Electronic Notes in Theoretical Computer Science 64 (2002)
URL: http://www.elsevier.nl/locate/entcs/volume64.html 21 pages

Lazy Rewriting and Context-Sensitive
Rewriting

Salvador Lucas 12

DSIC

Universidad Politécnica de Valencia, Spain

Abstract

Lazy rewriting (LR) is intended to improve the termination behavior of TRSs. This
is attempted by restricting reductions for selected arguments of functions. Similarly,
context-sensitive rewriting (CSR) forbids any reduction on those arguments. We
show that LR and CSR coincide under certain conditions. On the basis of this
result, we also describe a transformation which permits us to prove termination
of LR as termination of C'SR for the transformed system. Since there are a num-
ber of different techniques for proving termination of CSR, this provides a formal
framework for proving termination of lazy rewriting.

1 Introduction

Syntactic annotations (which are associated to arguments of symbols) have
been used in programming languages such as Lisp, Haskell, Clean, OBJ2, OBJ3,
CafeOBJ, Maude, etc., to improve the termination and efficiency of compu-
tations. Lazy languages (e.g., Haskell, Clean) interpret them as strictness
annotations in order to become ‘more eager’ and efficient. Eager languages
(e.g., Lisp, OBJ2, OBJ3, CafeOBJ, Maude) use them as replacement restric-
tions to become ‘more lazy’ thus (hopefully) avoiding nontermination. For
instance, [FW76] studied implementations of Lisp where the list construc-
tor operator (cons) did not evaluate its arguments during certain stages of
the computation. Also, algebraic languages, such as OBJ2 [FGJMS85], OBJ3
[GWMEJ00], CafeOBJ [FN97], or Maude [CELM96], admit the explicit speci-
fication of strategy annotations as sequences of integers in parentheses. They
are interpreted as replacement restrictions that constrain an underlying ea-
ger evaluation strategy: an argument ¢; of a function call f(¢1,...,%;) whose

1 Work partially supported by CICYT TIC2001-2705-C03-01, Acciones Integradas HI 2000-
0161, HA 2001-0059, HU 2001-0019, and Generalitat Valenciana GV01-424.
2 Email: slucas@dsic.upv.es, WWW:http://www.dsic.upv.es/users/elp/slucas.html

(©2002 Published by Elsevier Science B. V.

Lucas

index ¢ € {1,...,k} does not occur in the strategy annotation (iy iz -+ i)
(where 11,15 ...,1, €4{0,1,...,k}) associated to the function symbol f is not
considered for evaluation. Moreover, even the application of rules at the top
must also be explicitly indicated by means of ‘0’ [Fke98]. The presence of such
‘true’ replacement restrictions is often invoked to justify that OBJ programs?
are able to avoid nontermination despite their (underlying) eager semantics

([GWMFJ00], Section 2.4.4).

Example 1.1 The following OBJ3 program:

obj EXAMPLE is
sorts Sort .
op O : => Sort .
op s : Sort -> Sort .
op cons : Sort Sort -> Sort [strat (1 0)]
op inf : Sort -> Sort .
op nth : Sort Sort -> Sort .
var X Y L : Sort .
eq nth(0,cons(X,L)) = X .
eq nth(s(X),cons(X,L)) = nth(X,L)
eq inf(X) = cons(X,inf(s(X)))
endo

specifies an explicit strategy annotation (1 0) for the list constructor cons
which disables reductions on the second argument *. In this way, the evalua-
tion of expression nth(s(0),inf(0)) always finishes and produces the term
s(0), even if the ‘infinite list’ inf (0) is a part of the expression.

Context-sensitive rewriting (CSR [Luc98]) provides a suitable framework
for proving termination of OBJ programs using such strategy annotations
(see [LucOla,Luc01b]). In CSR, a mapping p : F — P(N) is called a re-
placement map if p(f) C {1,...,k} holds for each k-ary symbol f of the
signature F. Replacement maps are used to discriminate the argument po-
sitions on which replacements are allowed. In this way, a rewriting restric-
tion is obtained (see Section 3). Terminating TRSs are p-terminating (i.e.,
no term initiates an infinite sequence of CSR under). However, CSR
can achieve termination, by pruning (all) infinite rewrite sequences. Sev-
eral methods have been developed to formally prove termination® of CSR
[BLR02,FR99,GL02,GM99,GM02,Luc96,5X98,7Zan97], see [GM02,Luc02c] for
a comparison of most of these techniques. For instance, the TRS that corre-
sponds to the OBJ3 program of Example 1.1 can be proved terminating with
regard to CSR (see Example 3.2 below). According to [Luc0Ola,Luc01b], such

3 As in [GWMFJ00], by OBJ we mean OBJ2, OBJ3, CafeOBJ, or Maude.

4 The other symbols are given a default strategy annotation (see [GWMFJ00]).

> See http://www.dsic.upv.es/users/elp/slucas/muterm for a tool (MU-TERM 1.0)
which implements most of these methods.

Lucas

a proof actually ensures termination of the OBJ3 program.

Using rewriting restrictions may give rise to incomplete computations. For
instance, the normal forms of some terms could be unreachable by restricted
computation.

Example 1.2 The following CafeOBJ program (borrowed from [NOO1]):

mod! TEST {
[T]
op O : > T
op s : T > T {strat: (1)}
opcons : TT ->T {strat: (1)}
op 2nd : T -> T {strat: (1 0)}
op from : T -> T {strat: (1 0)}

vars X Y Z : T

eq 2nd(cons(X,cons(Y,Z))) =Y .

eq from(X) = cons(X,from(s(X)))
}

specifies a strategy annotation (1) for the list constructor cons that makes
the program terminating; however, evaluating 2nd (from(s(0)) into s(0):

2nd (from(0)) — 2nd(cons(0,from(s(0))))
— 2nd(cons(0,cons(s(0) ,from(s(s(0))))))
— s(0)

is not possible. The reason is that reductions on the second argument of cons
are disallowed; hence, the second reduction step is no longer possible. On the
other hand the evaluation is possible using a local strategy such as (1 2), but
the following infinite reduction sequence is obtained:

2nd (from(0)) — 2nd(cons(0,from(s(0))))
— 2nd(cons(0,cons(s(0),from(s(s(0))))))
% “ ..

