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Abstract. The dual of most general equational unifiers is that of least
general equational anti-unifiers, i.e., most specific anti-instances modulo
equations. This work aims to provide a general mechanism for equational
anti-unification that leverages the recent advances in variant-based sym-
bolic computation in Maude. Symbolic computation in Maude equational
theories is based on folding variant narrowing (FVN), a narrowing strat-
egy that efficiently computes the equational variants of a term (i.e., the
irreducible forms of all of its substitution instances). By relying on FVN,
we provide an equational anti-unification algorithm that computes the
least general anti-unifiers of a term in any equational theory E where
the number of least general E-variants is finite for any given term.

1 Introduction

The concept of anti-unification (also known as generalization) was independently
introduced by Plotkin [20] and Reynolds [21]. Anti-unification is relevant in a
wide spectrum of automated reasoning techniques and applications where ana-
logical reasoning and inductive inference are needed, such as ontology learning,
analogy making, case-based reasoning, web and data mining, theorem proving,
machine learning, program derivation, and inductive logic programming, among
others [3,18,19]. For instance, the anti-unification algorithm of [14] has been re-
cently used in the generation of fix patterns for automated program repair in
Bloomberg’s Fixie-learn [13] and Facebook’s Getafix [4].

In the purely syntactic and untyped setting of [20,21], the syntactic gen-
eralization problem for two or more expressions consists in finding their least
general generalizer (lgg), i.e., the least general expression t such that all of the
given expressions are instances of t under appropriate substitutions. For in-
stance, consider an alphabet with three constants a, b, and c; three function
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symbols f , g and h; and variables x, y and z. Also consider the two terms
u = f(b, g(b, b)) and v = f(g(z, a), g(g(z, a), b)). The expression f(x, g(x, b))
is the syntactic (and unique) least general generalizer of u and v since both
f(b, g(b, b)) and f(g(z, a), g(g(z, a), b)) are substitution instances of f(x, g(x, b)).
However, if the function symbol g is given a definition by means of an equational
theory E consisting of the equation g(x, y) = b, then g(b, b), g(z, a), g(x, y) and
b are “la même chose” (more formally, they are equal modulo E) and so are
u = f(b, g(b, b)) and v = f(g(z, a), g(g(z, a), b)), hence the least general gener-
alizer of u and v is f(b, b). Note that the syntactic generalizer f(x, g(x, b)) of u
and v, and its E-equivalent term f(x, b), are more general modulo E than the
least general generalizer f(b, b).

Given a set E of equations and two terms u and v to be generalized modulo
E, we say that the term t is an E-generalizer of u and v if there are two terms
t1 and t2, which are substitution instances of t, such that t1 is equal (modulo
E) to u and t2 is equal (modulo E) to v. An E-generalizer of u and v that is
less general than or incomparable to (modulo E) any other E-generalizer of the
two terms is called a least general generalizer. The computation of equational
least general generalizers is much more involved than syntactic generalization
as it may require guessing the less general term pattern t and substitutions
σ1 and σ2 that, when independently applied to t, get two terms t1 = tσ1 and
t2 = tσ2 that are equal (modulo E) to two corresponding arguments in u and v.
This guessing cannot be done by simple equational reasoning but requires logic-
style, symbolic computation. For instance, if the theory E contains the equations
h(x, a) = f(g(x, a), g(g(x, a), b)) and h(x, b) = f(b, g(b, b)) (with g obeying no
equation), then h(x, y) is a least general generalizer modulo E of u = f(b, g(b, b))
and v = f(g(z, a), g(g(z, a), b)). This is because there are two instances of h(x, y)
which are equal (modulo E) to u and v, respectively (namely, σ1 = {y 7→ b} and
σ2 = {x 7→ z, y 7→ a}).

Similarly to the dual problem of E-unification of two terms, where there
may be a set of incomparable, most general E-unifiers, the set of least general
anti-unifiers of two terms is not generally singleton. For instance, the syntactic
generalizer f(x, g(x, b)) of u = f(b, g(b, b)) and v = f(g(z, a), g(g(z, a), b)) above
is still valid with the two equations for h and it is incomparable to h(x, y), so
both are least general generalizers. The anti-unification type of a theory can be
defined similarly (but dually) to the unification types, i.e., based on the existence
and cardinality of a minimal and complete set of least general generalizers [7].

In this work, we address the problem of least general anti-unification in
order-sorted equational theories where function symbols are endowed with an
equational definition. The intuition behind our least general generalization al-
gorithm is that substitutions σ1 and σ2 mentioned above can be computed
by narrowing most general terms f(x1, · · · , xn) in E, with f being an n-
ary function symbol in the theory. Narrowing is a symbolic execution mech-
anism that generalizes term rewriting by allowing free variables in terms (as
in logic programming) and handles them by using unification (instead of pat-
tern matching) to non-deterministically reduce these terms. For instance, given
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E = {h(x, b) = f(b, g(b, b)), h(x, a) = f(g(x, a), g(g(x, a), b))}, there are two
narrowing steps stemming from the term h(x, y): 1) the term h(x, y) narrows
to f(b, g(b, b)) with computed narrowing substitution σ1 = {y 7→ b}; and 2) the
term narrows to f(g(x, a), g(g(x, a), b)) with computed narrowing substitution
σ2 = {y 7→ a}. In the last few years, there has been a resurgence of narrowing in
many application areas such as equational unification, state space exploration,
protocol analysis, termination analysis, theorem proving, deductive verification,
model transformation, testing, constraint solving, and model checking.

