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ABSTRACT
The aim of many program transformers is to improve effi-
ciency while preserving program meaning. Correctness is-
sues have been dealt with extensively. However, very lit-
tle attention has been paid to formally establish the im-
provements achieved by these transformers. In this work,
we introduce the scheme of a narrowing-driven partial eval-
uator enhanced with abstract costs. They are “abstract”
in the sense that they measure the number of basic oper-
ations performed during a computation rather than actual
execution times. Thus, we have available a setting in which
one can discuss the effects of the program transformer in a
precise framework and, moreover, to quantify these effects.
Our scheme may serve as a basis to develop speedup anal-
yses and cost-guided transformers. An implementation of
the cost-augmented specializer has been undertaken, which
demonstrates the practicality of our approach.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors—Optimiza-
tion; I.2.2 [Artificial Intelligence]: Automatic Program-
ming—Program transformation

General Terms
Languages, Performance

1. INTRODUCTION
Program transformation techniques include different meth-

ods whose common goal is to derive correct and efficient
programs. This paper concerns an automatic program trans-
formation called partial evaluation (PE). Basically, a partial
evaluator is a source-to-source program transformer which
takes a program and part of its input data—the so-called
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static data—and returns a specialized version of the origi-
nal program for the given data. The new, residual program
hopefully runs more efficiently than the original program
since those computations that depend only on the static
data have been performed once and for all at PE time.

While correctness issues have been dealt with extensively
in PE, very little effort has been devoted to formally study
the efficiency improvements achieved by this technique. In
this work, we present a novel approach which combines ideas
from PE and (abstract) profiling. In particular, we propose
a PE method enhanced with abstract costs. They are “ab-
stract” in the sense that they count the number of basic op-
erations (e.g., function unfoldings, pattern matchings, etc)
performed during a computation rather than actual execu-
tion times. The output of the enhanced partial evaluator
is a set of residual rules together with the costs of the par-
tial computations which produced such residual rules. This
allows us to determine whether an improvement has been
achieved and, moreover, to quantify this improvement.

To center the discussion, we apply these ideas to a particu-
lar PE framework: the narrowing-driven approach to the PE
of functional logic programs [4, 6]. This framework has been
recently extended to cope with modern implementations of
functional logic programming in [2, 3] by translating source
programs into an intermediate form—called flat representa-
tion [20, 22, 23, 27]—where all the features of these language
implementations can be represented at an adequate level of
abstraction. A partial evaluator which follows the ideas pre-
sented in [2, 3] has been incorporated into the PAKCS [20]
compiler for the multi-paradigm language Curry [22], which
has become the standard in functional logic programming.

The syntax of functional logic programs is closer to that of
pure functional programs (e.g., the syntax of Curry follows
mainly that of the lazy functional language Haskell). De-
spite this, the narrowing-driven PE framework shares more
similarities with unification-based methods for the PE of
logic programs (also known as partial deduction [26]) than to
traditional partial evaluators for functional programs based
on constant propagation [24]. In narrowing-driven PE, the
so-called static/dynamic distinction is hardly present. In-
deed, the “known data” are presented in the form of a par-
tially instantiated call. Another significant feature of this
framework is its ability to improve programs even when no
input data are provided, e.g., when the input to the PE pro-
cedure is a function call of the form f(x1, . . . , xn) where all
the arguments are variables. In this case, narrowing-driven
PE is often able to produce a new, residual function f ′ which
is equivalent to f but more efficient, since all computations



that are independent of the values of the input variables can
be precomputed in f ′. In fact, narrowing-driven PE is able
to achieve some form of composition and tupling automati-
cally [6]. These remarks also apply to several PE methods
for logic programs (e.g., partial deduction [26] and conjunc-
tive partial deduction [14]) as well as to some (on-line) PE
methods for functional programs (like supercompilation [31],
generalized partial computation [15], and positive supercom-
pilation [30], the closest to our framework [4, 6]).

As a starting point, we extend the standard semantics for
functional logic programs in flat form—the LNT calculus
[21]—with abstract costs. Our abstract costs are based on
the cost criteria introduced in [1, 11] to measure the cost
of functional logic computations: the number of steps, the
number of pattern matching operations, and the number
of applications. The resulting cost-augmented semantics is
similar to the one introduced in [5] for performing source-
level abstract profiling. Nevertheless, here we do not con-
sider the attribution of costs to so-called “cost centers” but
attribute all costs to a single cost center associated to the
entire computation. Thus, our calculus is notably simplified.
Basically, the enhanced semantics mimics the LNT calculus
but additionally computes the abstract costs attributed to a
particular computation. In contrast to [1, 11], we define our
cost semantics for flat programs. This makes our approach
more practically applicable, since actual implementations of
functional logic languages use a flat representation as an
intermediate language and, thus, realistic costs should be
gathered at this level.

Narrowing-driven PE constructs residual rules by means
of a residualizing variant of the standard semantics: the
RLNT calculus [2]. Hence, we also define a cost-augmented
version of the RLNT calculus. The relation, in terms of
cost, between the standard and the residualizing semantics
(augmented with costs) is established. Then, we present
the scheme of a narrowing-driven partial evaluator which
uses the cost-augmented RLNT calculus to perform compu-
tations at PE time. Unlike the original framework, the new
partial evaluator returns a set of pairs (r, k), where r is a
residual rule and k is the associated cost. By using the cost
equivalence between the standard and the residualizing se-
mantics, we can reason about the relation, in terms of cost,
between applying the residual rule r and an equivalent com-
putation in the original program. Thus, we can analyze the
cost improvement associated to a particular specialization.