Example 1.2 shows the limits of the current interpretation of syntactic
annotations in OBJ programs (that can be given using the CSR framework).
Fokkink et al.’s lazy graph rewriting [FKWO00] provides a different (more lib-
eral) operational model for using syntactic replacement restrictions specified
by a replacement map p. In Section 4, we adapt Fokkink et al.’s framework to
lazy term rewriting (LR). Indeed, lazy rewriting is also intended to ‘improve
the termination behavior of TRSs’ [FKWO00]. For instance, with lazy rewriting,
we can compute the value of 2nd (from(0)) (using the replacement restrictions
that correspond to the strategy annotation of Example 1.2) without jeopar-
dizing nontermination. Although reductions are (in principle) disallowed on
non-replacing arguments of symbols, they are still possible if they can even-
tually contribute to the application of a rule on a replacing position of the

3

Lucas

term.

Example 1.3 (Continuing Example 1.2) The reduction step
2nd (cons (0,from(s(0)))) — 2nd(cons(0,cons(s(0),from(s(s(0))))))

is possible with lazy rewriting. In fact, it actually contributes to making the
following (crucial) step possible:

2nd (cons (0,cons(s(0) ,from(s(s(0)))))) — s(0)

However, the reduction step

2nd (cons (0,cons(s(0) ,from(s(s(0)))))) — ---

that potentially ‘originates’ an infinite rewrite sequence is not allowed, since
redex from(s(s(0))) occurs at a non-replacing position without facilitating
the application of a rule (namely, the first rule of the program in Example 1.2)
on the (trivially) replacing term 2nd (cons(0,cons(s(0) ,from(s(s(0)))))).

Remark 1.4 Note that programs in Examples 1.1 and 1.2 could be given an
optimal normalizing strategy by using other techniques. For instance, it is
not difficult to see that both programs are strongly sequential®. Since they
are also orthogonal, both of them admit a computable normalizing strategy
[HLI1]. Of course, such a strategy proceeds quite differently from the OBJ
evaluation strategy and (in general) cannot be simulated as OBJ computations.
However, there can also be OBJ programs that cannot be given a normalizing
strategy by using the aforementioned techniques, whereas we can still achieve
normalizations on the basis of proving their termination and using program
transformation techniques, see [Luc02b] and also [Luc02a].

Unfortunately, no analysis of termination of lazy rewriting is yet available.
In Section 5, we show that under certain conditions (namely, that all non-
variable subterms of the left-hand sides of rules are y-replacing), CSR and LR
coincide. In this case, termination of LR is equivalent to termination of CSR
and can be studied using the techniques which have been developed for CSR.
In Section 6, for the cases where LR and CSR differ, we provide a transfor-
mation which permits proving termination of lazy rewriting as termination of
CSR for the transformed system. In this way, we can prove termination of
LR by using the techniques for proving termination of CSR. The transforma-
tion is available for use within mu-terM 1.0, where several transformations for
proving termination of CSR have also been implemented.

2 Preliminaries

Given a set A, P(A) denotes the set of all subsets of A. Given a binary
relation R on a set A, we denote its transitive closure by Rt and its reflexive

6 Indeed, they are inductively sequential in the sense of [Ant92]; these TRSs are strongly
sequential, see [HLM98].

Lucas

and transitive closure by R*. An element @ € A is an R-normal form, if there
is no b such that @ R b. We say that b is an R-normal form of a (written a R'b)
if bis an R-normal form and a R*b. We say that R is terminating iff there
is no infinite sequence a; R a3 R as---. Throughout the paper, X' denotes
a countable set of variables and F denotes a signature, i.e., a set of function
symbols {£f,g, ...}, each having a fixed arity given by a mapping ar : F — N.
The set of terms built from F and X is T(F,X). A term is said to be linear
if it has no multiple occurrences of a single variable. Terms are viewed as
labelled trees in the usual way. Positions p,q,... are represented by chains
of positive natural numbers used to address subterms of ¢. Given positions
P, q, we denote its concatenation as p.q. If p is a position, and () is a set of
positions, p.Q) = {p.q | ¢ € Q}. We denote the empty chain by A. The set
of positions of a term ¢ is Pos(t). Positions of non-variable symbols in ¢ are
denoted as Posz(t), and Posy(t) are the positions of variables. The subterm
at position p of ¢ is denoted as t|,, and ?[s], is the term ¢ with the subterm
at position p replaced by s. The symbol labelling the root of ¢ is denoted as
root(t).

A rewrite rule is an ordered pair ([,r), written { — r, with [,r € T(F,X),
[¢ X and Var(r) C Var(l). The left-hand side (lhs) of the rule is [and the
right-hand side (rhs) is r. A TRS is a pair R = (F, R) where R is a set of
rewrite rules. L(R) denotes the set of [hs’s of R. A TRS R is left-linear if for
all [€ L(R), lis a linear term. A term t € T (F,X') rewrites to s (at position
p), written t Bz s (or just ¢ — s), if t|, = o(l) and s = t[o(r)],, for some rule
[—r € R, pe Pos(t) and substitution o.

3 Context-sensitive rewriting

A mapping ¢ : F — P(N) is a replacement map (or F-map) if u(f) C
{1,...;ar(f)} for all f € F [Luc98]. The ordering T on Mgz, the set of
all F-maps, is: p C g/ if for all f € F, u(f) € /(f). Thus, g C ¢’ means that
o considers fewer positions than p’ (for reduction), i.e., 1 is more restrictive
than p'. According to T, py (resp. ut) which is given by pui (f) = @ (resp.
po(f) =A1,...,ar(f)}) for all f € F, is the minimum (maximum) element
of M}'.

The set of u-replacing positions Pos"(t) of t € T(F,X) is: Pos"(t) = {A},
if t € & and Pos"(t) = {A} U Uicuproney 1-Pos”(t]:), if ¢ X. The set of
replacing variables Var#(t) of t is Var#(t) = {& € Var(t) | Pos.(t)NPos"(t) #
@}. In context-sensitive rewriting (CSR [Luc98]), we (only) contract replacing
redexes: ¢ p-rewrites to s (written ¢ <, s) if t > s and p € Pos”(1).

