1

Context-sensitive rewriting (CSR) [Luc98a] is a rewriting restriction which can
be associated to every Term Rewriting System (TRS). Given a signature F,
a mapping p : F — P(N), called the replacement map, discriminates some
argument positions u(f) C {1,...,k} for each k-ary symbol f. Given a function
., tx), the replacements are allowed on arguments #; such that ¢ €
p#(f) and are forbidden for the other argument positions. These restrictions are

call f(t1,..

Context-sensitive rewriting strategies

Salvador Lucas™
DSIC, Universidad Politécnica de Valencia
Camino de Vera s/n, E-46022 Valencia, Spain

e.mail: slucas@dsic.upv.es

Abstract

Context-sensitive rewriting is a simple rewriting restriction which is
formalized by imposing fixed restrictions on replacements. Such a restric-
tion is given on a purely syntactic basis: it is given on the arguments of
symbols of the signature and inductively extended to arbitrary positions
of terms built from those symbols. The termination behavior is not only
preserved but usually improved and several methods have been developed
to formally prove it. In this paper, we investigate the definition, proper-
ties, and use of context-sensitive rewriting strategies, i.e., particular, fixed
sequences of context-sensitive rewriting steps. We study how to define
them in order to obtain efficient computations and to ensure that context-
sensitive computations terminate whenever possible. We give conditions
enabling the use of these strategies for root-normalization, normalization,
and infinitary normalization. We show that this theory is suitable for for-
malizing the definition and analysis of real computational strategies which
are used in programming languages such as OBJ or ELAN.

Keywords: infinitary normalization, normalization, replacement restric-
tions, root-normalization, sequentiality, strategies, term rewriting.

Introduction

raised to arbitrary positions of terms in the obvious way.

*Work partially supported by CICYT TIC2001-2705-C03-01, Acciones Integradas HI 2000-

0161, HA 2001-0059, HU 2001-0019, and Generalitat Valenciana GV01-424.

Example 1 Consider the TRS R:

sel(0,x:y) —+ x first(0,x) — [
gel(s(x),y:z) — sel(x,z) first(s(x),y:z) — y:first(x,z)
from(x) — x:from(s(x))

together with the replacement map
pu(s) = p(:) = p(from) = {1} and p(sel) = p(first) = {1,2}.

The following derivation is allowed with CSR under p (we underline the redex
which is contracted in each p-rewriting step):
sel(s(0),from(s(0))) — sel(s(0),s(0):from(s(s(0))))
— sel(0,from(s(s(0))))
— 8e1(0,s(s(0)) :from(s(s(0))))
— s5(s(0))
However, the infinite (meaningless) derivation
sel(s(0),from(s(0))) — sel(s(0),s(0):from(s(s(0))))
— 8el(s(0),s(0):8(s(0)) :from(s(s(s(0)))))
% “ e

2

is avoided since p(:) = {1} (the second argument of ‘1’ cannot be rewritten).

For instance, the second reduction step is not allowed with CSR.

Context-sensitive computations under a replacement map p obtain (at most) p-
normal forms, 1.e., terms which cannot be further p-rewritten. In general, the
p-normal forms of a TRS R strictly include its normal forms (e.g., the subterm
s(0) :from(s(s(0))) which appears in Example 1 is a g-normal form which is
not a normal form).

Remark 1 A rewriting strategy (roughly, a rule for appropriately choosing rewrit-
ing steps to be issued in a computation) is a restriction (i.e., a subset) of the
rewriting relation. However, an important feature of strategies is that they re-
main ‘active’ as long as possible, 1.e., the normal forms of a strategy are normal
forms'. Thus, with regard to normalization, they can still achieve full com-
putational power. In contrast, the normal forms of CSR are not (in general)
normal forms. In this sense, CSR could better be thought of as a computational

restriction of term rewriting.

Sufficient conditions to ensure that CSR is still able to compute root-stable
terms (also called head-normal forms) and values? have been established in
[Luc98a]. In fact, given a TRS R we are able to automatically provide re-
placement maps supporting such computations. In this setting, the canonical

replacement map (denoted by ux™") is specially important, as it specifies the

1See, e.g., [OV02] for a very recent survey on the topic where this requirement is part
of the definition of strategy (Definition 8.1.1); similar requirements can be found in [AM96,
Klo92, Mid97]. In contrast, [BEGK*87] admits strategies which are not forced to reduce
terms containing redexes.

?Here, a value is a term which contains no defined symbol, i.e., symbols occurring at the
outermost position of the left-hand sides of any rule of the TRS.

most restrictive replacement map which can be (automatically) associated to a
TRS R in order to achieve completeness of context-sensitive computations (see
[Luc98a] for more details). Roughly speaking, the canonical replacement map

18

the most restrictive replacement map which ensures that the (posi-
tions of) non-variable subterms of the left-hand sides of the rules of
R are replacing.

For instance, the replacement map g in Example 1 1s, in fact, less restrictive than
the canonical replacement map pu"™ of TRS R in the example (see Example 12
below). With the replacement map p in Example 1, we are able to ensure that
every term ¢ having a value s (0) for some n > 0 can be evaluated using CSR
(see [Luc98al for a formal justification of this claim).

1.1 Related work

The search for complete implementations of eager languages such as Lisp [McC60,
McC78] originated the first proposals for the use of syntactic replacement re-
strictions in programming [FW76, HM76]. Since list processing is prominent in
the design of Lisp, the authors of these works studied implementations where the
list constructor operator cons (“:’ in this paper) did not evaluate its arguments,
during certain stages of the computation (lazy cons). As a motivating exam-
ple, Friedman and Wise propose the following Lisp definition for computing (by
evaluating (terms 1)) an infinite sequence of fractions

whose partial sums converge to 72 /6 (see page 265 of [FW76]):
(terms n) = (cons (reciprocal (square n)) (terms (addl n)))

Their idea 1s to ‘violate the data type of LISP 1.0° in such a way that ‘the
evaluation (of, e.g., (terms 1)) does not immediately diverge; it results in a
node referencing two suspensions’ [FWT6].

Example 2 With the TRS:

sqr (0) —+ 0 0+ x —+ x
gqr(s(x)) — s(sqr(x)+dbl(x)) s(x) +y = s(xty)
dbl(0) — 0

dbl(s(x)) — s(s(dbl(x)))

terms(n) — recip(sqr(n)):terms(s(n))

together with p(:) = @ (or even p(:) = {1}) and p(f) = {1,... ,k} for any
other k-ary symbol f, we are able to obtain the desired restriction.

Moreover, by adding the two rules for function first of Example 1:

first(0,x) — 0
first(s(x),y:z) — y:first(x,z)

we can obtain (as first(n,terms(1))) the first n terms of the series that
approximates 72 /6, thus obtaining an arbitrary precision for the approximation
(see Section 9 and Example 38 below). Here, as usual, n abbreviates s”(0). In
both cases, we can formally prove the termination of CSR.

Example 3 Consider the previous rules as a TRS R and the replacement map

p (with p(:) = {1}). Then, RY:

sqr (0) —+ 0 0+ x —+ x
sqr(s(x)) — s(sqr(x)+dbl(x)) s(x) +y — s(x+y)
dbl (0) — 0 first (0,x) - [
dbl(s(x)) — s(s(dbl(x))) first(s(x),: (y)) — :(y)

terms(n) — :(recip(sqr(n)))

1s obtained by removing the non-u-replacing arguments of terms that integrate
the rules of R (and by appropriately decreasing the arities of symbols). Termi-
nation of RY ensures termination of CSR under p for R (see [Luc96]). Here,
R is terminating: use a recursive path ordering (rpo [Der87, Zan02]) with
precedence

terms > :,recip,sqr; sqr >dbl,+>s; and first > []

Friedman and Wise also use replacement restrictions to provide alternative
(more efficient) definitions to logical connectives and, or. In fact, they im-
plement their ‘short-cut’ definitions of these boolean operators using lazy cons
in such a way that the evaluation is suspended after the first argument which
evaluates to false (resp. true) if connective and (resp. or) is considered (see
page 277 of [FW76]). This is implemented (without using lists) with the TRS:

and(false,x) — false or(true,x) — true
and(true,x) — x or(false,x) — x
together with p(and) = p(or) = {1}.

Syntactic replacement restrictions have been explicitly included in the design
of several (eager) programming languages. For instance, the so called strategy
annotations have been used in the OBJ family of languages® to introduce replace-
ment restrictions aimed at improving the efficiency of computations (by reducing
the number of attempted matchings). Their usefulness has been demonstrated
in practice: in [FGJM85] the authors remark that, due to their use in OBJ2 pro-
grams, ‘the ratio between attempted matches and successful matches is usually
around 2/3, which is really impressive’. For instance, OBJ’s built-in conditional
operator has the following (implicit) strategy annotation® ([FGJM85], Section
4.4, [GWMFJ00], Section 2.4.4)

op if_then_else_fi : Bool Int Int -> Int [strat (1 0)]

3As in [GWMFJ00], by OBJ we mean OBJ2, OBJ3, CafeOBJ, or Maude.
4 A more precise and general definition can be found in OBJ3’s standard prelude, see Ap-

pendix D.3 of [GWMFJ00].

which says to evaluate the first argument until 1t is reduced, and then apply rules
at the top (indicated by ‘0’). Reductions on the second or third arguments of
calls to if _then_else_fi are never attempted.

Other eager programmming languages such as ELAN [BKKMRY8] incorpo-
rate the specification of syntactic replacement restrictions as an ingredient of
the definition of more complex rewriting strategies which can be used to guide
the evaluation of expressions.

In (lazy) functional programming, different kinds of syntactic annotations
on the program (such as strictness annotations [Pey87], or global and local
annotations [PE93]) have been introduced in order to drive local changes in the
basic underlying lazy evaluation strategy and obtain more efficient executions
[Bur91, MN92, Myc80, PE93, Pey87]. In these languages, constructor symbols
are lazy, 1.e., their arguments are not evaluated until needed. This permits
structures that contain elements which, if evaluated, would lead to an error
or fail to terminate [HPF99]. Since there are a number of overheads in the
implementation of this feature (see [Pey87]), lazy functional languages like Gofer
[Jon92] and Haskell [HPW92] allow for syntactic annotations on the arguments
of datatype constructors, thus allowing an immediate evaluation.

Example 4 The following definition in Haskell:

data List a = Nil | Cons 'a (List a)
declares a (polymorphic) type List a whose binary data constructor Cons eval-
uates the first argument (of type a). This is specified by using the symbol ‘!’ in
the first arqument of Cons.

Other lazy functional languages, such as Clean [ENPS92, NSEP92, PE93], allow
for more general annotations.

Example 5 The following specification
if :: 'Bool a a -> a
if True x y = x
if False x y =y
1s an annotated definition of the function if which forces the evaluation of the

first argument of each if call (see the mark ‘1’ in the type declaration of if;
this is called a global annotation [PE93]).

The use of annotations of this kind can be understood as follows [PE93]:

A qiven lazy strategy indicates whether an arqgument t; of a function
call f(t1, ... ,1;) must be evaluated. However, we overcome this rule
by evaluating t; (up to a head-normal form) if the i-th argument is
annotated wn the profile of f.

Thus, annotations play a secondary role in the global execution mechanism:
an underlying strategy is assumed. Program annotations are usually obtained

from some kind of strictness® analysis. Strictness analyses are usually costly

as they involve fixpoint computations [CP85, Myc80]. In this case, the safety
of this deviation of the main strategy is ensured because strictness analyses
are derived from the semantics of the functional language. Sometimes, the
programmer is allowed (but discouraged) to annotate the program by himself.
In this case, however, there is no way to determine what kind of modification
of the semantics or computational behavior is introduced by the annotations.
Context-sensitive rewriting takes the symmetric approach; it can be thought
of as a mechanization of the syntactic annotations themselves. We do not assume
any extra sophisticated evaluation mechanism. In [Luc96, Luc98a] (and also in
this paper), we have analyzed computational properties of CSR —confluence, ter-
mination, and completeness in computations leading to (infinite) normal forms,
(infinite) values, head-normal forms, and constructor head-normal forms—, thus
giving a solid theory for computing. Our methods do not depend on the source
of the annotations: strictness analyses, programmer’s notes or whatever else.
Indeed, as the use of strictness information is often claimed to be a suitable
way for specifying the replacing arguments of functions, we want to note that
(in contrast to u%”) the (exclusive) use of strictness information for defining
a replacement map (for instance, by letting ¢ € p5i"(f) if and only if the ¢-th
argument of f is strict) does not ensure the good computational properties of

CSR. Moreover, there is no clear correspondence between 8™ and pst’".

Example 6 Consider the function £ defined by
f(x) = x

Thus, £ s strict and 1 € p3i™(£). However, 1 & u$§™(£). On the other hand,
consider the rules defining first in Ezample 1. Then, 2 € p$f"(first) but
2 & psit(first), since first(0,1) = [1 # L, ie., first is not strict in
its second argument. Note that £irst(s(0),from(0)) does not psi"-rewrite to
0:first(0,from(s(0))) because the second arqument of first(s(0),from(0))
is not reducible using p$y". Thus, the use of strictness information in CSR does

not even ensure root-normalization of terms. This is in contrast with ps™.

In general, strictness information is not adequate for defining a replacement map
(for CSR) as there is no underlying (lazy) strategy which can be altered accord-
ing to strictness annotations, i.e., these annotations play a secondary role in the
computation. In contrast, syntactic annotations are the only way to activate
reductions in CSR; no underlying computational mechanism is assumed.

1.2 Contributions of the paper

As CSR 1s a rewriting restriction, it always preserves termination. Thus, if
a TRS is terminating (this means that no term initiates an infinite rewrite

5Let D1,..., Dy, D be ordered sets with least elements L1, ..., L, L respectively, express-
ing undefinedness. A mapping f : Dy X --- X D — D is said to be strict in its ¢-th argument
if f(di,...,Li,...,dy) = Lforalld; € Di,...,d; € Dg. See section 3.3.3 [Luc98a] for

connections between strictness and CSR.

sequence), then it is also p-terminating (no term initiates an infinite p-rewrite
sequence). However, it is more interesting to use CSR to achieve termination,
i.e., to avoid infinite rewrite sequences even if they exist. In term rewriting,
there are two main approaches for addressing the problem of ensuring finiteness
of rewriting computations issued from a TRS R:

1. studying termination of R to prove that no term starts an infinite rewrite
sequence (see [Zan02] for a recent survey on this topic),

2. defining normalizing strategies for R (i.e., rules to define specific rewrite
sequences that avoid infinite rewritings starting from terms that have a
normal form and finally obtain such a normal form).