An implementation of the cost-augmented PE scheme has
been undertaken by extending an existing partial evaluator
for Curry programs [3]. Preliminary experiments indicate
that our approach is both practical and useful. We also
sketch the implementation of a simple speedup analysis to
obtain a global measure of the improvement achieved by a
concrete specialization. It is based on detecting the program
loops and computing their associated costs (either in the
original and residual programs).

The structure of the paper is as follows. Section 2 presents
the syntax of the flat representation for programs and Sec-
tion 3 introduces a cost-augmented semantics for these pro-
grams. Then, in Section 4, we define a cost-augmented ver-
sion of the residualizing semantics used to perform compu-
tations at PE time. The overall PE scheme enhanced with
cost information is presented in Section 5. Some details of
the implemented system, together with some preliminary
results, are shown in Section 6. Several related works are

R ::= D1 . . .Dm (program)
D ::= f(xn) = e (rule)
e ::= x (variable)
| c(en) (constructor)
| f(en) (function call)
| case e of {pn → en} (rigid case)
| fcase e of {pn → en} (flexible case)

p ::= c(xn) (flat pattern)

Figure 1: Syntax of Flat Programs

discussed in Section 7 before we conclude in Section 8.

2. THE FLAT LANGUAGE
Recent proposals for multi-paradigm declarative program-

ming (including features from the functional, logic and con-
current paradigms) usually consider inductively sequential
term rewriting systems [9] as source programs and a com-
bination of needed narrowing—the counterpart of call-by-
name evaluation—and residuation as operational semantics
[17]. In actual implementations (e.g., the PAKCS [20] com-
piler for Curry [22]), programs may also include a number
of additional features: calls to external (built-in) functions,
concurrent constraints, higher-order functions, overlapping
left-hand sides, guarded expressions, etc. In order to ease
the compilation of programs as well as to provide a common
interface for connecting different tools working on source
programs, a flat representation for programs has been re-
cently introduced. This representation is based on the for-
mulation of [21] to express pattern-matching by case expres-
sions; the complete flat representation is called FlatCurry
[20, 22, 23, 27] and is used as an intermediate language dur-
ing the compilation of source programs.

To keep things simple, we only present the core of the flat
representation. Extending the developments in this paper
to the remaining features is not difficult and, indeed, the
implementation reported in Section 6 covers all the addi-
tional features. The syntax is presented in Figure 1, where
we write on to denote the sequence of objects o1, . . . , on. We
use x, y, z, . . . for denoting variables, a, b, c, . . . for construc-
tors, and f, g, h, . . . for defined functions or operations. A
program R consists of a sequence of function definitions D
such that each function is defined by one rule whose left-
hand side contains only different variables as parameters.
The right-hand side is an expression e composed by vari-
ables, constructors, function calls, and case expressions for
pattern-matching. The general form of a case expression is:

(f )case e of {c1(xn1)→ e1; . . . ; ck(xnk )→ ek}

where e is an expression, c1, . . . , ck are different construc-
tors of the type of e, and e1, . . . , ek are expressions (possi-
bly containing nested (f)case’s). The variables xni are local
variables which occur only in the corresponding subexpres-
sion ei. The difference between case and fcase only shows
up when the argument e is a free variable: case suspends
(which corresponds to residuation, i.e., pure functional re-
duction) whereas fcase nondeterministically binds this vari-
able to a pattern in a branch of the case expression (which
corresponds to narrowing). Note that our functional logic
language mainly differs from typical (lazy) functional lan-
guages in the presence of flexible case expressions. Functions



defined only by fcase (resp. case) expressions are called flex-
ible (resp. rigid). Thus, flexible functions act as generators
(like predicates in logic programming) and rigid functions
act as consumers.

Example 1. Consider the well-known function app to con-
catenate two lists. It can be defined in our flat representa-
tion by the following definition:1

app x y = fcase x of { [ ] → y ;
(z : zs) → z : app zs y }

where [ ] denotes the empty list and x : xs (alternatively,
[x|xs]) a list with first element x and tail xs.

An automatic transformation from inductively sequential
programs [9] to programs using case expressions is intro-
duced in [21].

3. COST-AUGMENTED SEMANTICS
In this section, we present an operational semantics for

flat programs enhanced with cost information. The standard
semantics for flat programs is defined in terms of the LNT
calculus (Lazy Narrowing with definitional Trees [21]). The
rules of the LNT calculus basically coincide with the rules
depicted in Figure 2 by ignoring cost information.

Our cost-augmented semantics is based on the cost crite-
ria introduced in [1, 11] to measure the cost of functional
logic computations. However, as we mentioned before, we
define our abstract costs at the level of the flat represen-
tation rather than at the level of source programs. The
abstract costs that we consider are: the number of function
unfoldings, the number of case evaluations (to measure the
pattern matching effort), and the number of applications (to
measure the number of allocated cells). In fact, the resulting
cost-augmented semantics is similar to the one introduced
in [5] for performing source-level abstract profiling. There
are, though, two main differences:

• Firstly, the attribution of costs to so-called cost centers
is ignored; here, all costs are attributed to one single
cost center representing the entire computation.

• Secondly, there is no abstract cost to measure the num-
ber of nondeterministic branching points (which re-
sult from the evaluation of flexible case expressions
with a variable argument). This is justified by the fact
that, at PE time, computations are performed with in-
complete information. Thus, counting the number of
branching points would not be fair since, at execution
time, this number may vary depending on the degree
of instantiation of actual calls (see the discussion in
Section 5.1).

The cost-augmented semantics is formalized by the state-
transition rules of Figure 2. The state consists of a tuple
〈k, e〉, where k is the accumulated cost and e is an expres-
sion. An initial state has the form 〈K0, e〉, where K0 is the
empty cost and e is the expression to be evaluated. Costs
are represented by a set of cost variables ∈ {S,C,A}. Thus,
S records the number of steps, C the number of case eval-
uations (or basic pattern matching operations), and A the

1Although we consider in this work a first-order represen-
tation for programs, we use a curried notation in concrete
examples (as usual in functional languages).

number of applications. The one-step transition relation⇒σ

is labeled with the substitution σ computed in the step. Let
us briefly describe the state-transition rules.