Example 3.1 Consider the TRS R:

2nd(x:y:2z) — y
from(x) — x:from(s(x))

Lucas

and p(:) = p(2nd) = p(from) = pu(s) = {1} that correspond” to the CafeOBJ
program of Example 1.2 (we use : instead of cons), see [LucOla] for further
details about this correspondence. Then we have:

2nd(from(0)) —, 2nd(0:from(s(0)))
where p-rewriting stops here since 1.2 ¢ Pos”(2nd (0:from(s(0)))).

The —,-normal forms are called g-normal forms. Note that, except for the
trivial case p = pr, the set of p-normal forms strictly includes normal forms
of R (e.g., term 2nd (0:from(s(0))) in Example 3.1 is a g-normal form which
is not a normal form). A TRS R is p-terminating if <, is terminating. As
mentioned in the introduction, a number of techniques can be used to prove
termination of CSR as termination of a transformed TRS.

Example 3.2 The TRS R:
nth(0,x:y) — X
nth(s(x),y:z) — nth(x,z)
inf(x) — x:inf(s(x))
with p(:) = pu(s) = p(inf) = {1} and p(nth) = {1,2} correspond to the

OBJ3 program in Example 1.1. Using Zantema’s transformation [Zan97], we

obtain the following TRS RY:

nth(0,x:y) - X

nth(s(x),y:z) — nth(x,activate(z))
inf(x) — x:inf’ (s(x))
activate(inf’(x)) — inf(x)

inf(x) — inf’ (%)
activate(x) - X

where activate and inf’ are new symbols introduced by the transformation.
This TRS is terminating (use a recursive path ordering based on the precedence
nth > activate > inf, :,nil and inf > :,inf’, s, and giving nth the usual
lexicographic status). Hence, R is p-terminating.

The canonical replacement map px™ is the most restrictive replacement

map which ensures that the non-variable subterms of the left-hand sides of the
rules of R are replacing. Note that p%" is easily obtained from R = (F, R):
forall fe Fandie{l,...,ar(f)},

i€ puR"(f) it e L(R),p € Posg(l),(root(l],) = f A p.i € Posxg(l))

Let CMr = {p € Mz | u%™ C u} be the set of replacement maps which are

less restrictive than or equally restrictive to p%".

Example 3.3 The canonical replacement map u%"™ for R in Example 3.2 is:
W () = () = 2 (ing) = & and " (neh) = {1,2}

7 Since p(c) = @ for every constant symbol ¢, in the remainder of the paper, we only make
the replacement map for the other symbols explicit.

6

Lucas

Note that p in Example 3.2 satisfies p%" C p, i.e., u € CMg.

4 Lazy rewriting

In lazy graph rewriting [FKWO00], reductions are issued on labelled graphs.
We adapt the framework to lazy term rewriting on labelled terms. Following
[FKWO00], we are going to distinguish between eager and lazy positions of
terms. Thus, we label each node (or position) of a term ¢ using e for eager
positions or ¢ for lazy ones: Let F be a signature and £ = {e, (}; then, F x L
is a new signature of labelled symbols. The labelling of a symbol f € F is
denoted f€or f*rather than (f,) or (f,(). The arities are naturally extended:
ar(f¢) = ar(f*) = ar(f) for all f € F. Then, labelled terms are terms in
T(F x L,X x L), which we denote as T (Fg, Xz). Given t € T(F., X) and
p € Pos(t), if root(t],) = z¢ (= x*) or root(t|,) = f¢ (= f*), then we say that
p is an eager (resp. lazy) position of ¢.

Example 4.1 Consider the signature F of the TRS in Example 3.1 and the
following labelled term:

2nd*
le
/\
0! from’
le
S
L

Thus, 1 and 1.2.1 are eager positions; positions A, 1.1,1.2, and 1.2.1.1 are lazy.

Fokkink et al. use the notion of lazy signature, i.e., a signature F sup-
plied with a laziness predicate Az on F x N that holds for (f,7) if and only if
1 < < ar(f) and the ith argument of f is lazy (Definition 3.1.1 of [FK'W00]).

Laziness predicate A, can actually be identified with a replacement map pu:

VieFied{l,...;ar(f)}, (1 €ulf) & -A(f,1))
In the following, we use p instead of A Given p € Mz, the mapping
label, : T(F,X) — T(Fc,Xr) provides the following intended labelling of
a term: given s € T(F,X), the topmost position A of label,(s) is always
eager; given a position p € Pos(label,(s)) and ¢ € {1,...,ar(root(s|,))}, po-
sition p.i of label,(s) is lazy if and only ¢ & u(root(s|,)); otherwise, it is
eager (Definition 3.1.2 of [FKWO00]). Formally, label,(x) = ¢, if + € X, and

7

Lucas
label, (f(s1,...,s8)) = f(label} | (s1), ..., label} ;(s1)), if f € F, where

¢ if v € p(f)
2! otherwise

g (label, (uy), ..., label, , (u,y)) if i € p(f)
gg(label;l(ul), ...y label) , (u,,)) otherwise

label, ,(x) =

label; (g(uy, ... un)) =

Example 4.2 Consider R and p as in Example 3.1. Then, the intended
labelling of term

s =2nd(0:from(s(0))) is ¢ = label,(s)= 2nd® (0¢:“from‘(s°(0%))).

Graphically:
s label,(s)
2nd 2nd*®
|]
0 from 0° from’

l]
s s
} }
0 0°

Here, A,1,1.1,1.2.1, and 1.2.1.1 are eager positions of ¢; position 1.2 is lazy.

Given t € T(F., X¢), erase(t) is the term in T (F,X) that (obviously) corre-
sponds to ¢ after removing all labels. Note that erase o label, = idr(r x), but
label, o erase # idr(r, x,)-

As mentioned above, given ¢t € T (F., X;), a position p € Pos(t) is eager
(resp. lazy) if root(t|,) is labelled with e (resp. £). The so called active positions
of t are defined inductively as follows: A is an active position; if p € Pos(t)
is active, then p.i is active for all eager positions p.i, 1 <@ < ar(root(t|,)) of
t (Definition 3.1.3 of [FKWO00]). Active positions are always reachable from
the root of the term via a path of eager positions. Eager positions do not
necessarily satisfy this.