The first approach excludes the second one: the definition of normalizing strate-
gies for terminating TRSs becomes trivial (except for efficiency issues). Unfortu-
nately, termination is, in general, undecidable. Moreover, requiring termination
of a TRS is considered to be quite a strong restriction for many applications.
Thus, many researchers have investigated how to define normalizing rewrit-
ing strategies. In most cases, such strategies only work for TRSs that satisfy
strong syntactic requirements (typically orthogonality or almost orthogonality
together with left-normality, inductive sequentiality, strong sequentiality, etc.)
on the shape of rules of the TRSs [Ant92, AM96, DM97, HLI1, Ken89, O’DoT77,
0’Do85, SR93, Toy92]. Formal techniques for proving termination are much
more general since they usually apply to arbitrary TRSs [AG00, BFR00, Der87].
On the other hand, in contrast to termination analysis, checking whether a TRS
satisfies the syntactic requirements for applying a given normalizing strategy is
usually easy (e.g., with (almost) orthogonality, left-normality, inductive sequen-
tiality, etc.).

In order to formalize the claim that ‘CSR can be used to tmprove the termina-
tion behavior’, we are going to show that g-normalization (i.e., the computation
of p-normal forms) can be used (for instance) to compute normal forms when-
ever they exist. As in unrestricted rewriting, we also have two possibilities for
ensuring finiteness of context-sensitive computations. First we can try to show
that there is no infinite p-rewrite sequence by proving p-termination of the TRS.
Fortunately, several methods have been developed for addressing this task (see
Example 3) [BLR02, FR99, GL02, GM99, GM02, Luc96, Luc02c, SX98, Zan97].
There is also a software tool which helps to apply most of these methods
[Luc02b].

On the other hand, we can also look for some computation rule which avoids
infinite p-rewrite sequences starting from terms having a p-normal form. In
contrast to unrestricted rewriting, we show that these two approaches are use-
ful (and complement each other) for defining normalizing strategies since there
are p-terminating TRSs that are not terminating (for instance, the TRSs in Ex-
amples 1 and 2). This is expressed by the following result which we demonstrate
in this paper:

left-linear, confluent, and p%" -terminating TRSs admat a computable

(one-step) normalizing strategy.

In this paper, we investigate the definition, properties, and use of context-
sensitive rewriting strategies (or just p-strategies for a given replacement map
i), i.e., concrete, fixed sequences of context-sensitive rewriting steps. To our
knowledge, these strategies have not been studied before. In particular, we pay
attention to the definition of g-normalizing p-strategies, i.e., pu-strategies that
obtain a g-normal form of a term whenever it exists (of course, without issuing
infinite p-rewrite sequences, even though they exist): We prove that,

for every left-linear, confluent TRS R, every ux'" -normalizing p

strategy for R induces a normalizing strategy for R.

can _
R

We also show that p-normalizing strategies can be used for infinitary normal-
ization, 1.e., for obtaining existing infinite normal forms of a term.

Every p-strategy is trivially pg-normalizing for p-terminating TRSs. How-
ever, whenever a replacement map g cannot ensure p-termination (or we fail to
prove that it can), we need to provide p-normalizing p-strategies. A well-known
theory for defining (efficient) normalizing strategies is Huet and Lévy’s theory
of needed reductions® [HL79, HL91]. However, reduction of needed redexes is
not adequate for defining p-normalizing p-strategies. This is because there are
terms that have a g-normal form but have no normal form. Since each redex in
a term which does not have a normal form is needed, neededness is not useful for
discriminating the redexes which should be contracted to py-normalize (such) a
term. Instead, we use Middeldorp’s root-normalizing and root-needed computa-
tions [Mid97]. A redex in a term is root-needed if the redex (itself or some of its
descendants) is reduced in every root-normalizing derivation issued from this
term. Every term which is not root-stable contains a root-needed redex and
reduction of root-needed redexes is root-normalizing [Mid97]. Since we have
proven that, under certain conditions, p-normal forms are root-stable [Luc98a],
Middeldorp’s theory provides an appropriate framework for the definition of
p-normalizing p-strategies which we can sumarize as follows:

can

orthogonal TRSs R admit a (one-step) pi5d

-normalizing pu3" - strategy.

This result does not provide an immediate ‘operative’ definition of u%'"-normaliz-

ing pusy"-strategies. This is because both root-stability and root-neededness are

undecidable. By using the decidable notion of p%”-normal form (instead of
that root-stable term) and existing decidable approximations to root-neededness
(see [Luc98b]), we are able to finally give a suitable notion of gy-normalizing
p-strategy which can be implemented in the corresponding class of TRSs. Sum-

marizing:

almost orthogonal, strongly (or NV-) sequential TRSs R admit a

computable (one-step) p™ -normalizing ps¢™ -strategy.

After some preliminary definitions in Section 2 and a brief introduction to
context-sensitive rewriting (Section 3), this paper addresses four main topics:

6 A needed redex of a term ¢ is a redex which is contracted (either itself or its descendants)
in every rewrite sequence which normalizes ¢.

1. Characterization of p-normal forms and the g-normalization process with
respect to unrestricted rewriting (Section 4).

2. Definition of the notion of context-sensitive rewriting strategy and analysis
of its general properties (Section 5).

3. Effective definition of g-normalizing context-sensitive rewriting strategies

(Sections 6, 7, and 8).

4. Use of context-sensitive strategies for defining root-normalizing, normal-
izing, and infinitary normalizing rewriting strategies (Sections 9 and 10).

We conclude the paper by describing the application of our techniques to the
definition of normalizing strategies for TRSs which do not admit a normalizing
strategy based on the usual techniques for doing so. In addition, we apply
our results to the analysis of computational properties of the strategies used
in rewriting-based programming languages such as OBJ [GWMFJ00] or ELAN
[BKKMRIS8] (Section 11). Some final concluding remarks and directions for
future work are given in Section 12.

2 Preliminaries

Let us first introduce the main notations used in the paper. For full definitions

refer to [AM96, BN98, DJ90, Klo92].

Binary relations. Let R C A x A be a binary relation on a set A. We denote
the transitive closure of R by RT and its reflexive and transitive closure by R*.
A finite R-sequence is a sequence a1, as, ..., a, of elements taken from A such
that a; R a;41 for 1 < ¢ < n; we say that such a sequence begins in a; and
ends in a,. We say that R is confluent if, for every a,b,c € A, whenever a R*b
and a R*c, there exists d € A such that b R*d and ¢ R*d. An element a € A is
said to be an R-normal form if there exists no b such that a R b; otherwise, a is
called R-reducible. We say that b is an R-normal form of a (written a R'b) if b is
an R-normal form and a R*b; in this case, we also say that a is R-normalizing.
We say that R is normalizing if every a € A has an R-normal form, i.e., for all
a € A, there is b € A such that a R'b. In a normalizing relation, each element
a € A has (at least) one normal form. In a confluent and normalizing relation,
the normal form exists and is unique. We say that R is terminating iff there
is no infinite sequence a; R as R as---. Obviously, terminating relations are
normalizing.

Terms and positions. Throughout the paper, X denotes a countable set of
variables and F denotes a set of function symbols {£, g, ...}, each having a fixed
arity given by a function ar : F — N. We denote the set of terms by 7 (F, X).
A k-tuple t, ... 15 of terms is written . The number k of elements of the tuple
t will be clarified by the context. Var(t) is the set of variables in ¢.

Terms are viewed as labelled trees in the usual way. Positions p,q,... are
represented by chains of positive natural numbers which are used to address
subterms of ¢{. We denote the empty chain by A. We denote the length of a
chain p as |p|. If p is a position, and @ is a set of positions, p.Q is the set
{p.q | ¢ € Q}. Positions are ordered by the standard prefix ordering: p < ¢ iff
¢’ such that ¢ = p.¢’; p || ¢ means p £ ¢ and ¢ £ p. The subterm at position
p of t is denoted as t|, and {[s], is the term ¢ with the subterm at position p
replaced with s. We denote the set of positions of a term ¢ by Pos(t). Given
terms t and s, Pos;(t) denotes the set of positions of s in ¢, i.e., p € Pos;s(t)
iff t|, = s. Positions of non-variable symbols in ¢ are denoted as Posx(t) and
Posy(t) are the positions of variable occurrences. A term is said to be linear
if it has no multiple occurrences of a single variable. The symbol labelling the
root of ¢t is denoted as root(t). The chain of symbols lying on positions above/on
p € Pos(t) is prefiz,(A) = root(t), prefiz,(i.p) = root(t).prefir, (p). The strict
prefix sprefix is sprefix,(A) = A, sprefiv,(p.i) = prefir,(p). A context is a term
C e T(FU{O}, X) with zero or more ‘holes” O (a fresh constant symbol). We
write C[], to denote that there is a (usually single) hole O at position p of C.
Generally, we write C[] to denote an arbitrary context (where the number and
location of the holes is clarified ‘in situ’) and C[t1,...,t,] to denote the term
obtained by filling the holes of a context C[] with terms t1,... ,¢,. C[]=01is
called the empty context.

Term rewriting systems. A rewrite rule is an ordered pair ({,r), written
I - r, with l,r € T(F,X), 1l & X and Var(r) C Var(l). The left-hand side
(lhs) of the rule is | and the right-hand side (rhs) is ». A TRS is a pair R =
(F, R) where R is a set of rewrite rules. L(R) denotes the lhs’s of R. Given a
substitution o, an instance o(l) of a lhs ! of a rule is a redex. The set of redex
positions in ¢ is Posg(t) = {p € Pos(t) | A € L(R) : t|, = o(l)}.

A TRS R is left-linear if for all I € L(R), [is a linear term. Two rules
!l - r and I’ = 7' (whose variables have been possibly renamed to satisfy that
Var(l)NVar(l') = @) overlap, if there is a non-variable position p € Pos#(l) and
a most-general unifier ¢ such that o(I|,) = o({’). The pair (c()[o(+')],, o(r)) is
called a critical pair and is also called an overlay if p = A. A critical pair (7, s)
is trivial if ¢ = s. The critical pairs of a TRS R are the critical pairs between
any two of its (renamed) rules; this includes overlaps of a rule with a renamed
variant of itself, except at the root, 1.e., if p = A. A left-linear TRS without
critical pairs is called orthogonal. It is called almost orthogonal if its critical
pairs are trivial overlays. If it only has trivial critical pairs, 1t is called weakly
orthogonal.

A term t rewrites to s (at position p), written ¢ Hrs (or just ¢ 5, or
t =g s, or event — s) it t|, = o(l) and s = t[o(r)],, for some rule | - r € R,
p € Pos(t) and substitution ¢. The one-step rewrite relation for R is —. A
finite —-sequence is called a rewrite sequence. If ¢ —* s, then s is a reduct

of t. The inner reduction relation is >—A> =— — A) A term t is root-stable if
it cannot be rewritten to a redex. A term is said to be root-normalizing if it

10

has a root-stable reduct. In this paper, the —-normal forms (resp. —-reducible
terms) are called normal forms (resp. reducible terms); —-normalizing terms
are said to be normalizing. A TRS is confluent (resp. normalizing, terminating)
if = is confluent (resp. normalizing, terminating).

2.1 QO-reduction

A new constant symbol €2 is introduced to represent arbitrary terms. Terms
in T(FU{Q},X) (which we denote as To(F, X)) are said to be Q-terms and
they are used to denote prefixes of terms. We denote by tq the term ¢ where all
variables are replaced by Q. Positions p € Posgq(t) are said to be the Q-positions
of t. An ordering < on Q-terms is given: Q@ < ¢ forallt, 2 <z if x € X', and
ft) < f(5) ift; <s; forall 1 <i < ar(f). Thus, t < s means that ¢ is a prefix
of s. We write ¢ T s if t and s are compatible, i.e., if there exists u such that
t < wuand s < u. We note that, if ¢ 1 s, there is a maximal context C]], such
that t = C[t1,... ,tn], s = C[s1,...,s5] and for all j, 1 < j < n, either t; <s;
(and thus ¢; = Q) or t; > s; (and thus s; = Q). We denote by ? the term ¢
where all outermost redexes are replaced by 2. An Q-normal form is an {2-term
t such that Posgr(t) = @ and Posq(t) # @. The following fact is used later.

Lemma 1 Let R be a left-linear TRS. Let t be a term and | € L(R). Then,
t>lq tff t is a redex.

Left-linearity is required for the only if part of this lemma. For instance,
f(a,b) > £(£2,Q2), but £(a,b) i1s not a redex of £(x,x).

In the following, we will use the reduction relation —q (called Q-reduction,
[KM91]) on Q-terms: ¢ Bas (or just t —q s) if p € Pos(t) — Posalt), t, T la
for some I € L(R), and s = £[2],.

Example 7 Consider the TRS R:

f(a) — a
b — C

Then, we have,
£(b) —gq £(2)

Note that redex b has simply been replaced by 2, without considering the rhs of
the rule b = c. Now, since £(2) T £(a), we also have

£(Q) —q Q

The reduction relation —¢q is confluent and terminating for arbitrary TRSs
[HLI91, KM91]. Let w(t) be the —=qn-normal form of t. Clearly, w(2) = Q and,
whenever t is a redex, w(t) = .

Proposition 1 [KM91] Let R = (F, R) be a TRS. Let t,s € Ta(F,X) and let
p € Pos(t). Then,

1 w(t) <t

11

2. w(t) =w(tlw(tlp)lp)
3 t<s=wt) <ws)
ot =" s = w(t) <w(s)

A term t € To(F,X) is strongly root-stable (or a strong head-normal form) if
w(t) # Q.
Proposition 2 [Ken94] Let R be a TRS. If ¢ is strongly root-stable, then i is

root-stable.

Proor. If ¢ is not root-stable, then t —* o(l) for some | € L(R). By
Proposition 1, w(t) < w(o(l)) = Q. Hence w(t) = €, a contradiction. a

In general, the converse statement is not true [Ken94].

Example 8 Consider the TRS of Example 7. The term £(b) s root-stable,
but, as shown wn Example 7, it s not strongly root-stable.

A term t is rigid if w(t) =t and soft if w(t) = Q [KM9I1, Klo92]. We also say

that the context C[] is rigid if C[Q] is a rigid term.

