and ρ = {xn 7→ tn} for some i ∈ {1, . . . , k}

(guess) 〈 (f)case x of {pk → ek}, S 〉 =⇒ 〈 ρ(ei), S 〉
if ρ = {x 7→ pi} for all i = 1, . . . , k

(flatten) 〈 f(tn), S 〉 =⇒ 〈 g(t′m), Sf 〉
if flat(f(tn), S) = 〈g(t′m), Sf 〉

(fun) 〈 f(tn), S 〉 =⇒ 〈 ρ(e), S 〉
if flat(f(tn), S) = ⊥, f(xn) = e ∈ R, xn are fresh, and ρ = {xn → tn}

(replace) 〈 v, (f(tn), x) : S 〉 =⇒ 〈 ρ(f(tn)), S 〉
if v is a value and ρ = {x 7→ v}

where flat(〈f(tn), S〉) = if ρ(e) =⇒∗
select/guess (f)case g(t′m) of { . . . }

then 〈g(t′m), (f(tn)[g(t′m)/x], x) : S〉
else ⊥

with f(xn) = e ∈ R, xn fresh, and ρ = {xn → tn}

Fig. 3. Extended Operational Semantics

function flat returns ⊥. Finally, rule replace allows us to retake the evaluation of
some delayed function call once the demanded inner call is reduced to a value.

The extended operational semantics behaves almost identically to the stan-
dard semantics for flat programs of [16]. There are, though, two slight differences:

– In the standard semantics, rigid case expressions with a free variable in
the argument position suspends. In our case, rule guess proceeds with their
evaluation as if they were flexible. This is motivated by the fact that we may
have incomplete information; hence, in order to be on the safe side (and do
not miss any reachable function), we should consider all the alternatives of
rigid case expressions.

– The order of evaluation is changed. In our extended semantics, we delay
those function unfoldings which cannot be followed by the reduction of all
the case expressions in the corresponding right-hand side.

In spite of these differences, both calculi trivially produce the same results for
input expressions involving no suspension. The relevance of the extended seman-
tics stems from the fact that computations can now be split into a number of
consecutive sequences of steps of the form:

=⇒∗
flatten =⇒fun=⇒∗

select/guess︸ ︷︷ ︸
seq 1

=⇒∗
replace=⇒∗

flatten =⇒fun=⇒∗
select/guess︸ ︷︷ ︸

seq 2

=⇒∗
replace . . .

where each subsequence, seq i, represents a complete one-step evaluation of some
function call. From these sequences, a monogenetic/monovariant partial evalua-
tion scheme can easily be defined (and, thus, our program slicing technique). Let

Input: a program R and an operation-rooted term t
Output: a set of states S
Initialization: i := 0; S0 := {〈t′, S〉}, where 〈t, []〉 =⇒∗

flatten 〈t′, S〉 6=⇒flatten

Repeat
S ′ := unfold(Si,R);
Si+1 := abstract(Si,S ′);
i := i + 1;

Until Si = Si−1 (modulo renaming)
Return: S := Si

Fig. 4. Computation of Reachable Program Points

us note that our operational semantics could also be a good candidate to develop
alternative approaches for computing program dependences (e.g., to develop a
dependency graph analysis based on abstract interpretation).

The algorithm of Fig. 2 is now slightly modified in order to work with states.
The new algorithm (Fig. 4) does not compute a residual program but the set
of states which are reachable from the initial call; note that they are equivalent
to the final set of closed terms computed by the algorithm of Fig. 2 (except
for the fact that terms are represented by states). The new algorithm starts by
flattening the initial term in order to ensure that a complete one-step unfolding
can be performed. We now tackle the definition of appropriate unfolding and
abstraction operators. Our one-step unfolding operator is defined as follows:

unfold(S) =
⋃
s∈S

unf (s)

where

unf (〈t, S〉) = {〈t′, S〉 | 〈t, S〉 =⇒fun 〈t′′, S〉 =⇒∗
select/guess 〈t

′, S〉 6=⇒select/guess}

This unfolding operator always performs a complete one-step unfolding of each
input expression. The associated stack S remains unchanged since only rules
flatten and replace can modify the current stack. Function unf returns a set
of derived states because of the non-determinism of the underlying operational
semantics.