Maude [8] is a language and a system that efficiently implements Rewriting
Logic (RWL) [15]. Equational theories in Maude may include ordinary equations
and algebraic axioms, i.e., distinguished equations expressing algebraic laws such
as associativity (A), commutativity (C), and identity (i.e., unity) (U) of function
symbols. Algebraic axioms are efficiently handled in Maude in a built-in way.
For the sake of simplicity, the equational theories considered in this work do not
contain algebraic axioms.

Maude provides quite sophisticated narrowing-based features that rely on
built-in generation of the set of variants of a term t [10]. Essentially, a variant
of a term t in the theory E is the canonical (i.e., irreducible in E) form of tσ
for a given substitution σ. Variants are computed in Maude by using the fold-
ing variant narrowing strategy [11]. When the theory satisfies the finite variant
property (i.e., there is a finite number of most general variants for every term in
the theory), folding variant narrowing computes a minimal and complete set of
most general variants in a finite amount of time. Many theories of interest have
the FVP, including theories that give algebraic axiomatizations of cryptographic
functions used in communication protocols, where FVP is omni-present.

As far as we know, this is the first general, theory-independent algorithm
for computing least general anti-unifiers modulo equational theories in Plotkin’s
style. A theory-agnostic E-generalization algorithm based on regular tree gram-
mars is formalized by Burghardt in [5] that computes a finite representation
of E-generalization sets. However, Burghardt’s algorithm is restricted to equa-
tional theories E that induce regular congruence classes (i.e., the theory E is
the deductive closure of finitely many ground equations). We establish that the
novel algorithm that we propose in this paper is minimal, correct and complete
(i.e., it computes a complete and minimal set of least general generalizers for any
anti-unification problem). A prototype implementation in Maude [CDE+07] is
currently under development.

In [1,2], we extended the classical untyped anti-unification algorithm of [20]
to work: (1) modulo any combination of associativity, commutativity, and iden-
tity axioms (including the empty set of such axioms); (2) with typed struc-
tures that involve sorts, subsorts, and subtype polymorphism; and (3) under
any combination of both, which results in a modular, order-sorted, least general
anti-unification algorithm modulo algebraic axioms. The algorithm in [1,2] only
applies to modular combinations of A, C, and U equational axioms. It cannot
be used to solve anti-unification problems in the general, user-defined equational
theories considered in this paper.
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After some preliminaries in Section 2, in Section 3 we address the problem of
generalizing two (typed) expressions modulo an equational theory, we formulate
our least general generalization algorithm, and we illustrate it by means of a
representative example. Section 4 proves the formal properties of our algorithm.
In Section 5, we discuss further work and we conclude. A simple representative
application of equational generalization to a biological domain is described in
Appendix A.

2 Preliminaries

We follow the classical notation and terminology from [23] for term rewriting
and from [16,12] for order-sorted equational logic.

We assume an order-sorted signature Σ = (S, F,≤) that consists of a finite
poset of sorts (S,≤) and a family F of function symbols of the form f : s1×· · ·×
sn → s, with s1, · · · , sn, s ∈ S. Two sorts s and s′ belong to the same connected
component if either s ≤ s′ or s′ ≤ s. We assume a kind-completed signature such
that: (i) each connected component in the poset ordering has a top sort, and, for
each s ∈ S, we denote by [s] the top sort in the connected component of s (i.e., if
s and s′ are sorts in the same connected component, then [s] = [s′]); and (ii) for
each operator declaration f : s1 × · · · × sn → s in Σ, there is also a declaration
f : [s1]×· · ·× [sn] → [s] in Σ. A given term t in an order-sorted term algebra can
have many different sorts. Specifically, if t has sort s, then it also has sort s′ for
any s′ ≥ s; and because a function symbol f can have different sort declarations
f : s1 × · · · × sn → s, a term f(t1, .., tn) can have sorts that are not directly
comparable [12].

We assume a fixed S-sorted family V = {Vs}s∈S of pairwise disjoint variable
sets (i.e., ∀s, s′ ∈ S : Vs ∩ Vs′ = ∅), with each Vs being countably infinite. We
write the sort associated to a variable explicitly with a colon and the sort, i.e.,
x:Nat. A fresh variable is a variable that appears nowhere else. The set TΣ(V)s
denotes all Σ-terms of sort s defined by Vs ⊆ TΣ(V)s and f(t1, · · · , tn) ∈ TΣ(V)s
if f : s1 × · · · × sn → s ∈ Σ, n ≥ 0 and t1 ∈ TΣ(V)s1 , · · · , tn ∈ TΣ(V)sn .
Furthermore, if t ∈ TΣ(V)s and s ≤ s′, then t ∈ TΣ(V)s′ . For a term t, we write
Var(t) for the set of all variables in t. T (Σ)s is the set of ground terms of sort
s, i.e., t is a Σ-term of sort s and Var(t) = ∅. We write T (Σ,V) =

⋃
s∈S TΣ(V)s

and T (Σ) =
⋃

s∈S T (Σ)s for the corresponding term algebras. We assume that
T (Σ)s ̸= ∅ for every sort s.