Proposition 3 [KM91, Klo92] Let R = (F,R) be a TRS. Bvery term t €
Ta(F, X) can be uniquely written ast = C[ty,. .. t,] such that C[Q,... Q] is
rigid and the t;, 1 < ¢ <n are soft.

Rigidness is compositional. This fact will be used later.

Lemma 2 Let R = (F,R) be a TRS and C[],C1[],...,Cn[] be rigid contexts.
Then, C[C1[],...,Cul]] is a rigid context.

Proor. By contradiction. If t = C[Ci[],...,Cy[]] is not rigid, since
Ci[],...,Cp[] are rigid, it follows that there is p € Posz(C[Q]) such that

t|p is compatible with lg for some [€ L(R). Therefore, since C[Q]|, < t|,, we

also get C'[Q]|, 1 ln. Hence, w(C[]) < C[Q] and C[Q] is not rigid.]

3 Context-sensitive rewriting

Given a signature F, a mapping p : F — P(N) is a replacement map (or F-map)
if forall f € F, u(f) C{1,...,ar(f)}. The replacement map u determines the
argument positions which can be reduced for each symbol in F [Luc98a].

Example 9 The conditional operator if-then—-else can be given the following
replacement map

p(if-then-else) = {1}

which is intended (as expected) to permit reductions only on the first argument.

12

The set of all F-maps is Mz. If the signature F corresponds to a TRS R =
(F, R), we also write Mg rather than M.

The inclusion ordering C on P(IV) extends to an ordering C on Mz, the set
of all F-maps: u C p' if for all f € F, u(f) C p/(f); accordingly, the lattice
(P(N),C, @, N,U,N) induces a lattice (Mz,C, py, pr,U,M): The minimum el-
ement is gy, given by py (f) = @ for all f € F; the maximum element is g,
given by pur(f) = {1,...,ar(f)} forall f € F; and the least upper bound ({ub),
LI, and greatest lower bound, M, are given by (p U p/)(f) = p(f) U g/(f) and
(Y (f) = p(f) O/ (f) for all f € F. Thus, u E ¢’ means that p considers

less positions than p’ for reduction. We also say that p is more restrictive than

(or equally restrictive to) u'.

Example 10 The following figure depicts the lattice of replacing arguments that
can be assoctated to symbol if-then-else:

{1,2,3}

T

{1,2} {1,3} {2,3}

{20 {8}

~]

1]

Given t € T(F,X) and p € Mz, the set of u-replacing positions Pos” () is:
Post(t) = {a},
ift € X and

Post(t)y={ayu | J iPos ;)

1€ u(root(t))

if t ¢ X. The non-u-replacing positions” are Pos”(t) = Pos(t) — Posh(t).
By abuse, the occurrence of subterm ¢|, at position p is called replacing (resp.
non-replacing) if p € Pos” (t) (resp. p € Pos”(t)).

Proposition 4 [Luc98a] Let t € T(F,X) and p = q.¢' € Pos(t). Then p €
Pos”(t) iff g € Posh(t) AN ¢’ € Pos”(t|q)

The non-p-replacing positions never lie above replacing ones.

Proposition 5 Let t € T(F,X), p € Pos*(t), and ¢ € Pos"(t). Then q¢ £ p.

"In [Zan97], Zantema uses ‘active/forbidden’ instead of y-replacing/non-u-replacing. How-
ever, this terminology has also been used elsewhere for formalizing different (but related)
rewriting restrictions [FKWO00, Luc02a].

13

Hence, the (ordered) set of replacing positions (Pos(t), <) is downward closed:
for all p € Pos”(t), ¢ < p = q € Pos”(t). This fact will be used later.

The following proposition establishes that the replacing nature of a position
within a term does not depend on the context surrounding that position.

Proposition 6 [Luc98a] If p € Pos(t) N'Pos(s) and sprefix,(p) = sprefiz,(p),
then p € Pos"(t) < p € Pos”(s).

In context-sensitive rewriting (CSR), we rewrite subterms at replacing positions:
t p-rewrites to s, written

14
t%R(u) S

(or simply t =gy s, t <, sort — s)ift Kz s and p € Post(t). The
—y-normal forms (< ,-reducible terms) are called g-normal forms (p-reducible
terms). The set of replacing redexesis Posl, (1) = Posg(t)NPos* (t). Obviously,
a term ¢ is a p-normal form if and only if Posh, (t) = @. Let NF% be the set of
p-normal forms of R.

Example 11 Consider R and p as in Example 1. Now, we write
sel(s(0),from(s(0))) — sel(s(0),s(0):from(s(s(0))))

However,
g8el1(s(0),s(0) :from(s(s(0)))) ¥ sel(s(0),s(0):s(s(0)) :from(s(s(s(0)))))

since the restriction p(:) = {1} avoids the replacement of redex from(s(s(0)))
wn term sel(s(0),s(0):from(s(s(0)))).

A finite —,-sequence is called a p-rewrite sequence. Given u € Mg, we say
that a TRS R is p-confluent (resp. y-normalizing, p-terminating) if <z () is
confluent (resp. normalizing, terminating).

3.1 Canonical context-sensitive rewriting

The canonical replacement map for a TRS R is® [Luc98a]:

the most restrictive replacement map which ensures that the (posi-
tions of) non-variable subterms of the left-hand sides of the rules of
R are replacing.

Note that p%" can be automatically associated to R by means of a very simple

calculus: Vf e Fie{l,... ar(f)},

iepZ"(f) it e L(R),pePosr(l), (root(ll,) = f Api€Posz(l))

8In [Luc98a], we used ™ instead of uZ'™ to denote the canonical replacement map. We

believe that the new notation is clearer.

14

Example 12 Consider the TRS R of Example 1. Since we have the rules
first(0,x) — [
first(s(x),y:z) — y:first(x,z)

we have 1 € u3d"(first) because, e.g., first(0,x)|; = 0 ¢ AX; and 2 €

HHT (first) because first(s(x),y:2)|s = y:2 &€ X. On the other hand, since

we have the rules
sel(0,x:y) — x
sel(s(x),y:z) — sel(x,z)

we have se1(0,x:y)|1 = 0¢€ X and 5e1(0,x:y) o = x:y € X, i.e., pg"(sel) =
{1,2}. Finally, ¢ (f) = @ for f € {s,from, :}. Therefore,

pR"(first) = pg" (sel) = {1,2} and uR"(s) = pR"(:) = p% " (from) = &

Example 13 Consider the TRS R:

half (0) - 0 half(s(s(x))) — s(half(x))

half(s(0)) — O
Then, we have p3{"(half) = {1}, because, e.g., half(0)|; = 0 € X. On
the other hand, p3{"(s) = {1} because, e.g., root(half(s(0))|;) = s and
half(s(0))11 =0¢ X.
Given a TRS R, CMg = {p € Mg | p5#" C u} is the set of replacement

maps which are less restrictive than or equally restrictive to u%'". By abuse,

if p € CMg, we say that p is a canonical replacement map of R. We say
that <, is a canonical context-sensitive rewrite relation if p € CMg. It is
not difficult to see that (CMg,C, u$d", pr,U,M) is a complete sublattice of
(MRaEa/'LJ_a/'LTaI—IaI_l)'

Example 14 Consider the (usual) rules defining the if-then-else operator:

if true then x else y — x
if false then x else y — ¥y

The following figure depicts the (sub)lattice of indices of replacing arguments
that can be associated to symbol if-then-else by canonical replacement maps:

{1,2,3}
{1,2} {1,3}
{1}

Canonical replacement maps make CSR complete for root-normalization.

Proposition 7 [Luc98a] Let R be a left-lincar TRS, | € L(R) and p € CMg.
If t =™ o(l) for some substitution o, then there is a substitution § such that
t =*0(l) and 6(z) =% o(x) for all x € Var(l).

15

Theorem 1 [Luc98a] Let R = (F, R) be a left-linear TRS and i € CMg. Let
t € T(F,X) and s be a root-stable term. Ift —* s, then there exists s’ such

that t <* s', root(s) = root(s'), and s’ ELU
Given R = (F, R), we take F as the disjoint union F = C & D of symbols

¢ € C, called constructors and symbols f € D, called defined functions, where
D ={root(l) |l > r€ R} and C = F —D.

Theorem 2 [Luc98a] Let R = (CW D, R) be a left-linear TRS and € CMg.
Lett € T(F,X), x € X, and s = ¢(5) for some c € C. Ift =* x, thent —* z.
Ift —* s, then there exists s' = c(s') such that t —* s’ and s’ ELCN

Theorem 3 [Luc98a] Let R = (F, R) be an almost orthogonal TRS and y €
CMp. Lett € T(F,X), and s be a root-stable term. Ift —=* s, then there exists

a root-stable term s’ such thatt —=* s’ and s’ >—A>* s.

4 Characterization of y-normal forms

Proposition 5 motivates the definition of mazimal replacing context of a term ¢
which is the maximal prefix of { whose positions are p-replacing in ¢.

Definition 1 (Maximal replacing context of a term) Let F be a signa-
ture, t € T(F,X), and p € Mr. The maximal replacing context of t is the
context MRC" (t) where:

x ift=xe X
F(Ci[1, C[]) ift=f(t1,...,tx) and
MRCH(t) = Cil]= { MRC*(1;) if i € u(f)
' 0 if i & u(f)
forl1<i<k

If C[]= MRCH(t), then t = C[ty, ..., t,] is such that
{1, -+, pn} = minimal(Pos*(t))

are the positions of t1,...,t, in ¢, i.e., t; = t|,, for 1 < i < n. Downward
closedness of Pos”(t) in (Pos(t), <), together with Proposition 6, implies that
every subterm of MRC*(t) is p-replacing, except for the holes in the context,.
This justifies the name ‘maximal replacing context’.

Proposition 8 Let F be a signature, t € T(F,X), and i € Mr. Then, we
have Pos" (MRC* (1)) = Posa (MRC*(t)).

ProoF. By induction on the structure of MRC*(¢). a

The maximal replacing context of a term ¢ is never empty (i.e., MRC*(t) # O).
We prove that maximal replacing contexts of g-normal forms are rigid contexts.

16

Proposition 9 Let R = (F, R) be a left-linear TRS and pn € CMg. Lett €
Ta(F,X) be a p-normal form such that Posg(t) = @, and C[] = MRC*(t).

Then, C[Q] is rigid and strongly rool-stable.

Proor. First, we prove that s = C[Q] is rigid, i.e., w(C[Q]) = C[Q]. We

proceed by induction on s = C[Q]. If C[Q] = « € X (the case C[Q] = Q is not

possible as C[] # O), the proof is immediate. If C[Q] = f(C1[Q2], ..., Copr)[),

then, by I.LH., we assume that each C;[] for 1 < ¢ < ar(f) is rigid. Therefore,
if C[Q] is not rigid, there is [€ L(R) such that s 1 lg. Let C'[] be a maximal
context, such that s = C'[s1,...,s,] and lg = C'[l1,...,l,], i.e., C'[] is the
common part of both s and lg. Since s 1 g, for all 1 < j < m either 5; <
(and thus s; = Q) or s; > [; (and thus {; = Q). There must be at least one
1, 1 <1 < n such that s; < [;; otherwise, s; > [; for all 1 < j < n and
s > lg. In this case, since t > s > lg, and R is left-linear, by Lemma 1 ¢
is also a redex. However, since A € Pos”(t), ¢ is a p-redex and it is not a
p-normal form. Therefore, since s; < I;, we have s; = Q = s, and [; # Q.
Hence, p € Posr(lg). Since t has no replacing Q-positions, by definition of
s, and by Proposition 8, we have p € Pos"(s). However, since u3" C p and
p € Posr(la), we have p € Pos"(lg). Since sprefir,(p) = sprefir,,(p), by
Proposition 6, we get p € Pos”(s) thus leading to a contradiction.

Now, we prove that w(C[Q]) > €, i.e., C[Q] is strongly root-stable. Since

C[] is not empty, C[Q] > Q. Since C[Q] is rigid, Q < C[Q] = w(C[Q]), and the

conclusion follows. O

Left-linearity is required for this proposition (see also Example 16 of [Luc98a]
which is quite a related one).

Example 15 Consider the non-left-linear TRS R:

£f(x,x) — c(x)

a — b
and p be given by p(f) = {1,2} and p(c) = @. Note that p${" (£) = pi"(c) =
@; thus, p € CMp. Hence, £(c(O),c(0)) is the mazimal p-replacing context
of £(c(a),c(b)). However, despite the fact that £(c(a),c(b)) is a p-normal
form, the term £(c(£2),c(QQ)) is neither rigid, nor strongly root-stable, since
£(c(Q),c(Q))—q Q. Note that variables in the left-hand side of the non-left-
linear rule are p-replacing.

The use of a canonical replacement map is required for Proposition 9.

Example 16 Consider the TRS R of Fxample 1. If we let p(first) = &, we
have pn & CMg. Then, first(t,x) s a p-normal form for any redex t. The
maximal replacing context i1s £irst(0,0). However, first(£2,Q) s not rigid,
since £irst(Q,Q) 1 £irst(0,Q). Hence, w(first(Q,Q)) = Q.

Finally, we note that, if ¢ is not a p-normal form (or it contains p-replacing
occurrences of Q), MRC"(t) does not need to be rigid.

17

Example 17 Consider the TRS R of Example 7. Termt = £(b) is not a pu3g"-
normal form (since pse™(£) = {1} and b is a redex). Since C[] = MRC*R (1) =
t = C[Q) and w(t) = Q < t, we conclude that MRC*R " (t) is not rigid. On the
other hand, £(§) is a pF"-normal form (but Pos?fém(f(ﬁ)) ={1} # @) and
we also have w(£ () =Q < t.

Maximal replacing contexts of g-normal forms are stable parts of further reducts
from those p-normal forms (using unrestricted rewriting).

Proposition 10 Let R be a left-linear TRS and p € CMgp. Let t € NFy, and

let C[1= MRCH(t). If t =" s, then C[Q] < s, and s is strongly root-stable.

ProoF. By Proposition 9, w(C[Q]) = C[Q]. Since t =* s, by Proposition 1,

we have w(t) < w(s) < s. Since C[Q] < ¢, again by Proposition 1, @ < C[Q] =

w(CQ]) < w(t) < w(s) < s and the conclusion follows. a

Corollary 1 Let R be a left-linear TRS and p € CMp. Every p-normal form
1s strongly root-stable.