The hnf rule can be applied to evaluate expressions in
head normal form (i.e., rooted by a constructor symbol).
It proceeds by recursively evaluating any argument (e.g.,
the leftmost one) which is not a constructor term (i.e., a
term containing only constructor symbols and variables).
Note that there is no rule applicable to evaluate constructor
terms. In this case, the computation stops successfully.

The case select rule simply selects the appropriate branch
of a case expression and continues with the evaluation of this
branch. This step is labeled with the identity substitution
id. The current cost is updated by adding one to cost vari-
able C.

The case guess rule applies when the argument of a flex-
ible case expression is a variable. Then, this rule nondeter-
ministically binds this variable to a pattern in a branch of
the case expression. We additionally label the step with the
computed binding. The current cost is updated by adding
one to cost variable C. Note that there is no rule to evalu-
ate a rigid case expression with a variable argument. This
situation produces a suspension of the evaluation (i.e., an
abnormal termination).

The case eval rule can be only applied when the argu-
ment of the case construct is a function call or another case
construct. Then, it tries to evaluate this expression recur-
sively. If an evaluation step is possible, we return the orig-
inal expression with the argument and the associated cost
updated. The step is labeled with the same substitution
computed from the evaluation of the case argument.

Finally, the fun eval rule performs the unfolding of a func-
tion call. As in proof procedures for logic programming, we
assume that we take a program rule with fresh variables in
each such evaluation step. The current cost k is updated
by adding one to cost variable S and by adding size(e) to
cost variable A, where e is the right-hand side of the ap-
plied rule. Function size counts the number of applications
in an expression and it is useful to quantify memory us-
age. Following [11], given an expression e, a call to size(e)
returns the total number of occurrences of n-ary symbols,
with n > 0, in e, plus their arities. This is coherent, e.g.,
with the implementation described in [10]. Within the flat
syntax, we consider that a case expression with n branches
has arity 2n + 1. For instance, the case expression in the
right-hand side of function app (Example 1) has arity 5;
indeed, it could be written in prefix notation as follows:
case(x, [ ], y, z : zs, x : app zs y).

Arbitrary derivations are denoted by

〈K0, e〉 ⇒∗σ 〈k, e′〉

which is a shorthand for the sequence of steps

〈K0, e〉 ⇒σ1 . . .⇒σn 〈k, e
′〉

with σ = σn ◦ · · · ◦ σ1 (if n = 0 then σ = id). We say
that a derivation 〈K0, e〉 ⇒∗σ 〈k, e′〉 is successful when e′

contains no defined function calls (i.e., it is a constructor
term). Then, we say that e evaluates to e′ with computed
answer σ and associated cost k.

Example 2. Consider the function app of Example 1. Given
the initial state

〈K0, app [1, 2|x] [3]〉



rule 〈cost, expression〉 ⇒ 〈cost, expression〉

hnf 〈k, c(e1, . . . , ei, . . . , en)〉 ⇒σ 〈k′, σ(c(e1, . . . , e
′
i, . . . , en))〉

if ei is not a constructor term and 〈k, ei〉 ⇒σ 〈k′, e′i〉

case select 〈k, (f)case c(en) of {pm → e′m}〉 ⇒id 〈k′, σ(e′i)〉
if pi = c(xn), σ = {xn 7→ en}, and k′ = k[C ← C + 1]

case guess 〈k, fcase x of {pm → em}〉 ⇒σ 〈k′, σ(ei)〉
if σ = {x 7→ pi}, and k′ = k[C ← C + 1]

case eval 〈k, (f)case e of {pm → em}〉 ⇒σ 〈k′, (f)case e′ of {pm → em}〉
if e is a nonvariable expression which is not rooted by a
constructor symbol and 〈k, e〉 ⇒σ 〈k′, e′〉

fun eval 〈k, f(en)〉 ⇒id 〈k′, σ(e)〉
if f(xn) = e ∈ R is a rule with fresh variables,
σ = {xn 7→ en}, and k′ = k[S ← S + 1, A← A+ size(e)]

Figure 2: Cost-augmented LNT calculus

the enhanced LNT calculus computes, among others, the
value [1, 2, 3], with computed answer {x 7→ [ ]} and associ-
ated costs S = 3, C = 3, and A = 45 (with size(e) = 15,
where e is the right-hand side of function app).

Trivially, the cost-augmented semantics of Figure 2 is a con-
servative extension of the original LNT calculus. The search
space and the computed values and answers never depend on
the current costs, so the new semantics does not change the
results produced by a computation. To be precise, given a
cost-augmented LNT derivation 〈K0, e〉 ⇒∗σ 〈k, e′〉, we have
that e⇒∗σ e′ is a standard LNT derivation, and vice versa.

4. COST-AUGMENTED PE
The narrowing-driven PE scheme was originally designed

to use the standard operational semantics to perform com-
putations at PE time [4, 6]. Within this scheme, residual
rules are constructed from partial computations as follows.
Given an expression e and a (possibly incomplete) standard
evaluation e ⇒∗σ e′ computing the substitution σ, we de-
rive a residual rule—a resultant—of the form: σ(e) = e′.
However, the backpropagation of bindings to the left-hand
sides of residual rules (i.e., the instantiation of e by σ), intro-
duces several problems [2]; for instance, the left-hand sides
of resultants may become instantiated, which is not allowed
by the syntax of Figure 1 (where only variable arguments
are accepted in the left-hand sides of the rules). There-
fore, [2, 3] proposed the use of a non-standard, residualizing
semantics to perform partial computations. The main par-
ticularity of the new semantics, the RLNT calculus (which
stands for Residualizing LNT calculus), is that bindings are
not propagated backwards but represented by residual case
expressions with a variable argument.