We assume pre-regularity of the signature Σ: for each operator declaration
f : s1 × · · · × sn → s, and for the set Sf containing all sorts s′ that appear in
operator declarations of the form f : s′1, · · · , s′n → s′ in Σ such that si ≤ s′i for
1 ≤ i ≤ n, the set Sf has a least sort. Thanks to pre-regularity of Σ, each Σ-term
t has a unique least sort that is denoted by LS(t). The top sort in the connected
component of LS(t) is denoted by [LS(t)]. Since the poset (S,≤) is finite and
each connected component has a top sort, given any two sorts s and s′ in the
same connected component, the set of least upper bound sorts of s and s′ always
exists (although it might not be a singleton set) and is denoted by LUBS(s, s′).
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Throughout this paper, we assume that Σ has no ad-hoc operator overloading,
i.e., any two operator declarations for the same symbol f with equal number of
arguments, f : s1 × · · · × sn → s and f : s′1 × · · · × s′n → s′, must necessarily have
[s1] = [s′1], · · · , [sn] = [s′n], [s] = [s′].

The set of positions of a term t, written Pos(t), is represented as a sequence
of natural numbers referring to a subterm of t, e.g., the subterm of f(g(x, h(c)))
occurring at position 1.2.1 is c. The set of non-variable positions is written
PosΣ(t). The root position of a term is Λ. The subterm of t at position p is t|p,
and t[u]p is the term obtained from t by replacing t|p by u. By root(t), we denote
the symbol occurring at the root position of t.

A substitution σ = {x1 7→ t1, · · · , xn 7→ tn} is a mapping from variables to
terms which is almost everywhere equal to the identity except over a finite set
of variables {x1, · · · , xn}, written Dom(σ) = {x ∈ V | xσ ̸= x}. Substitutions
are sort-preserving, i.e., for any substitution σ, if x ∈ Vs, then xσ ∈ TΣ(V)s.
We assume substitutions are idempotent, i.e., xσ = (xσ)σ for any variable x.
The set of variables introduced by σ is VRan(σ) =

⋃
{Var(xσ) | xσ ̸= x}.

The identity substitution is id. Substitutions are homomorphically extended to
T (Σ,V). Substitutions are written in suffix notation (i.e., tσ instead of σ(t)),
and, consequently, the composition of substitutions must be read from left to
right, formally denoted by juxtaposition, i.e., x(σσ′) = (xσ)σ′ for any variable
x. The restriction of σ to a set of variables V is σ|V . We call a substitution σ a
renaming if there is another substitution σ−1 such that (σσ−1)|Dom(σ) = id.

A Σ-equation is an unoriented pair t
.
= t′, where t and t′ are Σ-terms for

which there are sorts s, s′ with t ∈ TΣ(V)s, t
′ ∈ TΣ(V)s′ , and s, s′ are in the

same connected component of the poset of sorts (S,≤). An equational theory
(Σ,E) is a set E of Σ-equations. An equational theory (Σ,E) over a kind-
completed, pre-regular, and order-sorted signature Σ = (S, F,≤) is called kind-
completed, pre-regular, and order-sorted equational theory. Given an equational
theory (Σ,E), order-sorted equational logic induces a congruence relation =E

on terms t, t′ ∈ T (Σ,V), see [12,16].

The relative generality E-subsumption preorder ≤E (simply ≤ when E is
empty) holds between t, t′ ∈ T (Σ,V), denoted t ≤E t′ (meaning that t is more
general than t′ modulo E), if there is a substitution σ such that tσ =E t′. The
substitution σ is said to be a E-matcher for t′ in t. The equivalence relation ≡E

(or ≡ if E is empty) induced by ≤E is defined as t ≡E t′ if t ≤E t′ and t′ ≤E t.
The E-renaming equivalence t ≃E t′ (or ≃ if E is empty) holds if there is a
renaming substitution θ such that tθ =E t′. In general, the relations =E , ≡E

and ≃E do not coincide; actually =E⊆≃E⊆≡E . We can naturally extend ≤E

to substitutions as follows: a substitution θ is more general than σ modulo E,
denoted by θ ≤E σ, if there is a substitution γ such that σ =E θγ, i.e., for all
x ∈ X , xσ =E xθγ.

Given a set of equations E,
−→
E is a set of rewrite rules that result from

orienting the equations of E from left to right. We call (Σ,
−→
E ) a decomposition

of an equational theory (Σ,E) if
−→
E is convergent, i.e., confluent, terminating, and

strictly coherent [17], and sort-decreasing. Under these conditions, the equations
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in E can be safely interpreted as simplification rules that can be used to compute
a unique E-canonical form t↓E for every term t ∈ T (Σ,V).

Given a decomposition (Σ,
−→
E ) of an equational theory and a substitution

θ = {x1 7→ t1, · · · , xn 7→ tn}, we let θ↓−→
E

= {x1 7→ t1↓−→E , · · · , xn 7→ tn↓−→E }. We
say that (t′, θ′) is an E-variant [9,11] (or just a variant) of term t if for some
substitution θ, t′ = (tθ)↓−→

E
and θ′ = θ↓−→

E
. A complete set of most general E-

variants [11] (up to renaming) of a term t is a subset, denoted by [[t]]E , of the
set of all E-variants of t such that, for each E-variant (t′, σ′) of t, there is an
E-variant (t′′, σ′′) ∈ [[t]]E such that t′′ ≤E t′ and σ′′ ≤E σ′. A decomposition

(Σ,
−→
E ) has the finite variant property (FVP) [11] (also called a FVP theory) iff

for each Σ-term t, a complete set [[t]]E of its most general variants is finite.
Finally, we also consider a natural partition of the rewrite theory signature

as Σ = D ⊎ Ω, where Ω are the constructor symbols, which are used to define
(irreducible) data values, and D = Σ \Ω are the defined symbols, which are eval-
uated away via equational simplification. Terms in τ(Ω,V) are called constructor
terms.