Note that Examples 15 and 16 also show the need for the conditions imposed
in Corollary 1 (e.g., £(c(a),c(b)) in Example 15 and first(t,x) in Example
16 are p-normal forms which are not root-stable).

Using Corollary 1 and Proposition 2, we easily conclude the following result.

Theorem 4 [Luc98a] Let R be a left-linear TRS and p € CMg. FEvery p-
normal form s root-stable.

See [Luc98a] for motivation about the conditions imposed in Theorem 4 and
corollary below.

Corollary 2 Let R be a left-linear TRS and p € CMgr. FBEvery p-normalizing
term 1s root-normalizing.

4.1 p-normalization

The following proposition establishes conditions to ensure that the set of u-
normal forms is closed under (unrestricted) rewriting.

Proposition 11 Let R be a left-lincar TRS, p € CMg, and t € NFy. If
t —* s, then s € NF and MRCH(t) = MRC*(s).

PRrROOF. If s is not a p-normal form, then Poskh(s) # @; thus, assume
p € Posh(s) # @. Let C[] = MRC*(t) and C'[] = MRC"(s). By Proposition
10, C[Q] < s, ie., s = Cls1,..., 5]

If there is 1 < ¢ < n such that s|,, = s; and p = p;.¢, then, by Proposition 8,
pi € Pos”(t). By Proposition 6, p; € Pos”(s) and by Proposition 4, p € Pos”(s)
contradicting that p € Pos’% (s). Therefore, p € Pos*(C[]). Since p € Posx(s),

s|p 1s a redex, thus contradicting rigidness of C[Q] (Proposition 9).

18

On the other hand, since C[Q2] < s, it follows that C[Q2] < C'[Q]. If C[Q] <

C'[Q], then there exists p € Posqa(C[Q]) such that C'[Q]], # Q. Nevertheless,
by Proposition 8 and Proposition 6, p € Pos”(C[Q]). By Proposition 6, p €

Post(C'[€2]), thus contradicting Proposition 8. O
Left-linearity cannot be dropped in Proposition 11.

Example 18 Consider the TRS R in Example 15. Note that £(a,b) is a p3g"-
normal form and that £(a,b) — £(b,b), which is not a p-normal form.

If a TRS is confluent, the unique normal form property holds: if a term has a
normal form, it is unique. Confluence does not imply the unique p-normal form

property:
Example 19 Consider the confluent TRS R:

f(x,y) — c(x)
a — b

and the replacement map p such that p(f) = {1} and p(c) = @. Note that
p € CMg. However, we have the following p-normalizing derwations:

f(a,b) — c(a) and f(a,b) — f(b,b) — c(b)
which yield different p-normal forms c(a) and c(b).
Nevertheless, we have the following result.
Proposition 12 Let R = (F, R) be a left-linear, confluent TRS, p € CMg,
t € T(F,X), and s',s" € NFy. Ift =* s’ and t —* s", then MRCH(s') =
MRC*(s").

ProoF. Let C'[] = MRC*(s') and C"[] = MRC*(s"). By confluence of R,
there is s such that s’ =* s and s —=* s. By Proposition 11, MRC*(s') =
MRC*(s) = MRC*(s"). O

Unfortunately, confluence alone does not suffice to ensure Proposition 12.

Example 20 Consider the TRS R of Example 15. Since R is terminating and
has no critical pairs, it is confluent. However, if we let u(f) = {1} (note that
€ CMg), we have the following (u-) derivations:

f(a,a) — b and f(a,a) — f(b,a)

producing two different pi-normal forms (namely b and £(b,a)) of £(a,a) whose
maximal replacing contexts b and £(b,0) do not coincide.

An immediate consequence of Proposition 12 is the unicity of maximal replac-
ing contexts of p-normal forms of terms (in presence of confluence and left-
linearity).

19

Theorem 5 Let R be a left-linear, confluent TRS and p € CMg. If s’ and s"
are p-normal forms of a term t, then MRC*(s') = MRC*(s").

The unique p-normal form property is ensured by p-confluence, i.e.; confluence
of =z (). The following proposition establishes that every (unrestricted) reduct
of a p-normalizing term is also g-normalizing.

Proposition 13 Let R be a left-linear, confluent TRS and p € CMg. Ift is
p-normalizing and t —* s, then s is p-normalizing.

PROOF. Let u be a g-normal formof ¢, i.e., t <" u. Since t =* s, by confluence,
there exists a term s’ and derivations u —* s’ and s —* s’. By Proposition 11,
s"is a p-normal form. Let C[] = MRC"(s’). We prove, by induction on the
structure of C[], that there exists a y-normal form v of s. If C[] is a constant or
a variable, then s’ is the normal form of s and the unique root-stable reduct of
s. By Theorem 1, s —=* s' and we let v = s'. If C[] = f(Ci[],...,Cs[]), since
s’ = f(sh,...,s}) is root-stable (Theorem 4), by Theorem 1 s —* f(sY,...,s{)
and s —=* s} for 1 < i < k. Since each s} for ¢ € u(f) is a p-normal form and
MRC*(st) = C;]], by the induction hypothesis there are p-normal forms v;
such that s/ <" v; for i € p(f). Hence, since MRC*(s') is rigid (Proposition 9),
v = f(vi,...,v) (where v; = % if j & p(f)) is a p-normal form and s —'y. O

Confluence alone is not sufficient to ensure Proposition 13.

Example 21 Consider the confluent TRS R:

f(x,x) = a b > b
[— b

and p(f) = {1}. Note that p € CMg. Term £(c,c) has a p-normal form:
f(c,c) < a
but £(b,c), which is a (u-)reduct of £(c,c), has no p-normal form.

5 Context-sensitive rewriting strategies

A (non-deterministic) rewriting strategy for a TRS R is a function S that assigns
a non-empty set of non-empty finite rewrite sequences each beginning with ¢ to
every term ¢ which is not a normal form [BEGKt87, Mid97]. As a specialization
of the previous notion, by a one-step (non-deterministic) rewriting strategy for
a TRS R we mean a function S that assigns a non-empty set S(¢) C Posg (t) of
redex positions of ¢ to every reducible term ¢ [Mid97]. For TRSs that are not
weakly orthogonal, we also need to supply the rewrite rule according to which
the selected redex is to be contracted since a redex may have more than one
contractum (see [AM96] for details).

Remark 2 Requiring that reducible terms have non-empty sets of (non-empty)
rewrite sequences (or redex positions) is intended to keep the strategy ‘active’ as
long as the term contains redexes. Even though Definition 6.2 of [BEGKT87]

20

admits strategies that assign an empty set (of reductions) to a reducible term,

we rather follow [AM96, Klo92, Mid97, OV02] in this respect.

We write t —s s if S(¢) contains a reduction sequence ending with s (or t % s
and p € S(t) for one-step strategies). An S-sequence is a reduction sequence of
the form ¢y —sty —s ---. I ¢ =% s, we say that s is an S-reduct of ¢.

A strategy S is root-normalizing if for all root-normalizing term ¢, every
possible infinite S-sequence starting from ¢ contains a root-stable term; S is
p-normalizing if for all g-normalizing term ¢, every infinite S-sequence starting
from ¢ contains a p-normal form whose S-reducts are always g-normal forms?;
S is normalizing if, for all normalizing term ¢, there is no infinite S-sequence

starting from ¢.

Proposition 14 Let R be a left-lincar TRS, p € CMg, and S be a rewriting
strateqy such that every infinite S-sequence contains a p-normal form. Then, S
15 p-normalizing.

Proor. Proposition 11. a

In order to formally (and practically) use a given ‘intuitive’ principle for the
definition of a rewriting strategy, we need to address the following four main
issues:

Existence: To guarantee that S(¢) # @ for every reducible term ¢.
Computability: To provide an effective'® method for computing the strategy.

Good behavior: To provide evidence of some good computational property
for the strategy; typically that S is root-normalizing, normalizing, etc.

Efficiency: To ensure that computations achieved by using the strategy sat-
isfy some criterion for efficiency; for instance, minimality of normalizing
derivations.

For orthogonal TRSs, Huet and Levy’s notion of needed reduction provides a
framework for defining normalizing strategies [HL79, HLI1]. A needed redex in
a term ¢ is a redex which must be reduced (either itself or some descendant) in
any normalizing derivation starting from ¢ [HL91]. Reduction sequences which
only contract needed redexes are called needed reductions. Neededness has two
main theoretical aspects:

1. It formalizes a notion of efficiency for rewriting computations. If a nor-
malizing derivation only contracts needed redexes, it can be considered to
be the most efficient since no useless reductions are performed'.

9This is required to ensure that reaching a u-normal form implies that further reductions
using the strategy do not drastically change the current status of computation. We believe
this to be a natural assumption.

10Here, ‘effective’ is used in the sense of [KM91]: a reduction strategy S is effective if S(t)
can be computed from every term ¢.

1 Actually, this is only true if we consider a graph-based implementation which stores dif-
ferent occurrences of the same redex in a single, shared location (see [0’ D095, OV02]).

21

2. It allows the definition of normalizing strategies: needed reduction is nor-
malizing.

For orthogonal TRSs, every reducible term contains a needed redex [HL91].
Thus, rewriting strategies that only contract needed redexes actually exist.

As for unrestricted rewriting, we can similarly consider the notion of context-
sensitive rewriting strategy.

Definition 2 (Context-sensitive rewriting strategy) Let R be a TRS and
1€ Mr. A (non-deterministic) context-sensitive rewriting strategy (or just p-
strategy) for R is a function H that assigns a non-empty set of non-empty finite
p-rewrite sequences each beginning with t to every p-reducible term t. A one-
step p-strategy is a function H that assigns a non empty set H(t) C Posk () to
every p-reducible term 1.

We write t <y s if H(¢) contains a p-reduction sequence ending with s (or ¢ Ly s
and p € H(¢) for one-step p-strategies). For a given p-strategy H, an H-sequence
is a p-reduction sequence of the form ¢; <y ¢3 <y ---. A finite H-sequence
t1 =y ty =y - =y ty 18 mazmal if £, 18 a p-normal form. Note that, by
using p-strategies, p-normal forms cannot be further reduced. Thus, whenever
i #£ pr, a p-strategy is not necessarily a rewriting strategy.

A p-strategy H is root-normalizing if, for all root-normalizing term ¢, every
possible maximal or infinite H-sequence starting from ¢ contains a root-stable
term; H is p-normalizing if, for all p-normalizing term ¢, there is no infinite
H-sequence starting from .

Remark 3 Dealing with p-strategies H, we need to clarify that mazimal H-
sequences should contain root-stable terms in order to keep the natural assump-
tion that root-normalizing p-strategies generate rewriting sequences that always
compute a root-stable term of the initial (root-normalizing) term. The reason
15 that, since a p-strategy H is not forced to reduce beyond a p-normal form,
it 15 possible that finite marimal H-sequences contain no root-stable term. In
principle, only if p € CMg p-normal forms are guaranteed to be root-stable (for
left-linear TRSs, see Theorem 4).

The advantage of computing pg-normal forms is that, in contrast to root-stable
terms, they are decidable, i.e., it is decidable whether a term is a g-normal form
or not (at least for finite TRSs). We have an immediate property of p-strategies.

Theorem 6 (Root-normalization via p-normalization) Let R be a left-
linear TRS and p € CMgr. If R is p-normalizing, then every p-normalizing
p-strateqy is root-normalizing.

ProoF. Let H be a p-normalizing p-strategy for R. Since R is p-normalizing,
every term has a p-normal form. Since H is pg-normalizing, no term initiates
an infinite H-sequence. Maximal (finite) H-sequences end in a p-normal form
which, by Theorem 4, is root-stable. a

22

Every p-strategy is p-normalizing for p-terminating TRSs. Then, we have:

Corollary 3 Let R be a left-linear TRS and p € CMp. If R is pu-termanating,
then every p-strategy ts root-normalizing.

In general, we cannot extend Theorem 6 to non-p-normalizing TRSs.

Example 22 Consider the following (orthogonal) TRS R:

f(x) — g(b)

b —+ b
Let p(f) = p(g) = {1}. Note that terms £(t) for arbitrary terms t have no p-
normal form. Thus, a p-strategy H that always reduces inner redexes in terms
() s p-normalizing but it is not root-normalizing: we have

£(b) —n £(B) —n---
while the reduction step

£(b) — g(b)

root-normalizes £(b).

Example 22 also shows that confluence (or orthogonality) does not help (in
general) to improve the previous results.
Every one-step p-strategy H extends to a one-step strategy Sy as follows:

H(t) ift ¢ NFf

Ui<i<nPi-SH(t;) otherwise, where:
Cl]= MRC*(¥),t = Clt1, ..., tn],
and ¢; = t|p, for 1 <i<n

Su(t) =

The generalization to arbitrary p-strategies H 1s immediate:

H(t) if t ¢ NF,
Su(t) = C[Su(t1),...,Su(t,)] ift € NFjy — NFg, where
C[]= MRC*(t) and t = C[ty,... 5]

1] otherwise
Here, for a given context C[] and sets of rewrite sequences 51, ..., S,, issued
from terms ¢y, ... ,t,, C[S1, ..., Sn] is the set of sequences from C[t1, ..., 1,] to
C[s1,...,8n], where, for 1 < i < n, either s; = t; (during the whole sequence) or
s; is the end point of a sequence in S; (and at least one of the s; must be taken
in this way). Moreover, if Cluy, ..., un] = Clu), ... ul] is a single rewriting

step of one of such sequences, then there exists 1 < ¢ < n such that u; — u} is
a rewriting step (issued inside) of a sequence in S; and u; = uj for j # i.
We have the following property.

Proposition 15 Let R be a left-linear TRS and p € CMg. If H is a p-
normalizing (resp. root-normalizing) p-strategy, then Sy is p-normalizing (resp.
root-normalizing).

23

ProoOF. By Proposition 14, if Sy is not g-normalizing (root-normalizing), then
there exists an infinite Sy-sequence

t1 —sy t2 —sy -

issued from a p-normalizing (root-normalizing) term ¢; which does not contain
a p-normal form (root-stable term). By definition of Sy (and using the fact
that whenever the Sy-sequence does not contain root-stable terms then it does
not contain p-normal forms, see Theorem 4), this corresponds to an infinite
H-sequence

t1 SHTy SH -

which contradicts that H is g-normalizing (root-normalizing). ad

6 Definition of y-normalizing p-strategies

Since p-normal forms do not need to be normal forms, needed reduction is not
useful for defining p-normalizing p-strategies. This 1s because, by definition,
every redex in a term having no (finite) normal form is a needed redex.