Before defining our abstraction operator, we need the following auxiliary
notion. States returned by the unfolding operator and, then, reduced by rules
replace and flatten are called flattened states. Formally, let s be a state returned
by operator unfold with s =⇒∗

replace/flatten s′ 6=⇒. Then s′ is called a flattened
state. Flattened states have a particular form, as stated by the following lemma:

Lemma 1. Let s be a flattened state. Then s has the form 〈v, []〉, where v is a
value, or 〈f(tn), S〉, where f(tn) is an operation-rooted term.

In order to add new states to the current set of states, our abstraction operator
proceeds as follows:

abstract(S, {s1, . . . , sn}) = abs(abs(. . . abs(S, s′1) . . . , s′n−1), s
′
n)

where:

si =⇒∗
replace/flatten s′i 6=⇒replace/flatten (for all i = 1, . . . , n)

Basically, function abstract starts by flattening the input states by applying
(zero or one steps of) rule replace, followed by (zero or more steps of) rule
flatten. Function abs is defined inductively on the structure of flattened states
(according to Lemma 1):

abs(S, 〈x, []〉) = S
abs(S, 〈c(tn), []〉) = abstract(S,S ′)

if t′m are the maximal operation-rooted subterms of c(tn) and S ′ = {〈t′m, []〉}
abs(S, 〈f(tn), S〉) =

S ∪ {〈f(tn), S〉} if 6 ∃〈f(t′n), S′〉 ∈ S
S else if 〈f(tn), S〉 is S-closed
abstract(S∗,S ′′) otherwise, where 〈f(t′n), S′〉 ∈ S,

msg(〈f(t′n), S′〉, 〈f(tn), S〉) = (〈f(t′′n), S′〉,S ′′),
and S∗ = (S \ {〈f(t′n), S′〉}) ∪ {〈f(t′′n), S′〉}

Informally speaking, function abs determines the corresponding action depend-
ing on the first component of the new state. If it is a variable, we discard the state.
If it is constructor-rooted, we try to (recursively) add the maximal operation-
rooted subterms. If it is a function call, then we have three possibilities:

– If there is no call to the same function in the current set, the new state is
added to the current set of states.

– If there is a call to the same function in the current set, but the new call is
closed w.r.t. this set, it is discarded.

– Otherwise, we generalize the new state and the existing state with the same
outermost function—which is trivially unique by definition of abstract—and,
then, we try to (recursively) add the states computed by function msg.

The notion of closedness is easily extended from expressions to states: a state
〈t, S〉 is closed w.r.t. a set of states S iff S[t] is T -closed (according to Def. 1),
with T = {S′[t′] | 〈t′, S′〉 ∈ S}. Here, S[t] denotes the term represented by 〈t, S〉,
i.e., inner calls are moved back to their positions in the outer calls of the stack.
For instance, given the state 〈t, S〉 = 〈y, [(len x2, x2), (fst (x1, snd z), x1)]〉,
we have S[t] = fst (len y, snd z).

The operator msg on states is defined as follows. First, we recall the standard
notion of msg on terms: a term t is a generalization of terms t1 and t2 if both
t1 and t2 are instances of t; furthermore, term t is the msg of t1 and t2 if t is a
generalization of t1 and t2 and, for any other generalization t′ of t1 and t2, t is
an instance of t′. Now, the msg of two states is defined by

msg(〈t1, S1〉, 〈t2, S2〉) = (〈t, S1〉, calls(σ1) ∪ calls(σ2) ∪ calls(S2))

where msg(t1, t2) = t, and σ1 and σ2 are the matching substitutions, i.e., σ1(t) =
t1 and σ2(t) = t2. The auxiliary function calls returns a set of states of the form
〈t, []〉 for each maximal operation-rooted term t in (the range of) a substitution
or in a stack. The abstraction operator is safe in the following sense:

Lemma 2. Let S be a set of flattened states and S ′ a set of unfolded states (as
returned by unfold). Then the states in S ∪ S ′ are closed w.r.t. abstract(S,S ′).

The above lemma is the key result to ensure the correctness of our approach.
Indeed, it will allow us to prove that the generated slice is executable and that
it contains all the functions which are needed to execute the slicing criterion.