3 Least General Anti-unification modulo Equational
Theories via Variant Computation

In the following, we recall the order-sorted syntactic generalization algorithm as
formalized in [1,2].

3.1 Syntactic Anti-unification

A term t is a syntactic generalizer of t1 and t2 if there are two substitutions σ1

and σ2 such that tσ1 = t1 and tσ2 = t2.
We represent a generalization problem between terms t and t′ as a constraint

t
x

≜ t′, where x is a fresh variable that stands for a generalizer of t and t′, that
becomes more and more instantiated as the computation proceeds until becom-

ing a least general generalizer. Given a constraint t
x

≜ t′, any generalizer w of t
and t′ is given by a suitable substitution θ such that xθ = w.

A set of constraints is represented by s1
x1

≜ t1 ∧ · · · ∧ sn
xn

≜ tn, or ∅ for the

empty set. Given a constraint t
x

≜ t′, we call x a generalization variable. We define
the set of generalization variables of a set C of constraints as GVs(C) = {y ∈
V | ∃u

y

≜ v ∈ C}.
Note that, although it is natural to consider that a constraint t

x

≜ t′ is com-
mutative, the inference rules that are described do not admit that commutativity
property for ≜ since we need to keep track of the origin of new generated gener-
alization subproblems. However, the constructor symbol ∧ that we use to build
a set (conjunction) of constraints is associative and commutative in the infer-
ence rules described in this paper. Note that there are no defined symbols in the
syntactic case, i.e. Σ=Ω.
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Definition 1. A configuration ⟨C | S | θ⟩ consists of three components: (i) the
constraint component C, which represents the set of unsolved constraints; (ii) the
store component S, which records the set of already solved constraints, and (iii)
the substitution component θ, which binds some of the generalization variables
previously met during the computation.

Decompose
f ∈ (Ω ∪ V) ∧ f : [s1]× · · · × [sn] → [s]

⟨f(t1, · · · , tn)
x:[s]

≜ f(t′1, · · · , t′n) ∧ C | S | θ⟩ →

⟨t1
x1:[s1]

≜ t′1 ∧ · · · ∧ tn
xn:[sn]

≜ t′n ∧ C | S | θσ⟩
where σ = {x:[s] 7→ f(x1:[s1], · · · , xn:[sn])}, x1:[s1], · · · , xn:[sn] are fresh variables, and
n ≥ 0

Solve
root(t) ̸= root(t′) ∧ ∄y ∄s′′ : t

y:s′′

≜ t′ ∈ S

⟨t
x:[s]

≜ t′ ∧ C | S | θ⟩ → ⟨C | S ∧ t
z:s′

≜ t′ | θσ⟩
where σ = {x:[s] 7→ z:s′}, z:s′ is a fresh variable, and s′ ∈ LUBS(LS(t), LS(t′))

Recover
root(t) ̸= root(t′) ∧ ∃y∃s′ : t

y:s′

≜ t′ ∈ S

⟨t
x:[s]

≜ t′ ∧ C | S | θ⟩ → ⟨C | S | θσ⟩
where σ = {x:[s] 7→ y:s′}

Fig. 1: Basic inference rules for order-sorted least general generalization [1]

In Figure 1, we consider any two terms t and t′ in a constraint t
x

≜ t′ having
the same top sort; otherwise, they are incomparable and no generalizer exists.

Starting from the initial configuration ⟨t
x:[s]

≜ t′ | ∅ | id⟩ where [s] = [LS(t)] =
[LS(t′)], configurations are transformed until a terminal configuration ⟨∅ | S | θ⟩
is reached. The transition relation → on configurations is given by the smallest
relation satisfying all of the rules of Figure 1. Due to order-sortedness, in general
there can be more than one least general generalizer of two expressions [1].

In this paper, variables of terms t and t′ in a generalization problem t
x

≜ t′ are
considered as constants, and are never instantiated. The meaning of the rules is
as follows.

– The Decompose rule is the syntactic decomposition generating new con-
straints to be solved.

– The Solve rule checks that a constraint t
x

≜ t′ ∈ C, with root(t) ̸= root(t′),
is not already solved. If not already in the store S, then the solved constraint
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lgg(f(g(a), g(y), a), f(g(b), g(y), b))
↓ Initial Configuration