Example 23 Consider the following TRS R [Mid97]:

f(x) — g(f(x)
b —b

If u(£) = {1} and u(g) = @, then g(£(b)) is a p-normal form of £(b):
£(b) — g(£(b))

However, £(b) has no normal form. Thus, redexb of £(b) is needed but repeated
p-reductions of this redex:

f(b) — £(b) —---

do not p-normalize £(b).

Theorem 4 shows that py-normal forms of a left-linear TRS R are root-stable
(if © € CMg). As it is possible to normalize a term ¢ by successively root-
normalizing maximal non-root-stable subterms of (reducts of) ¢, we can think
of root-normalization [Ken94, Mid97] as a basis for defining p-normalizing com-
putations, as every derivation leading to a p-normal form yields a root-stable
term 1n some step of the derivation. In fact, according to Corollary 2, whenever
1 € CMpg, the g-normalization of a term ¢ can be thought of as a preliminary
root-normalization of ¢ that obtains a root-stable term s = f(5) followed by
the p-normalization of the replacing arguments s;, for ¢ € u(f), of s. Root-
normalizing strategies do not need to be normalizing.

Example 24 Consider the TRS R [Mid97]:

f(x) — g(a)
b — b

24

and the strategy S that always selects the (unique) outermost redex, except when
it faces the term g(£(b)) in which case the redex b is selected. Clearly, S is
root-normalizing for R. However, it is not normalizing, because we have the
infinite S-reduction sequence

g(f(®)) — gE(®)) — -
However, g(£(b)) has a normal form which can be computed by

g(£(b)) — glga))

Middeldorp pointed out a solution to this problem based on using special root-
normalizing strategies, namely contezt-free strategies.

Definition 3 (Context-free strategy) [Mid97] A one-step strategyS is context-
free if, for all root-stable term t = f(t1,... ,t;,... ,tx) and i € {1,... k}, such

that t —s f(ty,... th, ... t;), we have t; s t}.

For arbitrary strategies S, context-freeness is defined as follows [Mid97]: S
is context-free if for all root-stable terms ¢ = f(¢1,...,%,...,t) and i €
{1,...,k} such that t —s f(t},... %, ... 1) and the subsequence from ¢;

to t} is non-empty, we have t; =% t,.

Theorem 7 [Mid97] Let R be a confluent TRS. Every context-free root-normaliz-
wing reduction strategy for R is normalizing.

On the basis of a similar result by Middeldorp (see [Mid99]), we can even improve
Theorem 7. In the following result, we say that the strategy S’ extends the
strategy S if for all terms ¢, s, { —s s implies t —g/ s.

Corollary 4 Let R be a confluent TRS. Every reduction strategy for R that
can be extended to a context-free root-normalizing reduction strategy for R s
normalizing.

Proor. Let S be a reduction strategy for R which can be extended to a
context-free root-normalizing strategy S’ for R. If S is not normalizing, then

there exists an infinite reduction S-sequence ¢t —s ¢/ —s - -+ for a normalizing
term t. Since S’ extends S, there is an infinite reduction S'-sequence, thus
contradicting Theorem 7. i

Nevertheless, root-normalizing, context-free rewriting strategies do not need to
be p-normalizing (even for confluent TRSs).

Example 25 Consider the (orthogonal, hence confluent) TRS R:
£(x) — c(x,a) b — b
a — d

together with p(f) = @ and p(c) = {2}. Note that p € CMg. Consider the
rewriting strateqy S that contracts the leftmost-outermost redex of the leftmost
mazimal non-root-stable subterm of a term. The S-sequence

25

f(b) —s c(b,a) —s c(b,a) —s---

does not compute the p-normal form c(b,d) which can be obtained by the pu-
reduction sequence

f(b) — c(b,a) = c(b,d)

If we restrict ourselves to reduction sequences that contract replacing redexes,
l.e., to context-sensitive strategies, we can prove that root-normalization is an
adequate basis for g-normalization. Note that, in the realm of CSR, the notion
of one-step context-free p-strategy could be equivalently formulated by imposing
the condition that for all root-stable terms ¢ = f(¢1,... ,¢;,...,tx) and i € p(f),
such that ¢ <y f(t1,...,t,... ts), we have ¢; <y t; (with the analogous
generalization for arbitrary p-strategies).

Theorem 8 Let R be a left-linear, confluent TRS and p € CMgr. Every
context-free root-normalizing reduction p-strategy for R is p-normalizing.

ProoF. Let H be a context-free root-normalizing reduction p-strategy and ¢
be a p-normalizing term having a py-normal form s. We proceed by induction
on the structure of C[] = MRC*(s), the maximal replacing context of s (by
Theorem 5, C[] does not depend on the selected p-normal form s).

If s is a constant or a variable, then s is the (unique) normal form of ¢. Thus,
s = C[] is the unique root-stable reduct of ¢. Since H is root-normalizing, there
is no infinite H-sequence starting from ¢.

If s = f(s1,...,sk), assume that A :¢ =t <>y t3 <y --- is infinite. Since
H is root-normalizing, A contains a root-stable term t' = f(¢},... 1), i.e.,
t' =t; for some j > 1. By Proposition 13, ¢ also has a g-normal form s’ which,
by Theorem 5, has the same maximal replacing context, C[] = MRC*(s) =
MRC*"(s'). Since ¢t is root-stable, it must be s’ = f(s{,...,s},); hence, we can
write C[] = f(C1[],...,Cx[]). Moreover, t; —* s, i.e., each t; p-normalizes in
s, and C;[] = MRC"(s!) for each ¢ € u(f). Since A is infinite and context-free,
it must be ¢ € p(f) such that ¢} initiates an infinite H-sequence. This contradicts
the (induction) hypothesis that H is g-normalizing on ¢}. O

Corollary 5 Let R be a left-linear, confluent TRS and p € CMp. Every pu-
strategy for R that can be extended to a context-free root-normalizing p-strategy
for R is p-normalizing.

Corollary 5 formalizes the use of root-normalizing p-strategies for defining p-
normalizing p-strategies. In the following sections, we investigate how to (effec-
tively) define them.

6.1 Root-neededness and context-sensitive rewriting

The notion of root-needed computation [Ken94, Mid97] provides a suitable formal
framework for the definition of root-normalizing, normalizing, and infinitary
normalizing reduction sequences [Mid97]. A redex in a term ¢ is root-needed if

26

it is contracted (either itself or its descendants) in every rewrite sequence from
t to a root-stable term.

Example 26 Consider the TRS R:

gla,x,y) — x b — a
gld,x,a) = a c —d

and the set of all root-normalizing derivations for t = g(a,b,c):

P~

. gla,b,c) — gla,a,c) = a

. gla,b,c) b — a

2
3. gla,b,c) gla,a,c) — g(a,a,d) — a
4

. gla,b,c)

-
-
— g(a,b,d) — g(a,a,d) — a
-

5. gla,b,c) gla,b,d) > b = a

Note that redex b at position 2 of t is root-needed. On the other hand, the redex
c int is not root-needed as the first derivation does not contract it.

For orthogonal TRSs, every non root-stable term contains a root-needed redex.
Root-stable terms have no root-needed redex, and redexes in terms having no
root-stable reduct are trivially root-needed. Root-needed redexes in maximal
non-root-stable subterms of a term are needed.

A root-necessary set of redexes is a set of redexes such that, at least one of the
redexes in the set, or one of its descendants, is reduced in each root-normalizing
derivation. The repeated contraction of root-necessary sets of redexes is called
root-necessary reduction [Mid97].

Theorem 9 [Mid97] Let t be a root-normalizing term. There are no parallel
rewrite sequences starting from t that contain infinitely many root-necessary
steps.

Root-necessary reduction is root-normalizing for almost orthogonal TRSs. In
particular, repeated contraction of root-needed redexes (called root-needed re-
duction) is root-normalizing for orthogonal TRSs.

Our aim is to use root-neededness for defining p-normalizing p-strategies. Ac-
cording to the four points enumerated in Section 5, we first address the problem
of proving the existence of such strategies.

Our first result corresponds to Theorem 4.3 in [Mid97]: ‘For orthogonal
TRSs, every non-root-stable term has a root-needed redex’. We prove that, more
precisely, every non-root-stable term has a replacing root-needed redex. First,
we need some previous results.

Lemma 3 [Mid97] Let R be an orthogonal TRS. If a term i rewriles to a redex,
then the pattern of the first such redex is unique.

27

Lemma 4 Let R be an orthogonal TRS. Let t be a term which is neither root-

stable nor a redex, and such that t A4 o(l) for somel € L(R). Let P be the set

of positions of non-root-stable proper subterms of t, p € minimal(P NPosr (1)),
and q € Posg(t],) be a position of a root-needed redex of t|,. Then t|,, is a
root-needed redex of t.

Proor. Implicit in Middeldorp’s proof of Theorem 4.3 in [Mid97]. a

Lemma 5 Let R be an orthogonal TRS and p € CMg. Lett be a non-root-

stable term such that ¢ 235+ o(l) for some l € L(R). Let P be the set of posi-
tions of proper non-root-stable subterms of t. Then, minimal(P NPosr(l)) C
Post(t).

Proor. Assume p € minimal(P N Posr(l)). Since ¢ 25+ a(l), we have
sprefiz,(p) = sprefiz;(p). Otherwise, some subterm t|, with ¢ < p should be
reduced to allow the matching with {|4; thus t|; would be non-root-stable and
q € P. Moreover, since p € Posz(l), ¢ € PNPosx(l), but, since ¢ < p, p is not
minimal in P NPosz(l) and this leads to a contradiction. Since sprefir,(p) =
sprefiz;(p) and p € CMg, we have p € Posz(l) C Pos"(l). By Proposition 6,
p € Pos”(t). a

Theorem 10 Let R be an orthogonal TRS and u € CMp. FEvery non-root-
stable term has a p-replacing root-needed redez.

Proor. We follow the proof of Theorem 4.3 in [Mid97]. Therefore, we just
outline the proof and comment on the particulars of context-sensitive rewriting.

Middeldorp proceeds by induction (on the depth of redexes) and distin-
guishes between ¢ being a redex and ¢ being a non-redex. The first case is
the same for us, since we always have A € Pos”(t) and thus A € Posk (1)
which, for (almost) orthogonal TRSs, corresponds to a root-needed redex. For
the second one, any rewrite sequence A leading from ¢ to a root-stable form

t' splits into ¢ A+ a(l) A % . The redex pattern [for the reduction

a(l) A 4 does not depend on the particular derivation (Lemma 3). Now let us
consider the set P of occurrences of non-root-stable proper subterms of ¢. The
candidates to root-needed redexes are root-needed redexes of subterms t|, with
p € minimal(P NPosz(l)), where P is as in Lemma 5. We must first prove
that p € Pos”(t). This follows immediately from Lemma 5. By L.H., ¢|, has
a replacing root-needed redex s. By Lemma 4, s is a root-needed redex of ¢.
Since s is p-replacing in t|, and p € Pos”(t), by Proposition 4, s is a g-replacing
root-needed redex of ¢. ad

Note that u%'" does not completely capture root-neededness.

Example 27 Consider again the TRS R and the derivations of Example 26. As
shown in the example, redexb at the occurrence 2 oft = g(a,b,c) s root-needed.

28

Since 2 ¢ Pos?jgn (g(a,b,c)) = {A, 1,3}, this redex s not ux" -replacing. Thus,
there are root-needed redexes that are not '™ -replacing.

Ezxample 26 also shows that the replacing redex ¢ in t is not root-needed.
Therefore, there are pg™-replacing redexes that are not root-needed.
Theorem 10 establishes the possibility of defining the following one-step pu-

strategy for a given orthogonal TRS R and whenever p € CMg:

{p € Posls(t) | t|p is root-needed in ¢}
if ¢ i1s not root-stable

Hrneed(t) = UiEu(f) i~Hrneec£(ti)
if t = f(¢) is root-stable
I} if £ is a variable

By construction, H,pceq 18 context-free and Theorem 8 can be invoked to justify
its p-normalizing character. Therefore,

Every orthogonal TRS admits a one-step p-normalizing p-strategy.

Unfortunately, the definition of H,pccq 18 not effective since root-neededness and
root-stability are undecidable. Thus, we are interested in establishing additional
conditions which enable the effective selection of a (replacing) root-needed redex
or a subset of replacing redexes I C Posk (t) which is root-necessary. We
address the first problem in Section 7. With regard to the second problem, we
can refine Middeldorp’s result: ‘outermost redexes are a root-necessary set of
rederes’. Again, we can restrict to outermost replacing redexes.

Theorem 11 Let R be an orthogonal TRS and p € CMg. Ift s not root-
stable, then, minimal(Posy (1)) is a root-necessary set of redezes.

ProoF. We proceed by structural induction. If ¢ is a redex, it is immedi-
ate. If ¢ is not a redex, as in the proof of Theorem 10, minimal(Posk(t],))
is a root-necessary set of redexes for each p € minimal(P N Posxz(l)). If
q € minimal(Pos,(t],)) is a position of a root-needed redex of t|,, by Lemma
4, then t|, 4 is also a root-needed redex of ¢. Therefore, p.minimal(Pos(t],))
is a root-necessary set of redexes for all p € minimal(P N Posz(l)). Since
p € Pos”(t), by Proposition 4, p.minimal(Pos’ (t|,)) C minimal(Posk (1)),
and the conclusion follows. ad

Given a replacement map p, the parallel outermost p-strategy Hy, is:

Hpo) = {t=t1 S to sty B gy [{p1, .. pn} = minimal (Pos (1))}

Note that, since p; || p; for every 1 <i < j < n, every possible Hy,-step t <y, s
can be thought of as a single step of parallel (context-sensitive) rewriting (see
[Luc98al). For almost orthogonal TRSs, since p; || p; for every 1 < i< j < n,
every possible Hy,-sequence issued from t leads to the same term s. H,, is
clearly context free. Then, we have:

29

Theorem 12 Let R be an orthogonal TRS and p € CMg. Then, Hy, s -
normalizing.