Example 3. Let us consider again the program of Example 2. Given the slicing
criterion “foo [] y z”, the initial set of states is S0 = {〈foo [] y z, []〉}. Now, we
show the sequence of iterations performed by the algorithm in Fig. 4:

S ′0 = {〈fst (len (app [] y), snd z), []〉}
S1 = S0 ∪ {〈app [] y, [(len x2, x2), (fst (x1, snd z), x1)]〉}
S ′1 = S ′0 ∪ {〈y, [(len x2, x2), (fst (x1, snd z), x1)]〉}
S2 = S1 ∪ {〈len y, [(fst (x1, snd z), x1)]〉}
S ′2 = S ′1 ∪ {〈Z, [(fst (x1, snd z), x1)]〉, 〈Succ (len ys), [(fst (x1, snd z), x1)]〉}
S3 = S2 ∪ {〈fst (x3, snd z), []〉}
S ′3 = S ′2 ∪ {〈x3, []〉} and S4 = S3

where S ′i = unfold(Si,R) and Si+1 = abstract(Si,S ′i), for i = 0, . . . , 3. Therefore,
the algorithm returns the following set of states:

S = { 〈foo [] y z, []〉, 〈app [] y, [(len x2, x2), (fst (x1, snd z), x1)]〉,
〈len y, [(fst (x1, snd z), x1)]〉, 〈fst (x3, snd z), []〉 }

The total correctness of the algorithm in Fig. 4 is stated in the following theorem:

Theorem 1. Given a flat program R and an initial term t, the algorithm in
Fig. 4 terminates computing a set of states S such that 〈t, []〉 is S-closed.

3.3 Extraction of the Slice

The final step of the process consists in the construction of the residual program,
i.e., the program slice. Let us recall that it must be a fragment of the original
program—thus no instantiation of variables is allowed—and produce the same
outputs for the slicing criterion as the original program. Therefore, we can only
remove certain parts of the program: case alternatives which are not reachable
from the slicing criterion as well as (inner) function calls which are not needed
to evaluate the slicing criterion. While case alternatives can simply be discarded,
inner calls which are not needed are replaced by a distinguished symbol > (in
practice, any constant value may play the role of > since the evaluation of such a
subterm will not be required). The interest in producing executable slices comes
from the fact that it facilitates program reuse and, more importantly, it allows us
to apply a number of existing techniques to the computed slice (e.g., debugging,
program analysis, verification, program transformation, etc).

Let us assume that, given a program R and a term t, the algorithm of Fig. 4
returns the set of states S. In principle, we could construct a residual program fol-
lowing the standard narrowing-driven specialization method as follows: for each

state 〈t, S〉 ∈ S, we produce a residual rule S[t] = S[t′] (we ignore here the renam-
ing of expressions), where 〈t, S〉 =⇒fun 〈t′′, S〉 =⇒∗

select/guess 〈t
′, S〉 6=⇒select/guess.

The residual program constructed in this way would be correct in the sense
that any computation for t in R could also be performed in the residual pro-
gram. In general, however, the residual program would not be a fragment of the
original one since the left-hand sides of residual rules may contain non-variable
arguments (even nested function calls). Therefore, we proceed as follows:

– Firstly, residual rules are constructed only for the first components of the
states in S. This is safe in our approach because the “context” (recorded
in the stack) is not used when performing a complete one-step evaluation;
moreover, if the evaluation of some call in the stack is required, it will appear
in the first component of some other state.

– Secondly, we slightly change the rules of Fig. 3 so that only some case al-
ternatives can be removed (if they are not reachable) but the case structure
remains.

– Finally, in order to avoid the instantiation of variables, the new rules main-
tain separately the program expression being reduced and the bindings for
the program variables.