Example 4.3 (continuing Example 4.2) Positions A, 1, and 1.1 are active in
t = 2nd®(0¢:“from!(s¢(0%)))

Positions 1.2.1 and 1.2.1.1 of ¢ are eager but not active, since position 1.2 is
lazy in t. Graphically:

Lucas

ond® Active positions

I I
I l I
) |
R

(/4/,\

'0° .7 from’

- }
S@
O@

Let Act(t) be the set of active positions of a labelled term ¢t € T (Fg, Xy).
Given s € T(F,X) and u € Myg, the set of active positions of label,(s)
coincides with Pos”(s).

Proposition 4.4 Let F be a signature, p € Mz, and s € T(F,X). Then,
Act(label,(s)) = Pos(s).

An important feature of lazy rewriting on labelled terms is that
the set of active nodes may increase as reduction of labelled terms proceeds.
Each lazy rewriting step on labelled terms may have two different effects:

(i) changing the status (active or not) of a given position within a labelled
term, or
(ii) performing a rewriting step (always on an active position).

In the following, we formally describe them by using two different binary
relations on labelled terms.

4.1 Activating positions for reduction

The activation status of a lazy position immediately below an active position
within a (labelled) term can be modified if the position is ‘essential’, i.e., ‘its
contraction may lead to new redexes at active nodes’ [FKWO00].

Definition 4.5 [Matching modulo laziness [FKWO00]] Let [€ T(F,X) be
linear, t € T(F;,X¢z), and p be an active position of t. Then, [matches
modulo laziness s = |, if either

(i) le X, or
(i) I = f(ly,..., k), s = f(s1,...,8) and, for all ¢ € {1,... k}, if p.u is
eager, then [; matches modulo laziness s;.
If position p.i of ¢ is lazy and {; € X, then position p.¢ is called essential.
Example 4.6 Consider the TRS R of Example 3.1. The lhs 2nd(x:y:z)

matches modulo laziness the labelled term ¢ = 2nd®(0¢: “from!(s¢(0%))). Ac-
cording to Definition 4.5, position 1.2 of ¢ becomes essential.

9

Lucas

Note that if [€ T(F,X) matches modulo laziness an active labelled sub-
term s = t|, without producing essential positions, then [matches erase(s)
in the usual sense. Changes in ‘activity’ of positions are formalized by the
following.

Definition 4.7 Let R = (F, R) be a left-linear TRS. The activation rela-

tion 2 between labelled terms is defined as follows. Let p be active in
t € T(Fe,Xz) and [— r € R be such that [matches modulo laziness
t|,- Let ¢ be an essential position of ¢ and t|, = f*(ti,...,t;). Then,

EA (e),
Consider the TRS R in Example 3.1. The following figure shows the

activation step that corresponds to term ¢ in Example 4.6.

:éxicie: :rz_xiciej:
) l : : l : Activated!
e :6/) A I Lo
¢’ L7 —_— Y T~
'0° .7 from’ 0° __ from®
2 | T
S 1 |
|)
0° 0

Note that 2 is a terminating relation: only a finite number of relabellings

(from lazy to eager) is possible for finite terms. In general, A is not confluent.

Example 4.8 Consider the (ground) TRS R:

f(c(d,a)) — a
b — f(c(b,d))

Then, we have
£(ct(b!,d)) B £e(ct(df,ah)) B £e(c (be,dY)

and £°(c(b°,d")) is a A>—mormal form, since £ (c(d,a)) does not match term
£¢(cf(b,d")) modulo laziness. However,

£(c'(0,d) B £t (0,d)) B £e(c (b!,d))
thus leading to a different A normal form.

Remark 4.9 Note that the activation relation does not use the information
contained in the replacement map . We make this fact explicit by putting

. A . .
no reference to p in the arrow — which we use to represent it.

Note the following obvious fact.

10

Lucas

Proposition 4.10 Let R = (F, R) be a left-linear TRS and t,t" € T (Fg, X¢).
Ift A t', then erase(t) = erase(t’).

The following proposition establishes that activating new positions is not
possible if the labelled term ¢ is obtained by labelling a term s € T(F,X)
using a replacement map p € CMxy.

Proposition 4.11 Let R = (F,R) be a left-linecar TRS, p € CMg, and
s € T(F,X). Then, label,(s) is a A normal form.

4.2 Reducing active positions

Lazy rewriting reduces active positions. In the following, we formally describe
such a process. Note that, according to Fokkink et al.’s formulation, the (hs’s
and rhs’s of rules of the TRS are not labelled terms; they are unlabelled terms
that are used to reduce labelled terms. Therefore, as in Definition 4.5, we have
to deal with labelled and unlabelled terms. For this reason, the description of
the reduction process is slightly more involved than pure rewriting.

Definition 4.12 Let [€ T(F,X) be a linear term, t € T(F;, X)), p €
Pos(t), and u = t|,. If [matches erase(u), then we let the mapping oy, :
Var(l) — T(Fz, Xz) be o1,(x) = ul, for all 2 € Var(l).

From oy, in Definition 4.12, we obtain a substitution ¢ on labelled terms
(with variables in Var(l)) as the homomorphic extension of the following: for

all z € Var(l),

o= 1" fonule) =y € e
fe(th“‘?) lf O'lu(l') f (tlv 7tk)
o(at) = Y if ou(2) =y € X

Fi(ty, .. ote) iforu(x) = fA(t, ..., 1)

for A € {e,/}. Since we are going to apply such a substitution to the labelled
rhs label,(r) of a (left-linear) rewrite rule [— r, and Var(r) C Var(l), our
definition suffices for our purposes (see Definition 4.13).

This is according to Definition 3.2.3 in [FKWO00]: when a substitution o
on labelled terms applies to a labelled term ¢, the labelling that corresponds
to the symbol in position ¢ in o() is that of ¢ in ¢, for every variable position
q € Posx,.(t). Thus, we give the following.

Definition 4.13 Let R = (F, R) be a left-linear TRS and p € Mz. The

relation of active rewriting Em between labelled terms is defined as follows.
Let p be an active position of t € T(Fg, Xz), u = t|, and [— r € R be
such that [matches erase(u). Let o;, be the corresponding mapping. Then,

t 5, t[o(label,(r))],.
11

Lucas

The following figure shows the reduction step that corresponds to Example
4.6 after the activation step.