Proor. By Theorem 11 and Theorem 9, H,, is root-normalizing. Since Hy,
is context-free, by Theorem 8 the conclusion follows. a

Theorem 12 provides a first effective example of a computable (parallel) p-
normalizing p-strategy. The following section 1s devoted to the definition of
one-step p-normalizing p-strategies.

7 Effective definition of one-step p-normalizing
p-strategies

Both neededness and root-neededness are undecidable and they must be ap-
proximated. This means that it is necessary (1) to provide a method to de-
cide whether a redex is needed and (2) to identify the class of TRSs ensur-
ing that every reducible term has a redex for which the previous method suc-
ceeds [DM97]. Decidable approximations to neededness have been extensively
explored [Com00, DM97, HLI1, Jac96, JS94, KM91, NST95, NT99, Oya93,
TKS00, Toy92]. Recently, we have investigated the use of these approxima-
tions to capture root-neededness for almost orthogonal TRSs [Luc98b]. We
have demonstrated that, among them, NV-sequentiality [Oya93] (hence strong
sequentiality [HL91], a particular case of NV-sequentiality) is the most general
approximation to root-neededness.

7.1 Sequentiality

Sequentiality is based on the notion of index. An Q-position p € Posq(t) of
an Q-term ¢ € To(F,X) is an index with respect to a predicate P on £2-terms
if, for every Q-term s with s > ¢, P(s) implies s|, # Q [KM91]. The set of
indices of ¢ with respect to P is denoted by Zp(t). Given a term ¢t € 7 (F,X)
(without Q-occurrences), we can test whether a redex position p € Posg(t) ‘is
an index’ by applying the previous definition to ¢[2],. A monotone predicate
P is sequential if, for all t € Ta(F, X), whenever P(t) does not hold and there
exists s such that s > ¢ and P(s) holds, it follows that Zp(t) # @.

A TRS R is sequential if the predicate nfz on Q-terms (where nfz (¢) holds
if and only if ¢ has a normal form in 7(F, X)) is sequential.

Example 28 Consider the TRS R [HL91]:

f(a,b,x) — k c — a
f(b,x,a) — k c = b

R is not sequential because the term t = £(c,2,Q) has no index: Note that
s=1(c,Q,a) > £(c,Q,Q) and £(c,Q,a) has a normal form (without Q’s):

f(c,Q,a) — £f(b,0,a) — k

30

but sls = Q, i.e., 2 is not a sequential index of L. Also, s' = £(c,b,Q2) >
£(c,Q,Q) and

f(c,b,2) — £(a,b,}) = k
but §'|s = Q, i.e., 3 is nol a sequential index of t. Hence, t has no sequential

index. Since nf g (t) does not hold whereas both nf z (s) and nfx(s") hold, and t
has no sequential index, R 1s not sequential.

For orthogonal TRSs, sequential indices with respect to predicate nf g serve to
approximate needed redexes of t € T(F, X): if p € Posg (t) is an index of ¢[Q],
w.r.t. nfyg, then t|, is a needed redex of ¢t [HLII].

Both sequentiality of indices and that of TRSs are undecidable and several
decidable approximations have been investigated. According to our discussion
at the beginning of Section 7, we consider the strongly sequential and NV-
sequential approximations.

7.1.1 Strong sequentiality

Given a TRS R, the reduction relation —- (arbitrary reduction) on 7 (F, X) is
defined as follows: ¢ —- s if there are p € Posg(t) and s’ such that s = t[s'],
[KM91]. Clearly, the —+-normal forms and the normal forms coincide. A TRSR
is strongly sequential [HL91, KM91] if predicate nf. is sequential (where nf.(?)
holds if there exists an arbitrary reduction sequence ¢ =% s to some normal form
s € T(F,X)). Indices with respect to predicate nf, are said to be strong indices
(and they are sequential indices, i.e., indices of nfz). The set of strong indices
of a term ¢ is denoted by Z(t) (rather than Z,¢ (¢)). Strong indices can also be
effectively computed by using Q-reduction in Section 2.1: Given a fresh symbol
e and p € Posq(t), we have that p € Z,(t) iff w(t[e],)], = ¢ [KMI1, Toy92]. In
fact, we take this result as a (re-)definition of strong index [JS94, Toy92].

Example 29 Consider the TRS R:
f(x,a) — ¢
gla,x) — ¢

Note that t = £(g(Q2,x),g(Q,x)) is an Q-normal form. Position 2.1 corre-
sponds to a strong index, since the —q-reduction step

f(g(Q,x),g(e,x)) —q £(2,g(e,x))

computes the —q-normal form w(t[e]z1) of t[e]a.1 (remember that —q is con-
fluent) which does contain e. Thus, 2.1 € Z,(t). However,

f(g(e,x),g(Q,x)) —q £(g(e,x),Q) =
that is, 1.1 ¢ Z;(1).

A TRS R is strongly sequential if Z,(t) # @ for every Q-normal form ¢. Strong
sequentiality has been proven decidable for left-linear TRSs in [JS94]. The
following properties are used later.

Proposition 16 [JS94, KM91] Let R = (F,R) be a TRS. Let t € Ta(F,X).
If p.g € Z,(2), then q € I, (t],). If p € Ls(t) and t < s, then p € I(s[],).

31

Proposition 17 [Klo92, KM91] Let R = (F, R) be a TRS. Lett = C[ty, ... 1]
be such that C[Q, ... Q] is rigid and thet;, 1 < i < n are soft. Lett; = C'[Q], =
tlp. If g € I, (t;), then p.q € Z,(t).

7.1.2 NV-sequentiality

Given a TRS R = (F, R), we write t —,, s if and only if there exist p € Pos(t)
and [— 7 € R such that |, > lg and s = t[r'], for some ' such that ' > rq.
Note that —,,2 —. The predicate term is defined as follows: term(t) holds
if and only if there exists s € 7(F,X) such that { =%, s (i.e., =y, succeeds
in removing the Q-occurrences from t). Predicate term is clearly monotone.
The set of indices in a term with respect to term is written Z,,(t) (rather
than Zierm (¢)). Tt is decidable (in polynomial time) whether or not a position
p € Posgq(t) is an nv-index [Oya93].

A TRS R is NV-sequential if Z,,(t) # @ for every Q-normal form ¢ [Oya93];
NV-sequentiality is decidable for left-linear TRSs. Strong and NV-sequentiality
are related.

Proposition 18 [Oya93] Strong indices are nv-indices.

Proposition 19 [Oya93] Strongly sequential TRSs are N'V-sequential.

We write ¢ 5, s (or just t —,, s) if Ip € Pos(t) such that t|, £ Q,], T o for
some rule { — 7, and s = {[rg],.

Example 30 Consider R and t as in Example 29. We have the following —, -
reduction sequence:

f(g(Q,x),g(Q,x)) —, £(g(,x),c) =, £(c,c)
that can be compared with the following —q-reduction sequence:

f(g(Q,x),g(Q,x)) —q £(g(Q,x),0) = Q

The following result connects —,,-reduction (used for defining the notion of
nv-index) and —,-reduction (used for finding nv-indices, see Lemma 7 below).

Lemma 6 [Oya93] Let t —p, t' and s < t where t,t',s € Ta(F,X). Then
either s <t or there exists s' € Ta(F,X) such that s =, s’ and ' <t'. (This
implies that 3s’ such that s =% s’ and s’ <t'.)

Oyamaguchi characterizes nv-indices as follows.

Lemma 7 [Oya93] Lett € To(F,X) and p € Posq(t). Then p & T, (1) if and
only if there exist ¢ € Pos(t), where ¢ < p, and s € Ta(F,X) — {Q} such that
tle],lg =% s and s 1 lg for somel € L(R).

Example 31 Consider R and t as in Example 29. Position 1.1 corresponds to

an nv-indez, since t|; = g(e,x) is nolt compatible with g(a,?) and the only
—w-reduction step which can be given on t = t|p is:

32

f(gle,x),g(2,x)) —, £(gle,x),c)
where s = £(g(e,x),c) is not compatible with £(2,a). Thus, 1.1 € Tn,(t).
However, as shown in Frample 29, 1.1 ¢ T (1).

The following properties are used below. They correspond to Proposition 16 for
strong indices.

Lemma 8 [Oya93] If p.q € T,,,(t), then q € Iy (t],).

Lemma 9 [Oya93] Let p,q € Pos(t) be such that p || q. If p € L, (t[Q],), then
pE Lny(t).

The following lemma establishes that redexes placed on nv-indices are always
outermost when dealing with almost orthogonal TRSs.

Lemma 10 [Luc98b] Let R be an almost orthogonal TRS and t be a term. Let
p,q € Posg(t) such that p # q. If p € I (t[Q,), then ¢ £ p.

The following lemma proves that nv-indices are preserved by —,-reductions on
disjoint positions.

Lemma 11 Let R be a TRS, t € Ta(F,X), and p,q € Pos(t), where p || ¢ and
P ELny(t). Ift B!, then p € T (V).

Proor. Note that, since ¢|, = Q and p || ¢, we have that t/|, = Q. If
P € Lno(t'), by Lemma 7 there exist p’ < p and s # € such that t'[e],],, =% s
and s 1 lg for some [€ L(R). Note that, since p || ¢, we have that ¢ £ p’. If
P || g, then t'[o],|, = t[e]p|pr. If p’ < ¢, then t[e],|,r — t'[®],]pr. In both cases,
we have that t[e],|,, — s thus contradicting that p € Z,,,(t). O

Lemma 11 does not hold if p and ¢ are comparable.

Example 32 Consider the TRS R:

f(x,a) = ¢ hi(x) — x
gla,x) — ¢ b — ¢

Note that 1.1 is an nv-index of t = £(g(Q,x),b) (proceed as in Frample 31).
However, we have that

f(g(Q,x),b) —, £(c,x)

and 1.1 is not an nv-index of £(c,x).

The following result ensures that nv-indices of an Q-term are preserved under
arbitrary reductions.

Lemma 12 Let R be a TRS, t € To(F, X), and p € Tpo(t). Ift 5 1/, then
p € ZLny(t').

33

PrOOF. Since t|, = Q, we have that ¢ #? p. Moreover, ¢ £ p; otherwise, since
there is no occurrence of Q in rules of R, if |, is a redex then t[e],|, is also,
i.e., there are [€ L(R) and substitution o such that t[e],|, = o(!). Therefore,
t[e],|q T lo. By Lemma 7, this contradicts that p € Z,,,(¢).

Therefore, p || ¢ holds. Note that ¢/|, = Q. Since -C—,,, by Lemma 6,
either t <t or t 5, ¢ and ¢ < t'. In the first case, by Lemma 9, p € Too(t).
In the second case, by Lemma 11, p € Z,,,(¢"") and by Lemma 9, p € Z,,,(¢).
Thus, the conclusion follows. a

7.2 NV-indices and replacement restrictions

According to our previous discussion in Section 6, our interest in NV-sequentiality
stems from the following result.

Theorem 13 [Luc98b] Let R = (F,R) be an almost orthogonal TRS, t €
T(F,X) be non-root-stable, and p € Posg(t). If p € L,,(t[Q],), then t|, is
root-needed.

In order to distinguish between replacing and non-replacing indices of a term ¢,
we denote replacing indices by TF(t) = Zo(t)NPos” (t) for a € {s, nv}. Our first
result establishes that the canonical replacement map captures all nv-indices in
non-root-stable terms.

Theorem 14 Let R = (F, R) be an almost orthogonal TRS and p € CMg. If
t € Ta(F,X) is not root-stable and p € Posgr(t), then p € I,,(t[Q],) & p €

Proor. Since Z4,(t[Qp) C Z,,(t[],), we only need to prove that p €
Tno (t[Q],) implies p € Pos” (t[Q],). If p € Pos”(t[Q,), we note that p # A.
Since t is not root-stable, it rewrites to a redex of [€ L(R). By Proposition 7
there is a p-derivation A:

Prn—
t=t, Bty oty St = o))

for some substitution 0. We can assume that, for all p;, 1 <i<n—1, p; ZA,
i.e., p-rewriting steps from ¢ to o(!) only contract inner positions. We prove,
by induction on the length of A, that for all 1 < i < n, p € Z,,(t[Q],) and
p &€ Pos”(t;). For the base case, consider that if t = o(l), since p # A, we obtain
a contradiction of Lemma 10. For the induction step, first we note that, since
p1 € Pos”(t1) and p € W(tl), by Proposition 5, p £ p1; moreover, p1 £ p;
otherwise we contradict Lemma 10. Thus, p; || p. Hence t; & ts implies
1], & 12[Q]p,. By Lemma 12, p € T, (t2[€2],). Since p1 || p, by Proposition
6, p € Pos*(t2). By the induction hypothesis, the conclusion follows.

Hence, in particular, p € Pos”(o(l)) and p € Zpo (o (1)[€2],). Since o(l) itself
is a redex, this contradicts Lemma 10. a

In general, Theorem 14 does not hold for root-stable terms.

34

Example 33 Consider R and t as wn Ezample 32. Note that t is root-stable.
Recall that 1.1 1s an nv-index of t. However, 1.1 is a non-replacing position of

t: 1.1 € Posh®"(1).

Corollary 6 Let R = (F, R) be an almost orthogonal TRS and p € CMg. If
t € Ta(F,X) is not root-stable, then Tp, (t) = IF,(t%).

PrOOF. If p € T, (t), then, since ¢! < {[Q],, by (repeated application of)
Lemma 9, p € Z,,,(t[€2],). By Theorem 14, p € ZF, (t[Q],), i.e., p € Pos”(t[Q,).
By Proposition 6, p € Pos”(t?), hence p € ZF,(t*}). |

Remark 4 Note the usefulness of these results: By Theorem 14, only u$"-
replacing nv-indices are considered in non-root-stable terms t (even without an
explicit consideration of replacement restrictions). Hence, we only need to test
redex occurrences inside MRC“%m(t) of a non-root-stable term t for finding out
nv-indices.

7.3 Strong indices and replacement restrictions

Strong indices are nv-indices (Proposition 18) and strongly sequential TRSs are
NV-sequential (Proposition 19). Hence, the previous results also apply to strong
indices and strongly sequential TRSs. Nevertheless, for strong indices, we can
improve Theorem 14 and Corollary 6 as follows.

Lemma 13 Let R be a TRS and p € Mp. Ift; QQ 12 EQ =ty &ﬁg tht1,
then for alli,j, 1 <i<mn, j <i, Pos(t;) CPos(t;) and Pos"(t;) C Pos"(t;).