The slice built in this way is appropriate when the extended operational semantics
of Fig. 3 is considered. Unfortunately, this is no longer true under the standard
operational semantics when the program contains non-terminating functions.
Consider, for instance, the following program rules:

g x = g x f x = case x of { [] → [] }
Given the initial term “f (g x),” whose flattening is 〈g x, [(f y, y)]〉, the algorithm
of Fig. 4 returns the final set {〈g x, [(f y, y)]〉} since the evaluation of “f y” is
not required. Therefore, the computed slice would be the rule g x = g x. Under
the extended semantics, the initial state 〈f (g x), []〉 performs exactly the same
steps in both the original program and the computed slice. However, under the
standard semantics (where outer function calls are not delayed), the initial term
“f (g x)” is reduced to “case (g x) of {[] → []}” (and then enters into an infinite
loop) which is not possible in the slice. In order to have a complete equivalence
w.r.t. the standard semantics, we also need to add residual definitions for those
functions in the stacks which are not closed w.r.t. the set of first components of
the states in S. The following auxiliary function returns all the relevant terms:

residual calls(S) = TS ∪ {t′ | 〈t, S〉 ∈ S, t′ ∈ calls(S), and t′ is not TS -closed}

where S is the set of states returned by the algorithm of Fig. 4 and

TS = {t | 〈t, S〉 ∈ S}

The program slice is then computed by using the following function:

build slice(T) = if T = { } then { } else {f(xn) = e′} ∪ build slice(T ′)
where T = {f(tn)} ∪ T ′, f(xn) = e ∈ R, yn are fresh,

ρ = {yn 7→ tn}, and [[e]]ρ −→∗ e′ 6−→

Rule Expr −→ Expr

var [[x]]ρ −→ x
cons [[c(tn)]]ρ −→ c([[t1]]ρ, . . . , [[tn]]ρ)
select [[(f)case x of {pk → ek}]]ρ −→ (f)case x of {pi → [[ei]]ρ

′}
guess [[(f)case x of {pk → ek}]]ρ −→ (f)case x of {pk → [[ek]]ρk}
fun [[f(tn)]]ρ −→ f([[t1]]ρ, . . . , [[tn]]ρ)
remove [[f(tn)]]ρ −→ >

where in select: ρ(x) = c(tn), pi = c(xn), ρ′ = {xn 7→ tn} ◦ ρ, and i ∈ {1, . . . , k}
guess: ρ(x) ∈ X , ρi = {x 7→ pi} ◦ ρ, and i ∈ {1, . . . , k}
fun: ρ(f(tn)) is closed w.r.t. residual calls(S)
remove: ρ(f(tn)) is not closed w.r.t. residual calls(S)

Fig. 5. Simplified Unfolding Rules

In order to extract the program slice, function build slice is called with the result
of function residual calls, i.e., the initial call is as follows:

build slice(residual calls(S))

where the set S is the output of the algorithm in Fig. 4. The new calculus
which is used to construct the rules of the slice is depicted in Fig. 5. First, note
that the symbols “[[” and “]]” in an expression like [[e]]ρ are purely syntactical,
i.e., they are only used to mark subexpressions where the inference rules may
be applied. The substitution ρ is used to store the bindings for the program
variables. Let us briefly explain the rules of the new calculus. Rule var simply
returns a variable unchanged. Rule cons applies to constructor-rooted terms; it
leaves the constructor symbol and, then, it is (recursively) applied to inspect
the arguments. Rules select and guess proceed similarly to their counterpart in
Fig. 3 but leave the case structure; the substitution ρ is used to check the current
value of the case argument. We only deal with variable case arguments since the
considered expression is the right-hand side of some program rule (see Fig. 1).
Note that rule guess is now deterministic (and, thus, the entire calculus). Finally,
rules fun and remove are used to reduce function calls: when the function call is
closed w.r.t. residual calls(S), we proceed as in rule cons; otherwise, we return
> (which means that the evaluation of this function call is not needed).

The following example illustrates the computation of a program slice.

Example 4. Let us consider the set of states computed in Example 3. From this
set, function residual calls returns the set of terms:

{foo [] y z, app [] y, len y, fst (x, snd z)}

Now, we construct a residual rule for each term of the set. For “foo [] y z,”
the residual rule is: “foo x y z = fst (len (app x y),>),” since the following
derivation is possible (with ρ = {x 7→ []}):

[[fst (len (app x y), snd z)]]ρ −→∗
fun fst (len (app [[x]]ρ [[y]]ρ), [[snd z]]ρ)

−→∗
var fst (len (app x y), [[snd z]]ρ)

−→remove fst (len (app x y),>)

By constructing a residual rule associated to each of the remaining terms, the
computed slice coincides with the one which is shown in Example 2.