:2nde: :2nde:
ol ol
L € Lo R L € Lo
e T Ty —— r” .6\‘/7
0" o, =
- ! l ! L--1 8% r-~ from’
o AR
L L
. I
s
l
O@

Note that term 2nd®(0%:¢s°(0°) :efromé(se(se(oe)))), which is obtained af-
ter this E>M—step, is a B-normal form.
Example 4.14 Consider the TRS

f(b,x) — g(x)

and u(f) = pu(g) = {1}. Let t = £° (b°,a’); notice that label,(g(x)) = g (x°).
Then, £(b,x) matches erase(t). We have og(p, 5)(x) = a’. We obtain the
substitution o given by o(x°) = a® and o(x*) = a’. Then,

£(b°,a) S, gf(a®)

Remark 4.15 Example 4.14 shows that 3>M—steps can also indirectly activate
lazy positions after contracting a (labelled) redex. For instance, we can think

of the E>M—step on t = £°(b°,a’) as activating the lazy occurrence of a in ¢

when it is reduced into g°(a®).

We also note the following obvious fact.

Proposition 4.16 Let R = (F, R) be a left-linear TRS, u € My, and t,t' €
T(Fe, Xe). Ift Em ', then erase(t) — erase(t’).

4.3 Lazy term rewriling

The lazy graph rewriting as given in Definition 3.2.3 of [FKWO00] corresponds
to relation E;M =AU Em on labelled terms LR.

Remark 4.17 Actually, Bm permits reduction steps that are not allowed by

Definition 3.2.3 of [FKWO00] (but all of them can be simulated as E{m—steps).
In particular, in the original formulation, rewriting an active position p of a

term ¢ (i.e., the application of a E>M—step at t|,) is allowed only after the full
12

Lucas

activation of subterms of t|, (i.e., after obtaining a A normal form of t)p)-
This fact is not relevant with respect to the main results of this paper and we
do not consider them any further here.

Whenever LR is used for evaluating an unlabelled term s € T(F,X), we

are actually interested in E{m—redluctioms issued from label,(s). As done in
[NOO01,0F00] for OBJ (like) languages (and which is implicit in [FKWO00]),
we can define an evaluation semantics, i.e., a mapping LR-eval, : T(F,X) —
P(T(F,X)) that obtains the evaluation of a given term by using LR:

LR 1

LR-eval,(s) = {erase(t) € T(F,X) | label,(s) —, t}
For CSR we can do the same:
CSR-eval,(s) ={s' € T(F,X)|s f_>L s’}
Now we can compare both evaluation mechanisms.

Example 4.18 Consider R and p as in Example 3.1 and s = 2nd (from(0)).
We have the following L R-evaluation sequence:

label,(s) = 2nd® (from®(0°)) Em 2nd(0¢: “from!(s€(0%)))
A> 2nd®(0°¢:*from®(s€(0%)))
B, 2nd°(0°:°s°(0°) : “from’ (s°(s°(0%))))
B, 50009
Therefore,
s(0) € LR-eval,(2nd(from(0)))
as desired (this follows the discussion in Example 1.3). In contrast,

s(0) ¢ CSR-eval,(2nd (from(0))) = {2nd (0:from(s(0)))}.
According to this, given R = (F, R) and u € Mz, we say that

R is LR(u)-terminating if, for all s € T(F,X), there is no infinite E;M—
rewrite sequence starting from label,(s).

5 Lazy rewriting and context-sensitive rewriting

The following connection between Em and CSR is interesting.

Proposition 5.1 Let R = (F, R) be a left-linear TRS, up € Mg, s € T(F,X)
andt € T(Fp, Xz). Then, label,(s) Em tifand only if 3s' € T(F,X), s —, &
and t = label,(s").

The following theorem expresses that ('SR can always be seen as a restric-
tion of LR that only considers ‘canonically labelled’ terms.

Theorem 5.2 Let R = (F, R) be a left-lincar TRS, p € Mg, and s,s' €
T(F,X). Then, s <, s if and only if label,(s) E;M label,(s').
13

Lucas

The following theorem expresses that LR can be simulated by CSR when-
ever u € CMg.

Theorem 5.3 Let R = (F, R) be a left-linear TRS, p € CMg, s € T(F,X),

andt € T(Fp, Xz). Then, label,(s) E;M tifand only if 3s' € T(F,X), s —, &
and t = label,(s").

In this way, CSR provides an alternative (simpler) evaluation mechanism.

We have:

Corollary 5.4 Let R be a left-linear TRS and p € CMg. Then, LR-eval, =
CSR-eval,,.

Example 4.18 shows that this result does not hold if x ¢ CMz. Concerning
LR(p)-termination, Theorem 5.3 also has the following consequence.

Corollary 5.5 Let R be a left-linear TRS and p € CMgr. Then, R is p-
terminating if and only if R is LR(u)-terminating.

Example 5.6 Consider R and p as in Example 3.2. Fokkink et al. use this
TRS and replacement map p (more precisely, the corresponding laziness pred-
icate Az) to motivate lazy rewriting to be (hopefully) able ‘to avoid infinite re-
ductions’ ([FKWO00], page 47). Since u € CMz (see Example 3.3), by Corollary
5.5, LR(p)-termination and p-termination coincide. Since R is p-terminating
(see Example 3.2), Corollary 5.5 proves Fokkink et al.’s claim.

6 Proving termination of lazy rewriting

Corollary 5.5 is quite limited regarding proofs of LR(p)-termination. However,
it provides the basis for proving LR(u)-termination as termination of CSR for
a transformed TRS (and replacement map p').

In [Ngu01], a transformation of pairs (R, i) of TRSs and replacement maps
is proposed to force non-variable subterms of all left-hand sides of rules in R to

be p-replacing, i.e., to achieve %" C p. The transformation is as follows (see

Section 6.1 of [Ngu01]): let R = (F,R) bea TRSand p € Mx. Letl — r € R,
p € Posz(l), root(l],) = f, and i & u(f) be such that p.i € Posxz(l). Then
we obtain R’ = (F', R') and p/ € Mz as follows: F' = F U {f'}, where f’
is a new symbol of arity ar(f’) = ar(f) such that ¢'(f) = p(f) U {i} and
'(g) = u(g) for all g € F. On the other hand,

R =R—{l = r}U{l' = rlx],; = Ulz],.}

where I" = [f'(l|,.1,- .., px)]p if ar(f) = k and « is a new variable.