For instance, given the expression:

fcase x of {0→ 0; 1 : h x y}

the standard semantics (nondeterministically) computes ei-
ther “0” (with associated binding {x 7→ 0}) or “h 1 y” (with
associated binding {x 7→ 1}). On the other hand, the resid-
ualizing semantics leaves the expression unchanged and pro-

ceeds with the evaluation of “h 1 y.” Thus, the residualizing
semantics is deterministic.

In general, our cost-augmented semantics may produce
infinite derivations. At PE time, however, we are only inter-
ested in performing finite (possibly incomplete) derivations.
Thus, some mechanism to ensure termination is required.
In our case, this is the task of the unfolding rule, as we will
see in Section 5.

The enhanced semantics is based on the RLNT calculus
of [2, 3] extended to compute abstract costs. Let us describe
the state transition rules of the enhanced calculus (depicted
in Figure 3). Let us note that the same considerations of
Section 3 about states, derivations, etc., apply here. The
only exception is that the relation ⇒ is not labeled with a
substitution, since the new calculus does not compute bind-
ings, but encode them by means of residual case expressions.

Firstly, note that there is no rule to evaluate terms in
head normal form. This is necessary not to encumber the
formulation of the calculus; otherwise, additional rules to
propagate bindings—in the form of case expressions with
a variable argument—and to accumulate costs between the
arguments of a head normal form become necessary. Let us
mention, though, that this is not a real restriction, since the
calculus is applied iteratively and, thus, the arguments of a
head normal form will be evaluated in the next iteration of
the algorithm (see the PE procedure in Section 5).

While the case select rule remains unchanged, the orig-
inal case guess rule is replaced by two new rules. Rule
case guess1 proceeds as in the standard semantics, but resid-
ualizes the case structure—the “bindings”—rather than per-
forming a nondeterministic branching. Moreover, it applies
the corresponding substitutions to the different alternatives
of the case expression in order to propagate bindings forward
in the computation. As for the cost, we use the construction
alt(km) to denote an alternative between different branches.
For instance, given a state of the form:

〈alt(k1, k2), case x of {p1 → e1; p2 → e2}〉

k1 denotes the costs attributed to e1 while k2 denotes the
costs attributed to e2. Of course, we could follow a simpler



rule 〈cost, expression〉 ⇒ 〈cost, expression〉

case select 〈k, (f)case c(en) of {pm → e′m}〉 ⇒ 〈k′, σ(e′i)〉
if pi = c(xn), σ = {xn 7→ en}, and k′ = k[C ← C + 1]

case guess1 〈k, (f)case x of {pm → em}〉 ⇒ 〈k′, (f)case x of {pm → σm(em)}〉
if k 6= alt(. . .), σi = {x 7→ pi}, ki = k[C ← C + 1], for

all i = 1, . . . ,m, and k′ = alt(km)

case guess2 〈alt(km),(f)case x of {pm → em}〉 ⇒ 〈k′, (f)case x of {pm → e′m}〉
if 〈ki, ei〉 ⇒ 〈k′i, e′i〉, for some i ∈ {1, . . . ,m},
k′ = alt(ki−1, k

′
i, ki+1, . . . , km), and e′j = ej for j 6= i

case of case 〈k, (f)case ((f)case x of {p′n → e′n}) ⇒ 〈k, (f)case x of {p′n → (f)case e′n of {pm → em}}〉
of {pm → e′m}〉

case eval 〈k, (f)case e of {pm → em}〉 ⇒ 〈k′, (f)case e′ of {pm → em}〉
if e is neither a variable, a constructor-rooted term, nor
of the form (f)case x of {. . .}, and 〈k, e〉 ⇒ 〈k′, e′〉

fun eval 〈k, f(en)〉 ⇒ 〈k′, σ(e)〉
if f(xn) = e ∈ R is a rule with fresh variables,
σ = {xn 7→ en}, and k′ = k[S ← S + 1, A← A+ size(e)]

Figure 3: Cost-augmented RLNT calculus

strategy and mark each branch with the current cost, i.e.,

case x of {p1 → 〈k1, e1〉; p2 → 〈k2, e2〉}

However, this will only postpone the creation of alt con-
structs since, at the end, we need to produce standard ex-
pressions with no cost information (in order to produce exe-
cutable residual programs!). Let us notice that we assign the
same cost increment to both the case select and case guess1
rules. Basically, the reason is that the application of rule
case guess1 during PE may correspond to the application
of rule case select at execution time, since runtime expres-
sions are usually more instantiated.

After one application of the previous rule, the new rule
case guess2 applies. It is used to recursively evaluate the
different branches of a case expression with a variable argu-
ment. Depending on the selection strategy, we can simulate
either a depth-first or a breadth-first inspection of the search
space.

Due to the residualization of case structures with a vari-
able argument, a new rule to evaluate nested case expres-
sions (where the inner case has a variable argument) be-
comes necessary. For this purpose, we introduce the rule
case of case, which moves the outer case inside the branches
of the inner one. Similar rules can be found, e.g., in Wadler’s
deforestation [32] and in the driving mechanism [30]. Note
that the current costs remain the same, since no expression
is reduced and the order of evaluation is not changed. Rig-
orously speaking, this rule can be expanded into four rules
(with the different combinations for case and fcase expres-
sions), but we keep the above (less formal) presentation for
simplicity. Observe that the outer case expression may be
duplicated several times, but each copy is now (possibly)
scrutinizing a known value, and so the case select rule can
be applied to eliminate some case constructs.