⟨f(g(a), g(y), a)
x

≜ f(g(b), g(y), b) | ∅ | id⟩
↓ Decompose

⟨g(a)
x1
≜ g(b) ∧ g(y)

x2
≜ g(y) ∧ a

x3
≜ b | ∅ | {x 7→ f(x1, x2, x3)}⟩

↓ Decompose

⟨a
x4
≜ b ∧ g(y)

x2
≜ g(y) ∧ a

x3
≜ b | ∅ | {x 7→ f(g(x4), x2, x3), x1 7→ g(x4)}⟩

↓ Solve

⟨g(y)
x2
≜ g(y) ∧ a

x3
≜ b | a

x4
≜ b | {x 7→ f(g(x4), x2, x3), x1 7→ g(x4)}⟩
↓ Decompose

⟨y
x5
≜ y ∧ a

x3
≜ b | a

x4
≜ b | {x 7→ f(g(x4), g(x5), x3), x1 7→ g(x4), x2 7→ g(x5)}⟩

↓ Decompose

⟨a
x3
≜ b | a

x4
≜ b | {x 7→ f(g(x4), g(y), x3), x1 7→ g(x4), x2 7→ g(y), x5 7→ y}⟩

↓ Recover

⟨∅ | a
x4
≜ b | {x 7→ f(g(x4), g(y), x4), x1 7→ g(x4), x2 7→ g(y), x5 7→ y, x3 7→ x4}⟩

Fig. 2: Computation trace for (syntactic) generalization of terms f(g(a), g(y), a)
and f(g(b), g(y), b)

t
x

≜ t′ is added to S. Note that the Solve rule causes branching due to dif-
ferent choices of s′, hereby producing multiple least general generalizers.

– The Recover rule checks if a constraint t
x

≜ t′ ∈ C, with root(t) ̸= root(t′),

is already solved, i.e., if there is already a constraint t
y

≜ t′ ∈ S for the same
pair of terms (t, t′) with variable y. This is needed when the input terms
of the generalization problem contain the same generalization subproblems
more than once, e.g., the lgg of f(f(a, a), a) and f(f(b, b), a) is f(f(y, y), a).

We illustrate the syntactic generalization calculus by means of the following
example, where we disregard of sorts for the sake of simplicity.

Example 1. Consider the terms t = f(g(a), g(y), a) and t′ = f(g(b), g(y), b). In
order to compute the least general generalizer of t and t′, we apply the inference
rules of Figure 1. The substitution component in the final configuration obtained
by the lgg algorithm is θ = {x 7→ f(g(x4), g(y), x4), x1 7→ g(x4), x2 7→ g(y), x5 7→
y, x3 7→ x4}, hence the computed lgg is xθ = f(g(x4), g(y), x4). The execution
trace is showed in Figure 2. Note that variable x4 is repeated to ensure that the
least general generalizer is obtained.

3.2 Anti-unification modulo an Equational Theory

Given an equational theory E, a complete set of least general generalizers modulo
E of terms u and v can be computed by extending the syntactic least general
generalization calculus of Figure 1 with the new rule of Figure 3. Note that the
considered extension turns the equational generalization algorithm into a more
non-deterministic calculus by independently applying Solve and the new rule
Variant to the same configuration.
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For the sake of optimality, we assume that both u and v are canonical forms

with respect to
−→
E ; otherwise, we simplify them to canonical form before the

E-lgg computation starts so that we ensure that the computed solutions are
canonical representatives w.r.t. E of the set of least general equational general-
izers.

Variant

f : [s1]× · · · × [sn] → [s] ∈ D ∧
(t1, σ1), (t2, σ2) ∈ [[f(x1:[s1], · · · , xn:[sn])]]E ∧

u = t1ρ1 ∧ v = t2ρ2

⟨u
x:[s]

≜ v ∧ C | S | θ⟩ →

⟨w1↓−→E
x1:[s1]

≜ w′
1↓−→E ∧ · · · ∧ wn↓−→E

xn:[sn]

≜ w′
n↓−→E ∧ C | S | θσ⟩

with σ = {x:[s] 7→ f(x1:[s1], · · · , xn:[sn])}, where x1:[s1], · · · , xn:[sn] are fresh variables,
wi = xiσ1ρ1, w

′
i = xiσ2ρ2, 1 ≤ i ≤ n, and n ≥ 0

Fig. 3: Inference rule for variant-based order-sorted equational least general gen-
eralization

The novel rule Variant, proceeds as follows. Given the equational theory
E, we consider the set of most general variants for any “most general” term
f(x1:[s1], · · · , xn:[sn]), with f : [s1] × · · · × [sn] → [s] being any defined function
symbol in the theory signature. Recall that this can be easily achieved in Maude
by first deploying the finite computation trees of folding variant narrowing for
the considered terms and then gathering all of the variants from the nodes of

the tree. Then, given the generalization problem u
x

≜ v, we look for two variants
(t1, σ1) and (t2, σ2) in the tree such that u is an instance of t1 and v is an instance
of t2, i.e. t1ρ1 = u and t2ρ2 = v, since u and v are E-canonical forms. This means
that f(x1, · · · , xn) is a generalizer of both u and v, yet it may be too general.

The main idea of the bottom part of the rule is that a less general generalizer
of both u and v can be obtained by recursively computing the generalizers of the
combined substitutions, σ1ρ1 and σ2ρ2. That is, for each variable x′ ∈ Dom(σ1∪

σ2), the generalization problem xσ1ρ1↓−→E
x′

≜ xσ2ρ2↓−→E is recursively solved. More

precisely, the newly generated anti-unification problems w1↓−→E
x1:[s1]

≜ w′
1↓−→E ∧· · ·∧

wn↓−→E
xn:[sn]

≜ w′
n↓−→E are previously simplified to canonical form w.r.t. E. This

implies that: 1) at any computation step, all of the anti-unification problems
in the constraint component are in canonical form w.r.t E; 2) It is unnecessary
to modify rules Solve and Recover to semantically ask the store modulo E-
equality when checking whether the anti-unification problem at hand was already
solved.
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It is worth noting that the syntactic rule Decompose could be safely re-
moved from the generalization calculus in exchange of considering, in rule Vari-
ant, any function symbol f of Σ instead of just the defined symbols of D. This is
because: 1) the narrowing tree for a constructor term c(x1, · · · , xn) boils down to
the very root term; 2) both, u and v, are c-rooted terms and they are instances
of the root term c(x1, · · · , xn); 3) the original anti-unification problem for u and
v is then replaced by the anti-unification subproblems for the corresponding ar-
guments of the two terms, thus perfectly mimiking the effect of applying rule
Decompose in this case.