Example 6.1 Consider R as in Example 4.8 and ¢ = g . Then, R’ is:
fi(c(d,a)) — a b — f(c(b,d))
(%) — £1(x)
and p/(f) = p'(c) = @, p/(£1) = {1}.
14

Lucas

The transformation proceeds like this (starting now from R’ and p') until
R# and p# are obtained such that p5y C p#. In particular, if p§¢" C p, then

R#* = R and p¥ = pu.

Example 6.2 Continuing Example 6.1, R¥ is:

f1(c(d,a)) — a f1(c(x,y)) — £1(c3(x,y))
f1(c1(d,x)) — f1(co(d,x)) f(x) — £,(x)
fi(cs(x,a)) — f£1(ci(x,a)) b — £(c(b,d))

and p# is given by p#(£) = p#(c) = @, p#(£1) = p#(c1) = {1}, #(c2) =
{1,2}, and p#(c3) = {2}. Notice that p5iy C p#.

Remark 6.3 Note that the transformation has some ‘non-determinism’ due
to the selection of f and p in each step. For instance, a different possibility
(among others) for the first step of Example 6.1 is the following:
f(c’(d,a)) — a b — f(c(b,d))
fc(x,a)) — f(c’'(x,a))

and p"'(f) = p"(c) = @, p"(c’) = {1}.

Corollary 5.5 suggests using such a transformation for proving LR(u)-
termination of R as u#-termination of R¥, provided that the transformation
preserves LR(u)-termination of R. Unfortunately, this is not true.

Example 6.4 Consider R as in Example 4.8, y = py, and R¥ and p# as in
Example 6.2. Note that R is not LR(u)-terminating: for t = £(c(b,d)), we
have:

label, (t) = £(ct(b,d)) B £2(c(bf,d))) B £2(c*(x°,d)))
R £e(ce(£e(ct(bt,d)),d)) Dot £e(ce (£ (et (b°,d")),d)) D, -+
However, R* is LR(u*)-terminating®. The problem is that some activations
of lazy subterms are not possible now:

£2(c!(0,d)) B £5(c(0,d)) D s £(c5(b!,d))

The lazy subterm b¢ cannot be activated; fi(cg(bé,de)) is a 3>M#—mormal
form. Moreover, since fi(cg(bé,de)) = label,(£1(c3(b,d)) and M# € CMpx,

by Proposition 4.11 is a A normal form, hence a E;mxyk—mormal form.
A simple modification of Nguyen’s transformation provides a sound tech-

nique for proving LR(u)-termination. The trick is to include all possible ac-
tivations of lazy (problematic) arguments for each considered symbol: given

8 This can be formally proved: According to Corollary 5.5, we just need to prove p#-
termination of R#. Use Giesl and Middeldorp’s transformation described in the last section
of [GM99,GMO02] (which is available in MU-TERM 1.0); termination of the transformed TRS
can be automatically proved using CiME 2.0 system (available at http://cime.lri.fr) if
the ‘dependency pairs criterion’ (see [AG00]) has been previously activated.

15

Lucas

[—r € Rand p € Pos(l), we let
T(p) = i € {1,...ar(root({],))} — u(root(ll,)) | pi € Poss(l)
Assume that Z(l,p) = {i1,...,4,} for some n > 0 (i.e., Z(l,p) # @) and let
f = root(l],). Then, R® = (F° R°) and pu® € Mgo are as follows: F° =
FU{f;|1 <5< n}, where each f; is a new symbol of arity ar(f;) = ar(f).
We let p°(f;) = p(f) U {s;} for 1 < j < n, and p°(g) = p(g) for all g € F.
On the other hand,
Re=R—A{l—=r}U{ll = rlz],: — Ulz],s |1 <j<n}

where I = I[f;(l|p.15- .-, U px)]p if ar(f) =k, and 2 is a new variable.

Example 6.5 Consider R as in Example 4.8 and ¢ = py. With the new
transformation, we could obtain R® to be the same as the first R’ obtained
in Example 6.1. On the other hand, if symbol ¢ (rather than f) of lhs
f(c(d,a)) — ais considered, we now obtain:

f(c’(d,a)) — a f(c(d,x)) — £(c’’(d,x))
f(c’’(d,a)) — a b — f£(c(b,d))
flclx,a)) — £(c’(x,a))

and p°(£) = p°(c) = @, p°(c’) = {1}, p°(c’’) = {2}.
Again, the transformation proceeds like this (now starting from R° and

1) until R = (F*, B%) and p are obtained such that Py E ph. If p € CMg,
then R* = R and pf = p.

Example 6.6 Consider R to be the same as in Example 4.8 and p = p,.
Then, R is

f,(c}(d,a)) — a fi1(c(x,y)) — f1(cs3(x,y))
f1(ca(x,a)) — f1(ch(x,a)) f1(ca(d,y)) — £1(c2(d,y))
f1(ci(d,a)) — a fi(elx,y)) — £1(ca(x,y))
f1(c1(d,x)) — £,(c)(d,x)) f(x) — £1(x)
fi(cs(x,a)) — f1(ci(x,a)) b — f(c(b,d))

and s given by JH(£) = pile) = B, () = pi(er) = pi(es) = {1,
pi(ch) = pf(ch) = {1, 2}, and pf(cy) = p¥(cs) = {2}. Notice that poe & 1.

Now, we are able to appropriately simulate every E;Mredluctiom sequence
in R as a E{>Mu—redluctiom sequence in RY.
Example 6.7 Consider the term ¢ of Example 6.4. Now we have the following
. . LR . . h
(infinite) — s-reduction sequence in R":
label, (1) = £5(c'(b',d)) B 0 £5(cc(d',a)) 54 £5(c5 (e, d0))
S £ (e (01,d),d) H £ (cq (£ (c§(07,aD),dD) D

We say that a transformation © : (R,u) — (R',4') from pairs (TRS,
replacement map) into the same kind of pairs is correct (regarding LR(p)-

16

Lucas

termination) if L R(u')-termination of R’ implies L R(y)-termination of R. We
say that © is complete if LR(p)-termination of R implies L R(y)-termination
of R'. According to our discussion (and since p’-termination and LR(%)-
termination coincide, see Corollary 5.5), we have the following.