The remaining rules, case eval and fun eval , are not mod-

ified, except for the fact that the former rule can be only ap-
plied when the argument of the case construct is a function
call or another case construct with a nonvariable argument
(since the case where the inner case has a variable argument
is dealt with in the case of case rule). Of course, the ap-
plication of the fun eval rule may duplicate computations
under a graph-based implementation of narrowing. In this
case, an additional constraint to fire this rule should be the
linearity of the right-hand side e. Although this is not the
case in the calculus of Figure 2, several functional logic im-
plementations (e.g., the PAKCS environment [20]) allow the
sharing of variables and, thus, we should impose this restric-
tion in practical partial evaluators.

Example 3. Consider again the function app of Exam-
ple 1. Given the initial state

〈K0, app (app x y) z〉

the enhanced RLNT calculus computes, for instance, the
following incomplete derivation:

〈K0, app (app x y) z〉

⇒ (fun eval)

〈{S 7→ 1, C 7→ 0, A 7→ 15},
fcase (app x y) of { [ ] → z ;

(y′ : ys′) → y′ : app ys′ z } 〉

⇒ (case eval/fun eval)

〈{S 7→ 2, C 7→ 0, A 7→ 30},
fcase (fcase x of {[ ]→ y; (x′ : xs′)→ x′ : app xs′ y})

of { [ ] → z ;
(y′ : ys′) → y′ : app ys′ z } 〉



⇒ (case of case)

〈{S 7→ 2, C 7→ 0, A 7→ 30},
fcase x of {

[ ] → fcase y of {
[]→ z;
(y′ : ys′)→ y′ : app ys′ z } ;

(x′ : xs′) → fcase (x′ : app xs′ y) of {
[ ]→ z;
(y′ : ys′)→ y′ : app ys′ z } } 〉

⇒ (case guess1 )

〈alt({S 7→ 2, C 7→ 1, A 7→ 30}, {S 7→ 2, C 7→ 1, A 7→ 30}),
fcase x of {

[ ] → fcase y of {
[]→ z;
(y′ : ys′)→ y′ : app ys′ z } ;

(x′ : xs′) → fcase (x′ : app xs′ y) of {
[ ]→ z;
(y′ : ys′)→ y′ : app ys′ z } } 〉

⇒ (case guess2/case select)

〈alt({S 7→ 2, C 7→ 1, A 7→ 30}, {S 7→ 2, C 7→ 2, A 7→ 30}),
fcase x of {

[ ] → fcase y of {
[]→ z;
(y′ : ys′)→ y′ : app ys′ z } ;

(x′ : xs′) → x′ : app (app xs′ y) z } 〉

The following result establishes a precise equivalence be-
tween the cost-augmented standard semantics (Fig. 2) and
its residualizing version (Fig. 3). First, we need the aux-
iliary state transition relation ↪→, which is defined by the
transition rule:

〈alt(km), fcase x of {pm → em}〉 ↪→σ 〈ki, ei〉

where σ = {x 7→ pi} for some i ∈ {1, . . . ,m}. This nondeter-
ministic relation is needed to extract the bindings encoded
by residualized case expressions.

Theorem 1. Let e be an expression, e′ a head normal
form, and R a program in the flat representation. For each
cost-augmented LNT derivation 〈K0, e〉 ⇒∗σ 〈k′, e′〉 in R,
there exists a cost-augmented RLNT derivation 〈K0, e〉 ⇒∗
〈k′′, e′′〉 in R such that 〈k′′, e′′〉 ↪→∗σ 〈k′, e′〉, and vice versa.

Informally speaking, for each cost-augmented LNT deriva-
tion from e to a head normal form e′, computing σ and k′,
there is a cost-augmented RLNT derivation from e to some
e′′ in which the computed substitution σ′ is encoded in e′′ by
case expressions and can be obtained by a (finite) sequence
of ↪→ steps (deriving the same expression e′ and cost k′).

5. THE ENHANCED PE SCHEME
This section describes the development of a narrowing-

driven PE scheme enhanced with cost information. The
narrowing-driven PE framework was first adapted to the flat
syntax of Fig. 1 in [2] and later extended to cover all the ad-
ditional features of the flat representation in [3]. These ideas
gave rise to the first, purely declarative, partial evaluator for
a realistic functional logic language like Curry [22]. Let us
first recall some basic notions about the narrowing-driven
PE procedure for flat programs.

Input: a program R and a set of expressions E
Output: a residual program R′
Initialization: i := 0; E0 := E
Repeat
R′ := unfold(Ei,R);
Ei+1 := add exps(Ei,R′calls);
i := i+ 1;

Until Ei = Ei−1 (modulo renaming)
Return:
R′ = post process(unfold(Ei,R))

Figure 4: Narrowing-Driven PE Procedure

Essentially, narrowing-driven PE proceeds by iteratively
unfolding a set of function calls, testing the closedness of the
unfolded expressions, and adding to the current set those
calls which are not closed. This process is repeated until all
the unfolded expressions are closed (which guarantees the
correctness of the transformation process [6]). Basically, an
expression is closed whenever its maximal operation-rooted
subterms are constructor instances2 of the already partially
evaluated terms (a more relaxed definition of closedness can
be found in [4, 6]). This iterative style of performing PE
was first described by Gallagher [16] for the PE of logic
programs. Several (on-line) transformations, though formu-
lated in a different style, can be easily recast in terms of
Gallagher’s algorithm.

The basic PE procedure can be seen in Figure 4. The op-
erator unfold takes a set of expressions Ei = {en}, computes
a finite set of RLNT derivations, ej ⇒∗ e′j , and returns the
set of residual rules (ej = e′j), for j = 1, . . . , n. In or-
der to ensure the finiteness of RLNT derivations, there exist
a number of well-known techniques in the literature, e.g.,
depth-bounds, loop-checks, well-founded (or well-quasi) or-
derings (see, e.g., [12, 25, 29]). For instance, an unfolding
rule based on the use of the homeomorphic embedding or-
dering was used in the Indy partial evaluator [6].