Finally, a minimization post-processing must be performed in order to filter
out all of the candidate generalizers that are not least general according to the
relative generality ordering ≤E , thus delivering the set of least general order-
sorted anti-unifiers in E of the input terms. This is done by choosing a set of
maximal elements of the set of all E-generalizers with regard to the ordering
≤E .

Note that it may be the case that the subsumption relation t ≤E t′ is undecid-
able, so that the above set of least general E-generalizers, although definable at
the mathematical level, might not be effectively computable. Nevertheless, when:
(i) each E-equivalence class is finite and can be effectively generated, and (ii)
there is an E-matching algorithm, then we also have an effective algorithm for
computing lggE(t, s), since the relation ≤E is precisely the E-matching relation.

3.3 An Equational Anti-unfication Example

In [2], we studied generalization modulo algebraic axioms for the modular com-
binations of associativity, commutativity and identity axioms. Other theories
such as idempotence and identity have been studied in [6,7]. In the following,
we show how the generic least general generalization algorithm in this paper can
be used to solve least general generalization problems modulo identity without
resorting to devoted algorithms such as the ones in [2]. It is worth noting that
the equational theory of identity has the FVP [11].

Example 2. Given two binary function symbols f and g such that f has an
identity element e (i.e., for all x, f(x, e) = x and f(e, x) = x) three constants

a, b, and c, and the generalization problem g(f(a, c), a)
w

≜ g(c, b), the (differ-
ent) algorithms of [2] and [6] produce the least general generalizer given by
{w 7→ g(f(x, c), f(x, y))}, where x and y are new variables. Following the new
algorithm of this paper with only the two equations for the identity of f , we com-
pute the desired least general generalization g(f(w11, c), f(w11, w22)). A detailed
computation trace for this example is shown in Figure 4.

In the following section, we formally establish the formal properties of our
equational, order sorted, least general anti-unification algorithm.
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4 Correctness and Completeness of the Equational
Anti-unification Algorithm

We follow the proof scheme of [1,2] and provide the formal proof of the following
auxiliary results, which extend the corresponding lemmas in [1,2] to generaliza-
tion modulo an equational theory.

Lemma 1. Given terms t and t′ and a fresh variable x, if ⟨t
x

≜ t′ | ∅ | id ⟩ →∗

⟨C | S | θ⟩ using the inference rules of Figures 1 and 3, then xθ is a generalizer
of t and t′ modulo E;

Proof. By case analysis of each one of the inference rules. In the decompose rule,
x:[s] 7→ f(x1:[s1], · · · , xn:[sn]) is clearly a more instantiated generalizer than x:[s].
In the solve rule, x:[s] 7→ z:s′ for s′ a common sort of t and t′ is again a more
instantiated generalizer than x:[s]. In the recover rule, x:[s] 7→ y:s′ for y:s′ the
variable of an already existing generalization problem is again a more instanti-
ated generalizer than x:[s]. In the variant rule, x:[s] 7→ f(x1:[s1], · · · , xn:[sn]) is
again a more instantiated generalizer than x:[s]. ⊓⊔

Lemma 2. Given terms t and t′ and a fresh variable x, if u is a generalizer of

t and t′ modulo E, then there is a derivation ⟨t
x

≜ t′ | ∅ | id ⟩ →∗ ⟨C | S | θ⟩ using
the inference rules of Figures 1 and 3, such that u and xθ are equivalent modulo
renaming and modulo E.

Proof. By induction on the generalizer u. If u is a variable or a constant, the proof
is straightforward. If u = f(u1, · · · , uk), t = f(t1, · · · , tk), and t′ = f(t′1, · · · , t′k),
then the conclusion follows by the induction hypothesis. In this case, if f is a
constructor, then the decompose rule should have been applied. And if f is
not a constructor symbol, then the variant rule should have been applied but
without computing any variant, just the general term z = f(x1, · · · , xk) since
both t and t′ are instances of z. If u = f(u1, · · · , uk) and either t or t′ are
not rooted by f , then ∃σ : uσ↓−→

E
= t and ∃σ′ : uσ′↓−→

E
= t′ but, by induction

hypothesis, for each i ∈ {1, · · · , k}, ui is a generalizer of uiσ↓−→E and uiσ
′↓−→

E
such

that there are derivations using the inference rules of Figures 1 and 3. Since
w = f(u1σ↓−→E , · · · , ukσ↓−→E ) and w′ = f(u1σ

′↓−→
E
, · · · , ukσ

′↓−→
E
) are instances of a

very general term z = f(x1, · · · , xk), there are variants (v1, θ1) and (v2, θ2) as
well as substitutions ρ1 and ρ2 such that w = zθ1ρ1↓−→E and w′ = zθ2ρ2↓−→E . But
then, the variant inference rule can be applied and the conclusion follows from
the derivations for each pair uiσ↓−→E and uiσ

′↓−→
E
. ⊓⊔

By using the above lemmata, correctness and completeness follow.