The computed slice is executable and contains all the functions which are needed
to evaluate the slicing criterion. This property is inherited by the correctness of
the underlying partial evaluation process.

Theorem 2. Let R be a flat program and t a term. Let S be a set of states
computed by the algorithm in Fig. 4 from R and t. Then t computes the same
values in R and in build slice(residual calls(S)).

This section has shown the definition of a practical forward slicing technique
based on a partial evaluation scheme. In the next section, we discuss several
possibilities to design a backward slicing method following a similar style.

4 Backward Slicing

In this section, we informally explain how the scheme presented so far could be
extended in order to perform (static/dynamic) backward slicing. In principle,
backward slicing can be seen from two different perspectives (in either case, we
consider that the program contains a distinguished function, main, which is used
to start the execution of the program):

Type I: A naive approach to backward slicing implies extracting those state-
ments of the original program that may reach the slicing criterion, when the
program is executed starting at function main.

Type II: A different notion of backward slicing has been introduced in [24] to
perform program slicing of functional programs. In this work, the slicing
criterion is some part of the output of function main (described by means
of a projection). Then the method extracts those program statements which
are needed to compute the desired fragment of the output.

A naive approach to Type I backward slicing can easily be defined from the
technique presented so far. Currently, the algorithm in Fig. 4 only computes the
set of reachable function calls, starting at the slicing criterion. Now, we should
start the algorithm with a call to function main. However, in contrast to the
approach of the previous section, we should explicitly compute the graph of
dependences, i.e., it is not sufficient to have the set of reachable nodes but we
also need the relationships among them. By traversing this graph backwards
(from the slicing criterion), we could easily select the desired nodes and, then,
construct its associated slice (by using the same program extraction method of
Sect. 3.3).

Type II backward slicing is more useful but also more complex. Nevertheless,
we could still adapt the previous developments in order to cope with this form

of slicing. Functional logic languages naturally support some form of constraint
solving; indeed, they accept the evaluation of either function calls f(tn) and
equational constraints f(tn) =:= t. In this context, the slicing criterion can be
defined by providing an equational constraint main(tn) =:= t, where t is a term
which contains free variables for those parts of the output which are not relevant
for the slice, and some special values for those parts of the output whose compu-
tation is required. Then the algorithm in Fig. 4 could be adapted to work with
equational constraints and only evaluate those function calls which are needed to
produce the outputs determined by t. The resulting method would share many
similarities with the technique for backward slicing of [24].

These approaches are subject of ongoing work. It would be also interesting
to relate backward slicing with recent approaches to function inversion [1, 26].

5 Implementation

In order to check the practicality of the ideas presented so far, a prototype
implementation of the program slicing tool has been developed.4 In particular,
it has been implemented by adapting an existing partial evaluator for Curry
programs [3]. The resulting tool covers not only the flat programs of Sect. 2, but
source Curry programs (which are automatically translated to the flat syntax).
We accept higher-order functions, overlapping left-hand sides, several predefined
functions, etc; all these features were also available in the underlying partial
evaluator. It required a small implementation effort, i.e., only the underlying
meta-interpreter needed significant changes.

Our slicing tool is able to compute the slice of Example 2, thus it is strictly
more powerful than naive approaches based on graphs of functional dependences.
Preliminary results are quite encouraging. In fact, in contrast to the original
partial evaluator, it can deal with larger programs efficiently; this is mainly due
to the monovariant/monogenetic nature of the basic algorithm, which simplifies
the computation of a closed set of terms.

6 Conclusions and Related Work

This work presents the first approach to forward slicing of multi-paradigm (func-
tional logic) programs. Our developments rely on adapting an online partial
evaluation scheme for such programs. Thus, the implementation of the result-
ing slicing tool can easily be undertaken by adapting existing partial evaluation
tools. Moreover, our approach helps to clarify the relation between program slic-
ing and partial evaluation in a functional logic context. The application of our
developments to pure (lazy) functional programs would be straightforward, since
the considered language is a conservative extension of a pure lazy functional lan-
guage and the (online) partial evaluation techniques are similar (e.g., positive
supercompilation [28]).