Function add exps is used to add those expressions in the
right-hand sides e′n of the residual rules which are not closed
w.r.t. Ei to the current set of (to be) partially evaluated
expressions Ei. Here, we denote by R′calls the expressions
in the right-hand sides of the rules of R′. Obviously, the
more expensive part of the algorithm lies in the repeat-until
loop. Finding a closed set of expressions is not an easy task
and, in some cases, it could even be impossible (when the
partially evaluated terms always contain new expressions
which are not closed). More refined procedures, which use
an abstraction operator to ensure the generation of a closed
set of expressions in a finite number of iterations, can be
found in [4, 6].

Therefore, the main loop of the algorithm can be seen as
a pre-processing stage whose aim is to find a closed set of
expressions. Note that no residual rules are actually con-
structed during this phase. Only when a closed set of ex-
pressions has been found, the unfolding operator is applied
one more time in order to construct the associated residual
program. Finally, a post-processing transformation is used
to rename expressions—thus, some useless constructor sym-
bols and repeated variables disappear—and to remove un-

2An expression e is a constructor instance of e′ if σ(e) = e′

and, for all x, σ(x) is a constructor term.



necessary (intermediate) functions—a typical post-unfolding
compression phase [24].

Luckily, cost information need not be propagated along
the whole PE process of Figure 4, but only during the last
stage (the less expensive part of the algorithm). Since the
original RLNT calculus and its cost-augmented version com-
pute the same expressions, we can delay the application
of the cost-augmented calculus to the point where residual
rules are actually constructed. Hence, the main modifica-
tion is to replace the last call to unfold by a new call to
some unfold ′ which uses the cost-augmented RLNT calcu-
lus instead of the original one. As for the post-processing
phase, it is basically extended as follows:

• the renaming of expressions does not affect to the com-
puted costs, thus no extension is necessary;

• the post-unfolding process is managed by properly in-
tegrating the costs of the function used to perform an
unfolding step into the costs of the expression to be
unfolded.

The precise definitions are rather technical but easy (indeed,
they have been incorporated into the prototype implemen-
tation shown in Section 6).

In this way, we obtain a PE scheme which returns a pair:

(R′,K) = post process ′(unfold ′(Ei,R))

where R′ is a sequence of residual rules—a program—and
K is a sequence of costs, one associated to each rule. In par-
ticular, for each rule ri ∈ R′, there is a corresponding cost
ki ∈ K which represents the cost of performing the RLNT
computation which produced the residual rule ri. Moreover,
by using Theorem 1, it can be shown that this cost also coin-
cides with the cost of performing an equivalent LNT deriva-
tion in the original program. The proof scheme is sketched
as follows. Consider an expression σ(e1) and a residual rule
ri = (e1 = e2). Consider also the LNT step

σ(e1) ⇒id σ(e2)

using the residual rule ri, whose associated cost is ki. From
the correctness of the PE scheme, we know that the following
cost-augmented RLNT derivation:

〈K0, σ(e1)〉 ⇒∗ 〈ki, σ(e2)〉

can be computed in the original program; indeed, it performs
the same sequence of steps as the RLNT derivation used to
construct the residual rule ri, hence its associated cost is
ki too. Then, by Theorem 1, we know that there exists a
corresponding cost-augmented LNT derivation

〈K0, σ(e1)〉 ⇒∗θ 〈k′i, e′〉

in the original program, such that 〈ki, σ(e2)〉 ↪→θ 〈k′i, e′〉.
This means that ki correctly represents the costs of all pos-
sible evaluations for σ(e1) in the original program (recorded
with alt constructs; namely, it contains k′i).

Now, in order to compare the cost of performing compu-
tations in the original and residual programs, we introduce
the function cost rule. It allows us to compute the cost asso-
ciated to the application of a residual rule. Given a residual
rule r whose associated cost is k, we compute cost rule(k, r)
as follows:

cost rule(k, r) = cost(k, e′, e′, 0)

where r = (e = e′) and cost(k, e1, e2, c) is equal to

• {S 7→ 1, C 7→ c, A 7→ size(e2)}, if k 6= alt(. . .), and

• alt(cost(km, e′m, e2, c+ 1)), if k = alt(km), and
e1 = (f)case x {pm → e′m}.

Let us informally explain how this function computes the
cost associated to a residual rule:

• the cost structure is the same as that of the cost k,
i.e., there is the same number of alt constructs and in
the same position;

• trivially, the number of steps is always one;

• the number of case evaluations (C) coincides with the
number of residual case expressions;3

• the number of applications is equal to the size of the
entire right-hand side of the residual rule.

Therefore, for each residual rule r, we have an associated
pair of costs, (k, k′), where k is the cost of the RLNT deriva-
tion which produced r and k′ = cost rule(k, r). The in-
tended meaning of (k, k′) is as follows: the application of the
residual rule r has an associated cost k′, while an “equiva-
lent” computation in the original program has an associated
cost k. The computation of cost variation pairs was origi-
nally proposed by [1] for the PE of inductively sequential
rewrite systems based on needed narrowing.

It could be argued that, for each residual rule r, the asso-
ciated cost pair should be (k, k+ k′), since the costs of per-
forming partial computations should be also attributed to
the residual rule. This is true when the specialized program
is executed only once. In general, though, we can assume
that specialized programs will be executed many times and,
thus, we can safely ignore the costs of performing PE.