ProoF. By induction on the length of the derivation. If n = 1, then ¢; =
Clslp,, t2 = C[p,, and s 1 lg for some ! € L(R). Clearly Pos(ta) C Pos(t)
and, since Pos”(t1) is downward closed in (Pos(t1), <), Pos”(t2) C Pos”(t1).

By L.H., the conclusion follows. a

The next result establishes that, whenever we deal with a soft term, we can de-
fine an Q-reduction sequence which only considers compatible terms at replacing
positions; we write t <3 s if t B s and p € Posh(t).

Proposition 20 Let R be a TRS, and p € CMp. Ift —§ Q, then t —§ Q in
at most the same number of steps.

ProoOF. We proceed by induction on the length of a derivation ¢t = #; Ba
loma - —al, Bq Q. Ifn = 1, then t Sg Q. Since A € Posh(1), it is
immediate. If n > 1, let us consider the first step ¢; &m t;+1 such that p; €
Post(t;). Since A € {p1,...,pn} such a step will actually be performed. Let
P; = {p; | pi < p;j. 1 <j < i}. This set is well defined because, by Lemma 13,
pi € Pos(t;) forall j < i. If P, = @, then, since p; € W(tj) and p; € Pos(t;),
for 1 < j < ¢, by Proposition 5, p; || p; for all 1 < j < i. Then, we can perform a

35

—gq-reduction directly on ¢;|,,. Moreover, by Lemma 13, p; € Pos"(¢1). Hence,
we build the derivation

P 1 P1 / / Pi-1 Pit1 Pn
t=t; oty Bathoa- - —ati_ Sty Sa-—at, Ba Q

where) = 1;[Q]p, for all j, 1 <j <i—1. Since # is soft, we apply the I.H. to
the derivation ¢] =, Q which takes n — 1 steps and the conclusion follows.

It P, = {piv),...,0ip,}, and m > 0, then, since, by Lemma 13, p; €
Pos(t), let us consider s = t|,,, and the | € L(R) such that ¢;|p, T lo. We
prove s 1 I by contradiction. Hence, reductions performed using positions in
{p1,...,pn}— P; are disjoint to ours and are not relevant here (since we assume
p; € Pos’(t;) for all j < 4, we cannot have p; < p;). Since t;|,, T ln, and
pi € Post(t;), previous reductions (at non-replacing positions in P;) cannot
modify the root of t|,,. Hence, we write s = C'[s1,...,s,] and lg = C[l1,... ,[]
for some maximal, non-empty context C[]. If s and lg are not compatible,
there is k, 1 < k < p such that s; and [are not compatible. Therefore,
it must be root(ly) # Q. Hence, since p” T u, we have g, € Post(lg) if
lalq, = lx. However, no —gq-reduction performed below the root of subterm sy
using positions in P; can make s compatible with Iy, since, by Proposition 6, we
have q; € Pos"(s) and every —q-reduction is given at non-replacing positions,
and our choice of s;, (hence of ¢;) is arbitrary. However, this means that ¢;|,,
will not be compatible with I, thus leading to a contradiction. Therefore, we

can eliminate every —q-reduction step ; gg t;41 for p; € P; because they are

overrided by the reduction step t; QQ t;+1 and are therefore useless. Thus, we
obtain a shorter derivation (because m > 0) and by I.H., the conclusion follows.
O

The following proposition establishes that ‘softness’ of terms is preserved under
replacements on non-replacing positions.

Proposition 21 Let R be a TRS and p € CMp. Ift —§ @, then for all
p € Post(t) and t' € Ta(F,X), t{t'], —5 Q in at most the same number of
steps.

Proor. By induction on the length n of the derivation ¢ —=§ Q. If n = 0,
then ¢t = Q and Pos”(t) = @. Thus, the conclusion follows.

For the induction step, let ¢ ‘im u =g Q. Thus, there exists [€ L(R) such
that ¢|; 1 lo and ¢ € Pos”(t). Hence, there is a maximal context C] such
that t = C[ty, ..., tn] and lg = C[l1, ... L] and either ¢; < ; (and t; = Q)
or t; > 1; (and [; =) for all 1 < i < m. By Proposition b, p £ ¢. If ¢ < p,
we let p = ¢.¢’. If there is no ¢; for 1 < ¢ < m such that ¢’ € Pos(t;), then, by
Proposition 6, ¢ € Posz(l). Since uid"™ C u, we have ¢’ € Pos”(l). However,
by Proposition 4, ¢’ € W(ﬂq) and by Proposition 6 ¢’ € W([) thus leading
to a contradiction. Therefore, let ¢; be such that ¢|,, = ¢; and p = p;.p’ for
some 1 < i <m. If t; = Q, then p = p;. Since t; < l; and p € Pos”(t), by

can

Proposition 6, p € Pos(l). Since p%™ C u, we have [; = Q. Therefore, if

36

we let s’ = t[t'],|q, we have that s’ 1 lg. If t; # Q, then [; = Q and, again,
s 1tlg. In both cases, we have that t[t'],]; T la. Hence since u = t[Q],, we have

that ¢[t'], ‘—>Q u =& Qin n steps and the conclusion follows. If p || ¢, then
t[t'], i u[t'],. By the induction hypothesis, uft'], —§& € in at most n — 1
steps. Therefore, t[t'], —& Q in at most n steps and the conclusion follows. O

Theorem 15 Let R = (F,R) be a TRS and i € CMg. Ift € To(F,X) is a
soft term, then TF(t) = Z,(2).

ProoF. If Posq(t) = @, then Z,(t) = @ = ZH(1). Assume Posa(t) # @ and

that there is a non-replacing strong index p € Z;(t) — Z#(t). Since w(t) = €,
by Proposition 20, t —§ Q. By Proposition 21, t[e], < € thus contradlctmg
that p 1s a strong index of ¢. ad

Theorem 15 does not hold for nv-indices.

Example 34 Consider the TRS R and term t as wn Example 32. Note that
t =1(g(Q,x),b) s soft:
£(g(€2,x),b) —q £(g(Q,x),Q2) —q Q

In Example 32 we have shown that 1.1 is an nv-index of t. Nevertheless, if we
take p = pSg", then 1.1 € Pos”(t) and we have that TF, (1) = @ but T,,(t) # @.

The advantage of Theorem 15 w.r.t. Theorem 14 is that, whereas root-stability
is undecidable; deciding whether a term is soft i1s easy by using 2-reduction.
Moreover, non-root-stable terms are soft, but the opposite is not true. Thus,
Theorem 15 is more general.

Unfortunately, Theorem 15 cannot be extended to non-soft terms: For in-
stance, if we consider the TRS in Example 1, then term ¢ = €:Q 1s rigid.
However, both 1 and 2 are strong indices of ¢, but 2 € Pos”(t), i.e, 2 ¢ TH(t).

7.4 Using indices for defining context-sensitive strategies

The previous results allow us to establish the following.

Corollary 7 Let R = (F, R) be an almost orthogonal, NV-sequential TRS and
p € CMg. Ift € Ta(F,X) is not root-stable, then TF, (%) # @.

ProOF. Since #? is an Q-normal form, by NV-sequentiality, Z,,, (t}) # @ and
by Corollary 6, Z* (t}) # @. O

Theorem 13 and Corollary 7 entail a result that complements Theorem 10.

Theorem 16 Let R be an almost orthogonal, NV-sequential TRS, and p €
CMpg . Every non-root-stable term has a replacing root-needed redez.

37

PrOOF. Let t be a non-root-stable term. By Corollary 7, T#, () # @. Let
p € TH, (). Since t < ¢[Q],, by Lemma 9 and Proposition 6, p € Z¥, (t[Q2],).
By Theorem 13, |, is a root-needed redex of ¢t. Proposition 6, t|, is a replacing
root-needed redex. ad

Corollary 7 allows us to define the following one-step p-strategy for almost
orthogonal, NV-sequential TRSs (whenever p%" C pu):

TE, () if ¢ is not root-stable
Hyno (t) = Uieu(f) i.Hpny (t) if £ = f(t) is root-stable

@ if t 1s a variable

According to Corollary 7, H,,, 18 actually a p-strategy. By Theorems 13 and
9, Hypy 18 root-normalizing. By construction, H,,, is context-free hence pu-
normalizing (Theorem 8). Unfortunately, since root-stability remains unde-
cidable, this definition of H,,, is not completely effective. In the following
section, we overcome this problem by using the fact that, when considering NV-
sequential TRSs, every reducible term ¢ contains a redex which is addressed by
a nv-index of .

8 Context-sensitive index reduction strategies

We say that a one-step u-strategy H is an index reduction p-strategy if it always
reduces (replacing) redexes pointed by indices. Notice that Hyp,, is not an nuv-
index reduction p-strategy.

Example 35 Consider R in Erample 32 and £(g(h(a),x),h(c)) which s a
root-stable term. Assume that p(f) = p(g) = {1,2}. Since g(h(a),x) is not
root-stable and 1 € ZF (g(2,x)), we have the following Hypy -reduction step:
f(g(h(a),x),h(c)) —y,,, £(gla,x),h(c))
However, 1.1 is not an nv-index of £(g(2,x) ,h(c)):
f(g(e,x),h(c)) —, £(gle,x),0)
and £(g(e,x),Q) 1+ £(Q,a).

rnuv

We can (try to) define arbitrary (strong or nv-) index p-reduction as follows:
H (1) = 2 (") Hoo(t) = 2, (t%)

that is, only redexes occurring on replacing strong or nv-index positions can be
selected for reduction. The advantage of these definitions is that there is no
mention of root-stability of term ¢ that is considered for p-reduction.

Remark 5 Note that Proposition 16 and Lemma 9 are essential for making
sense of the use of Hy and Hy,: they ensure that whenever a redex position
p € Ho(t) (resp. p € Hpo(t)) is selected for reduction, redex t|, actually occurs
on a strong (resp. nv-) index of t{Q], (note that indices are computed w.r.t. t*).

38

Now we prove that it is possible to define a-index reduction p-strategies; in
particular, we prove the existence of both H; and H,,,,.

In the following, we write t <>, s if t 5, s and p € Post(t). We have the
following result.

Proposition 22 Let R = (F,R) be a TRS, p € CMgr, | € L(R) and let
s € Ta(F,X) —{Q} be such that s T lq. Ift <=, s, then for all p € Pos*(1)
and t' € Ta(F,X), there exists ' € Ta(F,X)—{Q} such that t[t'], =% s in at
most the same number of steps and s’ 1 lq.

Proor. By induction on the length n of the derivation ¢t <7 s. If n = 0,
then t = s # Q and ¢ 1 lg. By reasoning as in the proof of Proposition 21,
we conclude that if we let ' = t[t'],, we have that s’ # Q (note that, since
pE W(t), we have that p # A) and s’ 1 lg.

For the induction step, let ¢ fim u = s. Thus, there exists I’ - ' € R
such that t|, 1 {f, and ¢ € Pos”(t). By Proposition 5, p £ ¢. If ¢ < p, then, by
reasoning as in the base case, we have that ¢[t'],|, 1 lf;. Hence, since u = t[r]q,

we have that ¢[t'], L, u —Z* s and the conclusion follows. If p || ¢, then

t[t'], &, u[t'],. By the induction hypothesis, there exists s’ # Q such that
ult'], =% s’ in at most n — 1 steps and s’ 1 ln. Therefore, ¢[t'], <= s’ in at
most n steps and the conclusion follows. a

Proposition 23 Let R = (F,R) be a TRS, p € CMgr, l € L(R), and s €
Ta(F, X)—{} such that s T lq. Ift =) s, then there exists s’ € Ta(F, X)—{}

such that t <7 s' in at most the same number of steps and s’ 1 lg.

Proor. By induction on the length n of the derivation t — s. If n = 0,
then the proof is immediate. If n > 0, let ¢t 5, u —7 5. By the induction

hypothesis, there exists s’ such that u <* s” in at most n — 1 steps and

s" 1t lg. I p € Pos”(t), then t cﬁm u = ¢ and, by taking s’ = s, the
conclusion follows. If p € Pos”(t), then, by Proposition 22, there is s’ # Q such
that t = ut|p], —* s’ at most n — 1 steps and s’ 1 lg. Hence, the conclusion
follows. ad

Now, we can ensure the existence of nv-index p-strategies for NV-sequential

TRSs.

Theorem 17 Let R = (F,R) be an NV-sequential TRS and p € CMgr. If
t € Ta(F,X) is an Q-normal form such that Posg(t) £ @, then IE,(t) £ @.

Proor. By structural induction. If t = Q, the proof is immediate. If t =
f(t1, ... t;) since t is an Q-normal form and Posg(t) # @, there exists an
Q-normal form ¢;, for some i € pu(f) such that Posg(¢;) # @. By the induction
hypothesis, Z# (t;) # @. Assume that 7# (t) = @. Then for any p € Z* (t;) and
using Lemma 7, there are p’ < i.p, s # Q and [€ L(R) such that t[e]; p|,» = s
and s 1 ln. Since p € TF (1;), the only possibility is p’ = A; hence we assume

39

t[e]; , =% s. Obviously, this means that there exists s’ # and a derivation
t —7 s’ (which reduces at the same positions that derivation t[e]; , =% s) such
that s’ 1 lg. By Proposition 23, there exists s” # Q such that ¢t <7 s” and
s 1 lg. By NV-sequentiality, Zp,(t) # @; let ¢ € Ty, (t). Since we assume
Ik, (1) = @, we have ¢ € Pos"(t). By Proposition 22, there exists s # £ such
that t[e], —7 s’ and s’ 1 ln. This contradicts that ¢ € Z,,,(t). O

We need that € CMg to ensure the result:

Example 36 Consider the TRS R of Example 1 and assume p(first) = {2}.
Note that u ¢ CMgr. Consider the Q-normal form t = first(Q,Q). Since
first(£,e) 1 £first(Q,Q), we have that 2 & T,,(t). Note that 1 € T, (t), but
since 1 € Pos”(t), ZK,(t) = @.

Theorem 17 formalizes the existence of H,, for NV-sequential TRSs. With
regard to Hy, the following result justifies the existence of strong index reduction
p-strategies for strongly sequential TRSs.

Theorem 18 Let R = (F, R) be a strongly sequential TRS and p € CMg. If
t € Ta(F,X) is an Q-normal form such that Posf(t) # @, then TF(t) # @.