4 It is publicly available from http://www.dsic.upv.es/∼gvidal.

As mentioned in the introduction, we found very few approaches to program
slicing in the context of declarative programming. Some exceptions are [13, 21,
24, 25, 29]). Among them, the closest to our work is [24], the only of them which
considers a functional syntax for programs. In contrast to our approach, [24]
defines a backward slicing technique. As in our case, some of his developments
are inspired by previous techniques coming from partial evaluation (like, e.g., [18,
23]). In the context of imperative programs, [8] has shown how forward slicing
can be used to carry out binding-times analyses for imperative programs. Our
approach can be seen as complementary: we show how to use (online) partial
evaluation to perform forward slicing in a declarative context.

Future work includes the definition of appropriate algorithms to perform
backward slicing (as discussed in Sect. 4). It would be also interesting to investi-
gate alternative approaches to program slicing based on abstract interpretation
(e.g., by approximating the operational semantics presented in Sect. 3.2). A dif-
ferent line of research involves the definition of a forward slicing technique for
logic programs by exploiting the similarities between narrowing-driven special-
ization and conjunctive partial deduction [9]. In this context, precision could
be improved by considering refined frameworks for partial deduction like, e.g.,
abstract partial deduction [20]. This topic is subject of ongoing work.

Acknowledgements

We gratefully acknowledge the anonymous referees as well as the participants of
LOPSTR 2002 for many useful comments and suggestions.

References

1. S.M. Abramov and R. Glück. The Universal Resolving Algorithm: Inverse Com-
putation in a Functional Language. In Mathematics of Program Construction.
Proceedings, pages 187–212. Springer LNCS 1837, 2000.

2. E. Albert, M. Hanus, F. Huch, J. Olvier, and G. Vidal. Operational Semantics
for Functional Logic Languages. In Proc. of the Int’l Workshop on Functional
and (Constraint) Logic Programming (WFLP’02), volume 76 of Electronic Notes
in Theoretical Computer Science. Elsevier Science Publishers, 2002.

3. E. Albert, M. Hanus, and G. Vidal. A Practical Partial Evaluation Scheme for
Multi-Paradigm Declarative Languages. Journal of Functional and Logic Pro-
gramming, 2002(1), 2002.

4. E. Albert and G. Vidal. The Narrowing-Driven Approach to Functional Logic
Program Specialization. New Generation Computing, 20(1):3–26, 2002.

5. M. Alpuente, M. Falaschi, and G. Vidal. Partial Evaluation of Functional Logic
Programs. ACM TOPLAS, 20(4):768–844, 1998.

6. S. Antoy. Definitional trees. In Proc. of the 3rd Int’l Conference on Algebraic and
Logic Programming (ALP’92), pages 143–157. Springer LNCS 632, 1992.

7. S. Antoy, R. Echahed, and M. Hanus. A Needed Narrowing Strategy. Journal of
the ACM, 47(4):776–822, 2000.

8. M. Das, T. Reps, and P. Van Hentenryck. Semantic Foundations of Binding-Time
Analysis for Imperative Programs. In Proc. of the Symp. on Partial Evaluation
and Semantics-Based Program Manipulation (PEPM’95), pages 100–110, 1995.

9. D. De Schreye, R. Glück, J. Jørgensen, M. Leuschel, B. Martens, and M.H.
Sørensen. Conjunctive Partial Deduction: Foundations, Control, Algorihtms, and
Experiments. Journal of Logic Programming, 41(2&3):231–277, 1999.

10. J. Ferrante, K.J. Ottenstein, and J.D. Warren. The Program Dependence Graph
and Its Use in Optimization. ACM Transactions on Programming Languages and
Systems, 9(3):319–349, 1987.

11. J. Gallagher. Tutorial on Specialisation of Logic Programs. In Proc. of the
ACM Symp. on Partial Evaluation and Semantics-Based Program Manipulation
(PEPM’93), pages 88–98. ACM, New York, 1993.

12. R. Glück and M.H. Sørensen. A Roadmap to Metacomputation by Supercompila-
tion. In O. Danvy, R. Glück, and P. Thiemann, editors, Partial Evaluation, Int’l
Seminar, Dagstuhl Castle, Germany, pages 137–160. Springer LNCS 1110, 1996.

13. V. Gouranton. Deriving Analysers by Folding/Unfolding of Natural Semantics and
a Case Study: Slicing. In Proc. of SAS’98, pages 115–133, 1998.