Example 4. Consider the RLNT derivation shown in Ex-
ample 3. From this derivation, we get the residual rule r:

dapp x y z = fcase x of {
[ ] → fcase y of {

[]→ z;
(y′ : ys′)→ y′ : app ys′ z } ;

(x′ : xs′) → x′ : dapp xs′ y z

}
where app (app x y) z is renamed as dapp x y z. Below, we
have its associated costs k and k′, respectively:

alt({S 7→ 2, C 7→ 1, A 7→ 30}, {S 7→ 2, C 7→ 2, A 7→ 30})

alt({S 7→ 1, C 7→ 1, A 7→ 31}, {S 7→ 1, C 7→ 1, A 7→ 31})

By comparing k and k′—and, more precisely, the second
argument of the alt construct—, it is easy to see that, for
each element of the first input list of dapp x y z, the residual
rule performs half the number of steps and half the num-
ber of case evaluations than the equivalent derivation in the
original program.

From the cost variation pairs, we can easily design a sim-
ple speedup analysis to estimate the global improvement
achieved by a particular specialization. In Section 6, we
present an implementation of the enhanced PE scheme, to-
gether with a simple speedup analysis.
3Note that non-residual case expressions are not considered,
since they have not been evaluated at PE time. Thus, we
obtain a fair comparison by only counting the costs of per-
forming the same evaluation steps in both programs.



5.1 Nondeterminism and PE
The current definitions of the enhanced RLNT calculus

and the PE scheme does not take into account the amount
of nondeterminism. It is true that current partial evalua-
tors for functional logic programs (e.g., [3]) could reduce the
amount of nondeterminism in the residual program, which
leads to a reduction in the execution time and space require-
ments. Unfortunately, estimating the variation in terms of
nondeterminism is not an easy task.

On the one hand, the RLNT calculus should be extended
in order to properly treat “failed” branches. Consider, for
instance, the following expression:

fcase x of { [ ]→ case 0 of {1→ 1};
(y : ys)→ g ys }

Here, we can easily see that the first branch of the outer
case structure will always fail. Hence, we could produce the
equivalent expression:

fcase x of {(y : ys)→ g ys }

In this way, we transform a nondeterministic expression into
a deterministic one.

In its present form, the RLNT calculus of Fig. 3 cannot
change the nondeterministic behavior of the original pro-
gram. Thus, it does not include an abstract cost to mea-
sure the amount of nondeterminism.4 Due to this fact, the
current RLNT calculus enjoys the following property: for
each residual rule r, the associated costs in the original and
residual programs, (k, k′), have exactly the same structure
(i.e., the same number of alt constructs and in the same
position). If we extend the PE scheme in order to be able
to transform nondeterministic expressions into determinis-
tic ones, the above property does not hold anymore. In this
case, the comparison between the costs of the original and
residual programs would be much more complex.

On the other hand, the current PE scheme also enjoys
the following property: given an expression e, if the cost-
augmented LNT semantics computes the derivation

〈K0, e〉 ⇒∗σ 〈k, e′〉

then, for each constructor instance σ(e) of e, we can also
prove the derivation:

〈K0, σ(e)〉 ⇒∗σ 〈k, σ(e′)〉

where the associated cost remains unchanged. In other
words, the instantiation of variables (with constructor terms)
does not alter the computed costs. Informally speaking, this
property is implied by the fact that the cost increment as-
sociated to the case select and case guess rules is the same.
Moreover, it allows us to say that the costs computed dur-
ing PE correctly represent the costs of the computations
performed at execution time (where more instantiated calls
usually occur).

Unfortunately, if we change the current definitions of the
case guess rules in order to take into account the amount of
nondeterminism, then the above property is no longer true.
Therefore, cost variation pairs (k, k′) would only hold for
the concrete calls used to perform the specialization. They
would not correctly represent the costs of the computations
with more instantiated calls.

4A cost-augmented calculus used to profile functional logic
programs including nondeterminism can be found in [5].

The extension of the current PE scheme to take into ac-
count the amount of nondeterminism is an interesting—but
difficult—problem. We consider it a promising subject for
further research.

6. EXPERIMENTAL EVALUATION
In order to assess the practicality of the ideas presented

in this work, the implementation of a cost-augmented par-
tial evaluator for the multi-paradigm declarative language
Curry has been undertaken.5 Curry [22] integrates features
from logic (logic variables, partial data structures, built-in
search), functional (higher-order functions, demand-driven
evaluation) and concurrent programming (concurrent eval-
uation of constraints with synchronization on logical vari-
ables). Furthermore, Curry is a complete programming lan-
guage which is able to implement distributed applications
(e.g. Internet servers [18]) or graphical user interfaces at a
high-level [19]. Our PE tool has been implemented by ex-
tending an existing tool for the PE of Curry programs (see
[3]). The enhanced PE tool is completely written in Curry
itself, so it is easy to modify in order to incorporate future
extensions. It takes source programs as input, which are
automatically translated to the flat representation.

Let us consider a simple example to illustrate the behavior
of the developed tool. Consider the well-known “all ones”
benchmark [13] (a typical example to illustrate the defor-
estation transformation [32]):

allones x = case x of

{ Z -> [] ;

(S y) -> 1 : allones y }
length x = case x of

{ [] -> Z ;

(y:ys) -> S (length ys) }
The PE of this program w.r.t. the call “allones (length x)”
returns the following residual program:

allones pe x = case x of

{ [] -> [] ;

(y:ys) -> 1 : allones pe ys }
where allones pe x is a renaming for allones (length x).
The associated costs for this residual rule are:

Original: Alt (Cost 2 2 28 ) (Cost 2 2 28 )

Residual: Alt (Cost 1 1 15 ) (Cost 1 1 15 )

Here, we use expressions of the form (Cost S C A), where S

denotes the number of steps, C the number of case evalua-
tions, and A the number of applications. In this example,
it is fairly easy to analyze the cost improvement achieved
by narrowing-driven PE. Almost all the abstract costs have
been halved. However, in more complex examples, it is not
so easy to analyze the global improvement from the cost
variation achieved by each residual rule. To overcome this
problem, we have included a simple speedup analysis in our
PE tool. It computes all the possible loops in the residual
program, starting from the outermost function symbol of
the initial call, and then sum up their associated costs. It
proceeds, basically, by constructing a dependency graph for
the function symbol of the partially evaluated call, thus it
gives only approximate results (a higher bound).