Theorem 1 (Correctness). Given a kind-completed, order-sorted equational

FVP theory (Σ,E) and a generalization problem Γ = t
x:[s]

≜ t′, with [s] =

[LS(t)] = [LS(t′)], such that t and t′ are Σ-terms, if ⟨t
x:[s]

≜ t′ | ∅ | id ⟩ →∗ ⟨∅ |
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S | θ⟩ using the inference rules of Figures 1 and 3, then (x:[s])θ is a generalizer
of t and t′ modulo E. By applying the minimization post-processing, only least
general generalizers are delivered, which ensures correctness.

Theorem 2 (Completeness). Given a kind-completed, order-sorted equa-

tional FVP theory (Σ,E) and a generalization problem Γ = t
x:[s]

≜ t′, with
[s] = [LS(t)] = [LS(t′)], such that t and t′ are Σ-terms, if u is a least gen-

eral generalizer of t and t′ modulo E, then there is a derivation ⟨t
x:[s]

≜ t′ | ∅ |
id ⟩ →∗ ⟨C | S | θ⟩ using the inference rules of Figures 1 and 3, such that u and
(x:[s])θ are equivalent modulo renaming and modulo E.

Our algorithm straightforwardly terminates for FVP theories whose general-
ization type is finitary, as illustrated in the following example.

Example 3. Consider an equational theory with one sort s and equations f(a) =

b and f(c) = d. For the generalization problem b
x:[s]

≜ d, the trivial generalizer
x can be obtained by applying the Solve rule but the least general equational
generalizer given by {x 7→ f(y)} comes from applying the Variant rule (which
can be applied only once).

Obviously, termination does not generally hold for FVP theories as witnessed
by

Example 4. Consider an equational theory with one sort s and equations f(a) =

a and f(b) = b. For the generalization problem a
x:[s]

≜ b, there is an infinite
number of increasingly less general generalizers x1:s, f(x2:s), f(f(x3:s)), . . . ,
which can be computed by nondeterministically choosing between the Solve
and the Variant rules at each generalization step. We note that the considered
theory is Type 0 (nullary) yet being FVP.

Provided the generalization algorithm terminates for a given problem, strong
correctness and completeness directly follow after applying the minimization
post-processing.

Theorem 3 (Strong correctness and completeness). Given a kind-completed,
order-sorted equational FVP theory (Σ,E) and a generalization problem Γ =

t
x:[s]

≜ t′, with [s] = [LS(t)] = [LS(t′)], such that t and t′ are Σ-terms, If the
equational generalization algorithm terminates, the minimization post-processing
delivers a set of least general equational generalizers for (Σ,E) and Γ .

5 Conclusion

Computing generalizers is relevant in a wide spectrum of automated reasoning
areas where analogical reasoning and inductive inference are needed. We believe
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that the equational least general generalization algorithm in this paper opens up
a wealth of new applications in many areas where symbolic reasoning modulo
equations is convenient. Some key results of this paper can be summarized as
follows: (i) anti-unification can be nullary for equational theories that satisfy
FVP; (ii) consequently, our complete equational generalization procedure is not
in general terminating; (iii) if the procedure stops for a given problem, then the
problem has a finite (possibly singleton) minimal complete set of generalizers,
and this set can be computed by the subsequent minimization step.

We have formally established the correctness and completeness of our al-
gorithm, while thanks to the minimization post-processing, minimality follows
by construction when the algorithm terminates. Similarly to the dual problem
of most general E-unification, there are many theories for which least general
generalization is nullary (see [7]) and termination is difficult to achieve without
quite demanding conditions such as requiring that each E-equivalence class is
finite. Actually, our algorithm does not terminate even for theories that satisfy
the FVP, as witnessed by Example 4. As future work, we plan to ascertain suit-
able requirements that may ensure termination of our equational least general
generalization algorithm for a wide class of theories.

We are currently developing a prototype implementation of our method, and
we plan to develop suitable strategies to boost performance of the tool. We also
plan to extend our generic algorithm in order to support equational theories that
may contain algebraic axioms such as (A), (C), and (U) following the modular
methodology we formalized in [1,2].
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A An Application of Equational Generalization to a
Biological Domain

In this section, we show how our anti-unification methodology can be produc-
tively used to analyze biological systems, e.g., to extract similarities and pin-
point discrepancies between two cell models that express distinct cellular states.
To illustrate our example, we consider cell states that appear in the MAPK
(Mitogen-Activated Protein Kinase) metabolic pathway that regulates growth,
survival, proliferation, and differentiation of mammalian cells.

Our cell formalization is inspired by and slightly modifies the data structures
used in Pathway Logic (PL) [22] —a symbolic approach to the modeling and
analysis of biological systems that is implemented in Maude. Specifically, a cell
state can be specified as a typed term as follows.