Theorem 6.8 (Correctness) Let R = (F, R) be a left-linear TRS and p €
Mg. If RF is pf-terminating, then R is LR(u)-terminating.

Example 6.9 Consider R and y as in Example 3.1. Then, Rf is:

2nd(x:’(y:z)) — v

2nd (x:y) — 2nd(x:’y)

from(x) — x:from(s(x))
and 4% is given by p%(2nd) = () = pf(from) = {1} and pi(:?) = {1,2}.
In fact, in this case R and R¥* coincide (see Example 6.1 of [Ngu01]). How-
ever, using Theorem 6.8, we can prove LR(u)-termination of R, which was an
open problem in [Ngu01]: g~termination of R* is proved by using Zantema’s
transformation [Zan97]: the TRS

2nd(x:’ (y:2)) —y

2nd (x:y) — 2nd(x:’activate(y))
from(x) — x:from’ (s(x))
activate(from’ (x)) — from(x)

from(x) — from’ (x)
activate(x) — X

obtained in this way (where activate and from’ are new symbols introduced
by Zantema’s transformation) is terminating®. Note that, since u ¢ CMpg,
Corollary 5.5 does not apply to R and p.

We conjecture that our transformation is not only correct but also com-
plete.

Conjecture 6.10 (Completeness) Let R = (F, R) be a left-linear TRS and
p € Mr. If R is LR(u)-terminating, then RY is u°-terminating.

Thus, we could say that termination of LR is completely equivalent to
termination of CSR.

7 Conclusions and future work

We have provided an adaptation of lazy graph rewriting of [FKWO00] to lazy
term rewriting, LR. An alternative presentation can be found in [Ngu01]. We
believe that our formalization is simpler and closer to [FKWO00]. If we use
replacement maps p that are less restrictive than the canonical replacement
map p%", then CSR and LR coincide for left-linear TRSs R. In this case,

9 Use the CiME 2.0 system again.
17

Lucas

it makes sense to use CSR as it is the simplest one. By looking for better
implementations of LR, [FKWO00,Ngu0l] pay some attention to developing
transformation techniques to achieve this condition thereby (silently) using
CSR rather than LR. This also allows us to prove termination of LR by
proving termination of CSR for a transformed rewriting system. As far as the
author knows, this is the first proposal of a technique for proving termination
of LR.

We hope that our results may contribute to formally addressing the prob-
lem of specifying more general strategy annotations in OBJ programs (see
[OF00,NOO1]): negative annotations have been recently proposed for achiev-
ing the desirable trade-off between termination and completeness discussed in
the introduction (see Examples 1.2 and 1.3). Such negative indices indicate
that the corresponding argument is evaluated ‘on-demand’, where a ‘demand’
is an attempt to match a pattern to the term that occurs in such an argu-
ment position [Eke98, GWMFJ00,0F00]. Note that, according to [LucOlal,
CSR (not LR) is the restriction of rewriting that can be used to model OBJ
computations of programs using positive strategy annotations. For instance,
the CafeOBJ program in Example 1.2 is terminating because the correspond-
ing TRS R is p-terminating, where R and p are the same as in Example
3.1. The proof of p-termination of R can easily be achieved using Zantema’s
transformation. However, as shown in Example 1.2, in this case, we do not
achieve completeness in evaluations. As discussed in Example 1.2, relaxing
the restrictions on the list constructor by adding a new positive annotation
for the second argument of cons is dangerous. Therefore, no completely satis-
factory behavior can be obtained with positive annotations for the considered
program. For this reason, negative annotations have been proposed.

Example 7.1 The following version of the CafeOBJ program of Example 1.2
(borrowed from [NOO1]):

mod! TEST {
[T]
op O : > T
op s : T > T {strat: (1)}
opcons : TT ->T {strat: (1 -2)}
op 2nd : T -> T {strat: (1 0)}
op from : T -> T {strat: (1 0)}

vars X Y Z : T

eq 2nd(cons(X,cons(Y,Z))) =Y .

eq from(X) = cons(X,from(s(X)))
}

associates negative annotations to the operator cons.

Unfortunately, the operational semantics of CafeOBJ programs using strat-
egy annotations with negative indices has not been related to either CSR or LR

18

Lucas

vet. In [LucOlal], we have proposed on-demand rewriting (ODR) as a suitable
extension of CSR that can cope with negative annotations. Unfortunately,
in contrast to OBJ programs with positive strategy annotations (regarding
CSR), it is not clear whether computations of OBJ programs with negative
strategy annotations can be appropriately (or easily) expressed using ODR.
Thus, despite the fact that [LucOla] describes a technique for proving termi-
nation of ODR, it is not clear that such a technique correctly applies to the
CafeOBJ program in Example 7.1.

Also, Fokkink et al.’s lazy rewriting is invoked in [OF00,Ngu01,NOO1] as
being a kind of ‘underlying’ or ‘inspiring’ mechanism for dealing with the neg-
ative indices in strategies annotations. However, no clear connection between
lazy rewriting and computations of OBJ programs with negative annotations
has yet been established. Therefore, more work remains to be done before
applying the LR (or ODR) framework to model such programs.

References

[AGOO] T. Arts and J. Giesl. Termination of Term Rewriting Using
Dependency Pairs. Theoretical Computer Science, 236:133-178, 2000.

[Ant92] S. Antoy. Definitional Trees. In H. Kirchner and G. Levi, editors, Proc.
of 3rd International Conference on Algebraic and Logic Programming,
ALP’92, LNCS 632:143-157, Springer-Verlag, Berlin, 1992.

[BLRO2] C. Borralleras, S. Lucas, and A. Rubio. Recursive Path Orderings
can be Context-Sensitive. In A. Voronkov, editor Proc. of
18th International Conference on Automated Deduction, CADE’02,
Springer LNAT volume 2392, to appear, 2002.

[CELM96] M. Clavel, S. Eker, P. Lincoln, and J. Meseguer. Principles of Maude.
In J. Meseguer, editor, Proc. 1st International Workshop on Rewriting
Logic and its Applications, Electronic Notes in Theoretical Computer
Science, volume 4, 25 pages, Elsevier Sciences, 1996.