14. M. Hanus. A Unified Computation Model for Functional and Logic Programming.
In Proc. of ACM Symp. on Principles of Programming Languages (POPL’97),
pages 80–93. ACM, New York, 1997.

15. M. Hanus, S. Antoy, J. Koj, R. Sadre, and F. Steiner. PAKCS 1.2: The Portland
Aachen Kiel Curry System User Manual. Technical report, University of Kiel,
Germany, 2000.

16. M. Hanus and C. Prehofer. Higher-Order Narrowing with Definitional Trees. Jour-
nal of Functional Programming, 9(1):33–75, 1999.

17. M. Hanus (ed.). Curry: An Integrated Functional Logic Language. Available at:
http://www.informatik.uni-kiel.de/~mh/curry/.

18. J. Hughes. Backwards Analysis of Functional Programs. In Proc. of the Int’l
Workshop on Partial Evaluation and Mixed Computation, pages 187–208. North-
Holland, Amsterdam, 1988.

19. D.J. Kuck, R.H. Kuhn, D.A. Padua, B. Leasure, and M. Wolfe. Dependence Graphs
and Compiler Optimization. In Proc. of the 8th Symp. on the Principles of Pro-
gramming Languages (POPL’81), SIGPLAN Notices, pages 207–218, 1981.

20. M. Leuschel. Program Specialization and Abstract Interpretation Reconciled. In
Proc. of the Joint Int’l Conf. and Symp. on Logic Programming (JICSLP’98), pages
220–234. MIT Press, 1998.

21. M. Leuschel and M.H. Sørensen. Redundant Argument Filtering of Logic Pro-
grams. In Proc. of LOPSTR’96, pages 83–103. LNCS 1207 83–103, 1996.

22. F. López-Fraguas and J. Sánchez-Hernández. TOY: A Multiparadigm Declarative
System. In Proc. of RTA’99, pages 244–247. Springer LNCS 1631, 1999.

23. T. Mogensen. Separating Binding-Times in Language Specifications. In Proc. of 4th
Int’l Conf. on Functional Programming and Computer Architecture (FPCA’89),
pages 12–25. ACM, New York, 1989.

24. T. Reps and T. Turnidge. Program Specialization via Program Slicing. In
O. Danvy, R. Glück, and P. Thiemann, editors, Partial Evaluation. Dagstuhl Cas-
tle, Germany, February 1996, pages 409–429. Springer LNCS 1110, 1996.

25. S. Schoenig and M. Ducasse. A Backward Slicing Algorithm for Prolog. In Proc.
of SAS’96, pages 317–331. Springer LNCS 1145, 1996.

26. J.P. Secher and M.H. Sørensen. From Checking to Inference via Driving and
Dag Grammars. In ACM Workshop on Partial Evaluation and Semantics-Based
Program Manipulation (PEPM’02), pages 41–51. ACM, New York, 2002.

27. P. Sestoft. Deriving a Lazy Abstract Machine. Journal of Functional Programming,
7(3):231–264, 1997.

28. M.H. Sørensen, R. Glück, and N.D. Jones. A Positive Supercompiler. Journal of
Functional Programming, 6(6):811–838, 1996.

29. G. Szilagyi, T. Gyimothy, and J. Maluszynski. Static and Dynamic Slicing of
Constraint Logic Programs. J. Automated Software Engineering, 9(1):41–65, 2002.

30. F. Tip. A Survey of Program Slicing Techniques. Journal of Programming Lan-
guages, 3:121–189, 1995.

31. V.F. Turchin. The Concept of a Supercompiler. ACM Transactions on Program-
ming Languages and Systems, 8(3):292–325, July 1986.

32. G. Vidal. Forward Slicing by Partial Evaluation. Technical report, DSIC, Technical
University of Valencia, 2003. Available from http://www.dsic.upv.es/~gvidal.

33. M.D. Weiser. Program Slices: Formal, Psychological, and Practical Investigations
of an Automatic Program Abstraction Method. PhD thesis, The University of
Michigan, 1979.

34. M.D. Weiser. Program Slicing. IEEE Transactions on Software Engineering,
10(4):352–357, 1984.