We use sorts to classify cell entities. The main sorts are Chemical, Protein,
and Complex, which are all subsorts of sort Thing, which specifies a generic en-
tity. Cellular compartments are identified by sort Location, while Modifier is a
sort that is used to identify post-transactional protein modifications, which are
defined by the operator “[-]” (e.g., the term [EgfR - act] represents the Egf
(epidermal growth factor) receptor in an active state). We use the following equa-
tions to model modifications of an element p of sort Thing. Modifications may
involve relocation of a chemical, phosphorilation of a protein or the activation
of a receptor.

eq phosphorilate(p:Thing, X:Modifier) = [ p:Thing - X:Modifier ] .

eq relocate(p:Thing, reloc) = [ p:Thing - reloc ] .

eq activate(p:Thing, act) = [ p:Thing - act ] .

A complex is a compound element that is specified by means of the operator
“<=>”, which combines generic entities together.

Now, a cell state is represented by a term of the form [cellType | locs],
where cellType specifies the cell type 1 and locs is a list of cellular compart-
ments (or locations). Each location is modeled by a term of the form { locName

| comp }, where locName is a name identifying the location (e.g., CLm represents
the cell membrane location), and comp is a list that specifies the entities included
in that location.

Example 5. The term c1

[ mcell | { Clc | Gab1 relocate(Grb2,reloc) Plcg Sos1 },

{ CLm | EgfR PIP2},

{ CLi | [Src - Yphos] [Hras - GDP] } ]

models a cell state of the MAPK pathway with three locations: the cytoplasm
(CLi) includes four proteins Gab1, Grb2 (which has been relocated), Plcg, and
Sos1; the membrane (CLm) includes the receptor EgfR and the chemical PIP2;

1 To simplify the exposition, we only consider mammalian cells denoted by the con-
stant mcell.
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the membrane interior (CLi) includes the proteins Hras (modified by GDP) and
the protein Src in a phosphorilated state generated by the Yphos modifier.

In this scenario, anti-unification can be used to compare two cell states, c1
and c2. Indeed, any solution for the problem of generalizing c1 and c2 is a term
whose non-variable part represents the common cell structure shared by c1 and
c2, while its variables highlight discrepancy points where the two cell states
differ.

Example 6. Consider the problem of generalizing the cell state of Example 5 and
the following MAPK cell state c2

[ mcell | { CLc | Gab1 [Grb2 - reloc] Plcg Sos1 },

{ CLm | Egf <=> activate(EgfR, act) PIP2 },

{ CLi | [Src - Tphos] [Hras - GDP] } ]

For instance, we can compute the following least general generalizer

[ mcell | { CLc | Gab1 [Grb2 - reloc] Plcg Sos1 },

{ CLm | X1:Thing PIP2 },

{ CLi | phosphorilate(Src, X2:Modifier) [Hras - GDP] } ]

where X1:Thing and X2:Modifier are variables. Each variable in the computed
lgg detects a discrepancy between the two cell states. The variable X1:Thing

represents a generic entity that abstracts the status of the receptor EgfR in the
membrane location CLm of the two cells. That is, c1’s membrane includes the
(inactive) receptor EgfR, whereas c2’s membrane contains the complex Egf <=>

[EgfR - act] that activates the receptor EgfR and binds it to the ligand Egf to
start the metabolic process. The variable X2:NModifier generalizes two phos-
phorilated states (i.e., Yphos and Tphos) of the protein Src obtained by two dis-
tinct phosphorilation modifiers. Note that the computed genralization introduces
the partially instantiated function call phosphorilate(Src, X2:Modifier) to
represent a generic phosphorilation for the protein Src.
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⟨g(f(a, c), a)
w

≜ g(c, b) | ∅ | id⟩
Apply Decompose

⟨f(a, c)
w1

≜ c ∧ a
w2

≜ b | ∅ | θ1⟩ with θ1 = {w 7→ g(w1, w2)}
Apply Variant (w12, {w11 7→ e}) ∈ [[f(w11, w12)]]E

f(a, c) is an instance of f(w11, w12)

c is an instance of w12

(f(a, c)
w1

≜ c) =E (f(a, c)
w1

≜ f(e, c))

⟨a
w11

≜ e ∧ c
w12

≜ c ∧ a
w2

≜ b | ∅ | θ1θ2⟩ with θ2 = {w1 7→ f(w11, w12)}
Apply Solve

⟨c
w12

≜ c ∧ a
w2

≜ b | a
w11

≜ e | θ1θ2⟩
Apply Decompose

⟨a
w2

≜ b | a
w11

≜ e | θ1θ2θ3⟩ with θ3 = {w12 7→ c}
Apply Variant

(w21, {w22 7→ e}) ∈ [[f(w21, w22)]]E

a is an instance of w21

(w22, {w21 7→ e}) ∈ [[f(w21, w22)]]E

b is an instance of w22

(a
w2

≜ b) =E (f(a, e)
w2

≜ f(e, b))

⟨a
w21

≜ e ∧ e
w22

≜ b | a
w11

≜ e | θ1θ2θ3θ4⟩ with θ4 = {w2 7→ f(w21, w22)}
Apply Recover

⟨e
w22

≜ b | a
w11

≜ e | θ1θ2θ3θ4θ5⟩ with θ5 = {w21 7→ w11}
Apply Solve

⟨∅ | a
w11

≜ e ∧ e
w22

≜ b | θ1θ2θ3θ4θ5⟩ with θ1θ2θ3θ4θ5 =

{w 7→ g(f(w11, c), f(w11, w22))}

Fig. 4: Computation trace for equational generalization of terms g(f(a, c), a) and
g(c, b).