Table 1 shows the results obtained from some selected

5It is publicly available from
http://www.dsic.upv.es/users/elp/soft.html.



Table 1: Benchmark Results

Benchmark Original Residual Speedup
S C A S C A

all ones 2 2 28 1 1 15 1.29
app last 2 3 36 1 1 13 2.83
double app 2 2 30 1 1 31 1.30
double flip 2 2 44 1 1 22 1.25
kmp 4 6 78 1 2 67 12.94
length app 2 2 29 1 1 15 1.49
loop 6 6 1 30 1 1 15 1.15
reverse 1 1 15 1 1 15 1.00

benchmarks. Some of them are typical from deforestation
(the case of all ones, app last, double app, double flip,
length app); kmp is the well-known “KMP test”; loop 6 is
a simple function with a 6-steps loop; reverse is a naive re-
versing function using append. The complete code of these
benchmarks can be found within the implemented tool (some
of them can be also found, e.g., in [6]). For each benchmark,
we show the cost variation of the main loop in the program as
well as the actual speedup (i.e., the ratio original/residual,
where original is the runtime in the original program and
residual is the runtime in the partially evaluated program).
Runtime input goals were chosen to give a reasonably long
overall time.

All benchmarks have been specialized w.r.t. function calls
containing no static data, except for the kmp example (what
explains the larger speedup produced). Although it is not
obvious how to relate the variation of abstract costs to ac-
tual speedups, some conclusions can be made. Firstly, the
most important cost seems to be the number of case evalu-
ations. For instance, in the loop 6 benchmark, the number
of steps is reduced by a factor of 6. However, there is almost
no speedup, which can be justified by the fact that the num-
ber of case evaluations is not reduced at all. In almost all
the deforestation examples, both the steps and the pattern
matchings are halved. Thus all of them achieve a similar
speedup. The only exception is app last that gets a better
speedup, which can be explained by the bigger reduction in
the number of pattern matchings (a factor of 3). Finally,
reverse is not improved and, consequently, the associated
abstract costs remain the same.

7. RELATED WORK
We find very little related works in the literature. Among

them, let us briefly mention the closest to our approach. [7]
established several properties of program transformations
based on folding/unfolding in the context of logic program-
ming. In particular, he proved that superlinear speedup
cannot be accomplished by partial evaluation (this result
can be also found in [8]). [8] developed a speedup analysis
that, for any binding-time annotated program, computes a
relative speedup interval such that the specialization of this
program will result in a speedup within the predicted inter-
val. The speedup analysis in the previous section is clearly
inspired by the work of [8]. Also, [28] introduced a theory
of cost equivalence that can be used to reason about the
computational cost of lazy functional programs. Our cost
variation pairs share some similarities with the equations
generated in [28]. However, [28] centers the discussion in

the number of evaluation steps, while we consider additional
cost criteria.

The closest approach, though, is [1], where a formal frame-
work to measure the effectiveness of PE in functional logic
languages is introduced. Indeed, the present work can be
seen as a natural evolution of the ideas presented in [1].
The main differences are the following:

• Firstly, [1] considers the basic narrowing-driven frame-
work of [6], where programs are inductively sequential
systems (with no distinction between flexible and rigid
functions) and standard (needed) narrowing is used to
perform computations at PE time. In contrast, our de-
velopments can be directly applied to practical partial
evaluators—e.g., [3], which considers a non-standard,
residualizing semantics to perform computations at PE
time—for modern functional logic languages based on
the combination of narrowing and residuation.

• Secondly, we have developed a formal specification of
the cost-augmented semantics. While [1] shows how
the cost of a narrowing derivation can be computed,
there is no formalization of a “cost-augmented narrow-
ing” relation.

• Finally, [1] considers the construction of (cost) recur-
rence equations associated to a particular PE. From
these equations, one can analyze the cost of the pro-
gram in several ways: by transforming them to ordi-
nary recurrence equations over natural numbers—and,
then, solving them—or by decorating each rule with a
cost variation pair (obtained from the cost recurrence
equations). In this paper, we developed further this
idea in order to implement a simple speedup analysis.

In summary, while [1] presents two independent processes:
narrowing-driven partial evaluation and generation of recur-
rence equations (to analyze the cost variation), we have fully
integrated the computation of quantitative aspects into the
narrowing-driven specialization technique.

8. CONCLUSIONS AND FUTURE WORK
We presented a first step towards the integration of quan-

titative aspects into the narrowing-driven PE framework.
We introduced cost-augmented versions of the standard and
residualizing semantics and proved their cost equivalence.
We also sketched the scheme of a cost-enhanced partial eval-
uator. Preliminary experiments are encouraging and show
that our ideas are both practical and useful.

A promising application of our developments is the gen-
eration of cost-guided partial evaluators. In particular, by
experimenting with the developed PE tool, we discovered
several common patterns associated with “successful” spe-
cializations. For instance, deforestation problems often re-
duce both the number of steps and the number of pattern
matchings in the same factor. Thus, a cost-augmented par-
tial evaluator may take this information into account to dy-
namically decide when to unfold and when to residualize
expressions. The extension of the cost-augmented partial
evaluator to consider the amount of nondeterminism is also
subject of future work.
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