[Eke98] S. Eker. Term Rewriting with Operator Evaluation Strategies. In
C. Kirchner and H. Kirchner, editors, Proc. of 2nd International
Workshop on Rewriting Logic and its Applications, WRLA’9S8,
Electronic Notes in Computer Science, 15(1998):1-20, 1998.

[FGIJMS85] K. Futatsugi, J. Goguen, J.-P. Jouannaud, and J. Meseguer. Principles
of OBJ2. In Conference Record of the 12th Annual ACM Symposium
on Principles of Programming Languages, POPL’85, pages 52-66,
ACM Press, 1985.

[FKWO00] W. Fokkink, J. Kamperman, and P. Walters. Lazy Rewriting on
Eager Machinery. ACM Transactions on Programming Languages and
Systems, 22(1):45-86, 2000.

19

Lucas

[FN97] K. Futatsugi and A. Nakagawa. An Overview of CAFE Specification
Environment — An algebraic approach for creating, verifying, and
maintaining formal specification over networks — In Proc. of 1st
International Conference on Formal Engineering Methods, 1997.

[FR99] M.C.F. Ferreira and A.L. Ribeiro. Context-Sensitive AC-Rewriting. In
P. Narendran and M. Rusinowitch, editors, Proc. of 10th International
Conference on Rewriting Techniques and Applications, RTA’99, LNCS
1631:286-300, Springer-Verlag, Berlin, 1999.

[FW76] D.P. Friedman and D.S. Wise. CONS should not evaluate its
arguments. In S. Michaelson and R. Milner, editors, Automata,
Languages and Programming, pages 257-284, Edinburgh University
Press, 1976.

[GLO02] B. Gramlich and S. Lucas. Modular termination of context-sensitive
rewriting. In C. Kirchner, editor, Proc. of 4th International ACM
SIGPLAN Conference on Principles and Practice of Declarative
Programming, PPDP’02, ACM Press, New York, to appear, 2002.

[GM99] J. Giesl and A. Middeldorp. Transforming Context-Sensitive Rewrite
Systems. In P. Narendran and M. Rusinowitch, editors, Proc. of 10th

International Conference on Rewriting Techniques and Applications,
RTA’99, LNCS 1631:271-285, Springer-Verlag, Berlin, 1999.

[GMO02]J. Giesl and A. Middeldorp. Transformation Techniques for
Context-Sensitive Rewrite Systems. Technical Report AIB-2002-02,
Department of Computer Science, RWTH Aachen, 2002.

[GWMFJO00] J.A. Goguen, T. Winkler, J. Meseguer, K. Futatsugi, and J.-P.
Jouannaud. Introducing OBJ. In J. Goguen and G. Malcolm,
editors, Software Fngineering with OBJ: algebraic specification in
action, Kluwer, 2000.

[HLO91] G. Huet and J.J. Lévy. Computations in orthogonal term rewriting
systems. In J.L. Lassez and G. Plotkin, editors, Computational logic:
essays in honour of J. Alan Robinson, pages 395-414 and 415-443. The
MIT Press, Cambridge, MA, 1991.

[HLM98] M. Hanus, S. Lucas, and A. Middeldorp. Strongly sequential and
inductively sequential term rewriting systems. Information Processing
Letters, 67(1):1-8, 1998.

[Luc96] S. Lucas. Termination of context-sensitive rewriting by rewriting.
In F. Meyer auf der Heide and B. Monien, editors, Proc. of 23rd.
International Colloguium on Automata, Languages and Programming,
ICALP’96, LNCS 1099:122-133, Springer-Verlag, Berlin, 1996.

[Luc98] S. Lucas. Context-sensitive computations in functional and functional
logic programs. Journal of Functional and Logic Programming,
1998(1):1-61, January 1998.

20

Lucas

[LucOla] S. Lucas. Termination of on-demand rewriting and termination of OBJ
programs. In Proc. of 3rd International Conference on Principles and
Practice of Declarative Programming, PPDP’01, pages 82-93, ACM
Press, 2001.

[Luc01b] S. Lucas. Termination of Rewriting With Strategy Annotations. In
R. Nieuwenhuis and A. Voronkov, editors, Proc. of 8th International
Conference on Logic for Programming, Artificial Intelligence and
Reasoning, LPAR01, LNAI 2250:669-684, Springer-Verlag, Berlin,
2001.

[Luc02a] S. Lucas. Context-sensitive rewriting strategies. Information and
Computation, to appear.

[Luc02b] S. Lucas. Context-sensitive rewriting techniques for programs with
strategy annotations (tutorial). In U. Montanari, editor, Proc. of
4th International Workshop on Rewriting Logic and its Applications,
WRLA’02, Flectronic Notes in Theoretical Computer Science, volume
71, to appear.

[Luc02¢] S. Lucas. Termination of (Canonical) Context-Sensitive Rewriting. In
S. Tison, editor, Proc. of 13th International Conference on Rewriting
Techniques and Applications, RTA’02, LNCS volume 2378, to appear,
2002.

[Ngu01] Q.-H. Nguyen. Compact Normalisation Trace via Lazy Rewriting. In
B. Gramlich and S. Lucas, editors, Proc. of International Workshop
on Reduction Strategies in Rewriting and Programming, WRS01,
Electronic Notes in Theoretical Computer Science, volume 57, 2001.

[NOO1] M. Nakamura and K. Ogata. The evaluation strategy for head normal
form with and without on-demand flags. In K. Futatsugi, editor, Proc.
of 3rd International Workshop on Rewriting Logic and its Applications,
WRLA’00, Flectronic Notes in Theoretical Computer Science, volume
36, 17 pages, 2001.

[OF00] K. Ogata and K. Futatsugi. Operational Semantics of Rewriting with
the On-demand Evaluation Strategy. In Proc of 2000 International
Symposium on Applied Computing, SAC’00, pages 756-763, ACM
Press, 2000.

[SX98] J. Steinbach and H. Xi. Freezing — Termination Proofs for Classical,
Context-Sensitive and Innermost Rewriting. Institut fiir Informatik,
T.U. Miinchen, January 1998.

[Zan97] H. Zantema. Termination of Context-Sensitive Rewriting. In H.
Comon, editor, Proc. of 8th International Conference on Rewriting
Techniques and Applications, RTA’97, LNCS 1232:172-186, Springer-
Verlag, Berlin, 1997.

21