PRrROOF. According to Proposition 3, we consider the maximal rigid context CT]
such that ¢ = C[ty,...,t,] and ¢1,... ¢, are soft terms. Since Posg(t) # @,
there must be some 4, 1 < ¢ < n such that ¢; = t|, is an Q-normal form (or ¢ itself
if C[] = D), such that p € Pos”(t), and Posg(t;) # @. By strong sequentiality,
Zs(t;) # @ and by Theorem 15, 7#(t;) = Z;(t;) # @. Let ¢ € ZF(1;). Since every
Q-position of a rigid context is trivially an index, p € Z,(C[Q]). By Proposition
17, p.q € Zs(t). By Proposition 4, p.q € Pos"(t); hence, p.q € TF(¢) and the
conclusion follows. ad

8.1 Properties of context-sensitive index reduction strate-
gies
We establish the main properties of (strong and nv-) index reduction p-strategies.

Proposition 24 Arbitrary p-reduction of strong or nv-indices is context-free.

ProoOF. Lett = f(t1,...,t;) be root-stable and ¢ &an f(t),...,t,). Then,
p € I}, (t[Q],) and p = i.¢ for some 1 <4 < k. By Lemma 8 and Proposition 4,

g € T/ (ti[Q)g), 1e., t; fim t’ thus showing context-freeness of H,,,.

ny)

Concerning Hy, we use Proposition 16 instead of Lemma 8. a

Theorem 19 Let R be an almost orthogonal TRS, p € CMg, and « € {s, nv}.
Every a-index reduction p-strateqy for R s root-normalizing.

40

ProoF. Let H be an a-index reduction u-strategy and ¢ be a root-normalizing
term. Maximal finite H-sequences end in p-normal forms thus containing a
root-stable term (by Theorem 4). If there is an infinite reduction sequence
t =ty <—pn t; <>p --- that does not contain a root-stable term, by Theorem
13 (after considering Proposition 18 for strong indices), it is an infinite root-
necessary reduction sequence whose existence contradicts Theorem 9. a

In particular, Theorem 19 implies that both H; and H,, (that, according to
Theorems 18 and 17, actually exist for strongly and NV-sequential TRSs re-
spectively) are root-normalizing for every almost orthogonal (strongly) NV-
sequential TRS R and whenever p € CMg.

Theorem 20 Let R be an almost orthogonal, strongly sequential TRS and pu €
CMp . Bvery strong index reduction p-strategy for R is p-normalizing.

Proor. By Theorem 18, H; is a strong index reduction pu-strategy. Since
every strong index reduction p-strategy H can be extended to H, (which, by
Proposition 24, is context-free and by Theorem 19, root-normalizing), Corollary
5 entails the conclusion. ad

Theorem 21 Let R be an almost orthogonal, NV sequential TRS and p €
CMp . Bvery nv-index reduction p-strategy for R is p-normalizing.

Proor. By Theorem 17, H,, is a nv-index reduction p-strategy. Since every
nv-index reduction p-strategy H can be extended to H,, (which, by Proposition
24, is context-free and by Theorem 19, root-normalizing), by Corollary 5 the
conclusion follows. ad

Therefore, Hy; and H,, are g-normalizing for every almost orthogonal (strongly,
resp. NV-) sequential TRS R, whenever y € CMg.

9 p-normalization and normalization

In this section, we discuss the use of context-sensitive strategies for defining
normalizing strategies. The first problem that we address here concerns the
ability of CSR to approzimate the (possibly many) normal form(s) of a term
by means of g-normal forms. The fact that, in general, there are terms having
normal forms which do not have g-normal forms (and terms having g-normal
forms which have no normal form) is shown by the following example.

Example 37 Let us consider the (nonterminating) TRS

f(x,a) = a b—>b
gla) — a

If we take p(£) = {1} and u(g) = @, then:

41

1. The term 1 = £(b,g(a)) is normalizing:

f(b,gla)) — f£(b,a) — a

However, t 1s not p-normalizing, as there is only the following infinite
p-rewriting sequence:

f(b,g(a)) — f(b,gla)) —---

2. The term t = g(b) is p-normalizing (it is a p-normal form), but t is not
normalizing:

g®) — g) —---

Now, we establish conditions to ensure that any normal form s of a term ¢ has
a corresponding p-normal form ¢’ of ¢ that rewrites to s.

Theorem 22 Let R = (F,R) be a left-lincar TRS, i € CMg, and t,s €
T(F,X). Ift ='s, then there exists t' € T(F,X) such that t f—>'u ' —'s.

PrOOF. Since normal forms are root-stable, by Theorem 1, there is a term s’

such that ¢ <* s/ 2 s, and root(s') = root(s). We prove the existence of ¢/

by induction on the structure of s. If s is a constant or a variable, then (strict)

inner reduction (i.e., >—A>) from s’ to s is not possible and we have ' = s’ = s
as the desired p-normal form.

Ifs=f(s1,...,s6), let s/ = f(s],...,s}). We have s{ =* s;, for 1 <i < k.
Since each s} has s; as a normal form, we apply the I.H. to conclude that there
are p-normal forms wu; of each s; such that w; —=* s; for 1 < ¢ < k. We let

¢ = f(th, ... 1) be: t} = { ;‘5 ii;ﬁg; for 1 < i < k. Note that
t —*t' and ¢ —=* 5. In order to prove that ¢’ is a y-normal form, we proceed by
contradiction. If it is not, then, since each ¢ for i € p(f) is a p-normal form, ¢’
must be a redex of a rewrite rule [— » € R. This means that ¢’ = (/) for some
substitution . However, since p$™ C u, the subterms at the non-replacing
occurrences of [are variables. By Proposition 11, MRC"(¢') = MRC"(s). Thus,
s = o'(l) for some substitution ¢’. Therefore, s is not a normal form, thus

leading to a contradiction. ad

Theorem 22 ensures that, whenever a term has a normal form, it also has a
p-normal form which is a ‘prelude’ to the normal form. In fact, we can use
ordering < on 2-terms to give a more standard formulation of ‘approximation’:
by using Proposition 10, we can obtain the following: there is C[] such that

t 't s =C[th,... 1], and C[Q] < s (in fact, C[] = MRC*"(')). Immediate
consequences of Theorem 22 are the following.

Corollary 8 Let R be a left-linear TRS and p € CMp. FEvery normalizing
term 1s p-normalizing.

42

Corollary 9 Let R be a left-linear TRS and pn € CMg. If R s normalizing,
then R is p-normalizing.

These results ensure that a g-normalizing p-strategy will stop giving a g-normal
form whenever it is applied to a normalizing term, 1.e., a term having a normal
form. This is the basis for proving the main result of this section.

Theorem 23 (Normalization via g-normalization) Let R be a left-linear,
confluent TRS and p € CMp. IfH is p-normalizing, then Sy is normalizing.

Proor. Let H be a p-normalizing u-strategy and ¢ be a normalizing term.
By Corollary 8, ¢ is g-normalizing. Since H is g-normalizing, there is no infinite
H-sequence starting from ¢. Thus, by definition of Sy, every Sy-sequence issued
from a normalizing term ¢ can be written as a (possibly empty) finite H-sequence:

t=1 S Hls =SH -t =s
leading to a p-normal form s followed by a (possibly empty) Sp-sequence
Ars=1; —=s, tig1 —sy -

We proceed by induction on the structure of ¢, the normal form of ¢.

If ¢t} is a constant or a variable, then #| 1s also the unique p-normal form of
t and s = t}. Thus, sequence A is empty and every Sy-sequence issued from ¢
is, in fact, an H-sequence. Hence, there is no infinite Sy-sequence starting from
t.

By confluence, we have s —* t| and by Proposition 11, we can write
tl = Cltd, ... tpd] (with £, ... ty) being the normal forms of ¢1, ... t,,
respectively) and s = C[sy, ..., s,] for C[] = MRC"(s) # O and s; =* ;] for
1 < ¢ < n. By definition of Sy, if A is infinite, then there exists s; for some
1 <7 < n such that

Si %SH PP
is infinite, thus contradicting the induction hypothesis. a

Example 38 Consider the orthogonal TRS R of Frample 2 (including the rules
for first). Since R is not terminating, a normalizing strategy is necessary
for computing normal forms. According to Theorem 23, we can use a ug"-

normalizing px"-strategy H for building a normalizing strategy Sy. Here,

HE™(s) = p" (¢) = uE" (recip) = pg" (terms) = @,
pR" (sqr) = p" (dbl) = pg" (+) = {1}, and p" (first) = {1,2}

Consider the one-step p$"-strategy H;, that contracts the leftmost-outermost

HR" -replacing redex of terms, t.e.,

can

Hi, (1) = minc, (7705%72 1)

43

where < 1s the lexicographic ordering on positions: p <p q if either p = A, or
p=1ip,q=jq fori,jeN, andi<jVv(i=jAp <p¢'). Since R is u%"-

terminating'?, this strategy is HR-normalizing; moreover, it s a strong index

reduction p§™-strategy®, which means that no useless reduction is performed

when pR"-normalizang terms. As an example of use, we show how to obtain
the first two terms of the infinite series terms(1) by evaluating the expression

first(dbl(1),terms(1)) (again, n abbreviates s™(0)).

first(dbl(1),terms(1)) <y, first(s(s(dbl(0))),terms(1))
—y,, first(s(s(dbl(0))),recip(sqr(1)):terms(2))
—H,, recip(sqr(1)):first(s(dbl(0)) ,terms(2))

can can

At this point, the pu3g"-strategy Hy, stops yielding a p™ -normal form. How-
ever, we can continue with Sy, :

recip(sqr(1)) :first(s(dbl(0)) ,terms(2))
—rsy,, recip(s(sqr(0)+dbl(0))):first (s(dbl(0)),terms(2))
=Sy, recip(s(0+dbl(0))) :first(s(dbl(0)) ,terms(2))
=Sy, recip(s(dbl(0))):first(s(dbl(0)) ,terms(2))
—rsy,, recip(1l) :first(s(dbl(0)) ,terms(2))
=Sy, recip(1l):first(s(dbl(0)) ,recip(sqr(2)):terms(3))
=Sy, recip(l):recip(sqr(2)) :first(dbl(0) ,terms(3))
Sy, recip(1):recip(s(sqr(1)+dbl(1))) :first (dbl(0) ,terms(3))
Sy, recip(1):recip(s(s(sqr(0)+dbl(0))+dbl(1))) :first (dbl(0) ,terms(3))
Sy, recip(1):recip(s(s(sqr(0)+db1l(0)+dbl(1)))) :first (dbl(0) ,terms(3))
—rsy,, recip(1):recip(s(s(0+dbl (0)+dbl(1)))) :first (dbl(0) ,terms(3))
=Sy, recip(l):recip(s(s(dbl(0)+dbl(1)))) :first(dbl(0) ,terms(3))
Sy, recip(1):recip(s(s(0+dbl(1)))) :first(dbl(0) ,terms(3))
—rsy,, recip(1l):recip(s(s(dbl(1)))) :first(dbl(0),terms(3))
=Sy, recip(l):recip(s(s(s(s(dbl(0)))))) :first(dbl(0),terms(3))
—rsy, recip(1):recip(4):first(dbl(0),terms(3))
—rs,, recip(l):recip(4):first(0,terms(3))
=Sy, recip(1):recip(4):[]

Note that the previous sequence does not correspond to a standard leftmost-
outermost reduction sequence: for instance, the second reduction step (in the
first segment of the derivation) should contract db1(0) rather than terms(1).
Moreover, note that dbl(0) is not a strongly sequential redex, i.e., leftmost-
outermost is not an wndex reduction strategy for this TRS.

In general, Theorem 23 does not hold for non-confluent TRSs.

121n Example 3, we proved that R is py-terminating for a less restrictive replacement map
w; hence the conclusion.

13 This could be justified as follows: due to the shape of the rules, the use of the canonical
replacement map makes this TRS a kind of ‘uf'"-left-normal’ TRS (remember that with left-
normal TRSs, in all left-hand sides the function symbols occur to the left of all variables, in
linear notation [BN98], p. 272). It is well-known that the position of the leftmost outermost
redex of a term is a strong index for left-normal orthogonal TRSs [O'Do85]. Similarly, the

leftmost-outermost p&"-replacing redex is a strong index for this TRS.

44

Example 39 Consider the (non-confluent) TRS R.:

a— b

a — g(a)
If u(g) = @, then R is p-terminating and every p-strategy H is p-normalizing.
In particular, if H only uses the second rule for reducing redex a, we have:

a —s, gla) —s, glgla)) —s, -

which does not normalize a. However, a normalizes into b.

The following corollary expresses the formal connection between termination
theory and that of normalizing strategies.

Corollary 10 Let R be a left-linear, confluent TRS, and p € CMgr. If R 1s
p-terminating, then Sy is normalizing for every p-strategy H.

10 p-normalization and infinitary normalization

Lazy functional languages admit giving nfinite values as the meaning of some
expressions [FH88, Rea93]. Infinite values are defined as limits of converging
infinite sequences of partially defined values which are more and more defined.

Example 40 Consider the TRS R wn Erxample 1. The term from(0) has no
normal form, since each application of the from rule always introduces a new
function call for the function from. However, the reduction sequence

from(0) — O:from(1) — O:1:from(2) — ---
suggests that the ‘infinite value’

0:1:2:3:---

(the infinite list of all natural numbers), could be considered as the (infinite)
value of from(0).

According to this situation, some research has been done concerning infinitary
rewriting, i.e., rewriting that also considers infinite reduction sequences, proba-
bly involving infinite terms, and even term rewriting systems built from infinite

terms [Cor93, CG99, DKP91, KKSV95, Luc0Olc, Mid97].

By an infinite sequence S of elements taken from a set A we mean a mapping
S Nt — A. We denote the n-th element of the sequence as S, rather than as
S(n). The definition of a notion of convergence to a limit of infinitary sequences
on a set A can be done by introducing a distance on elements of A. A distance
is a function d : A x A — R such that, for all #,y,z € A, d(x,y) > 0, d(z,y) =0
iff 2 =y, dlz,y) = d(y,), and d(z,z) < d(z,y) + d(y,z) [AN80]. A set A
together with a distance d is a metric space (A, d).

Let (A,d) be a metric space. A sequence S of elements of A is said to
be convergent if there exists a € A such that, for all ¢ > 0,3n € Nt ¥p >

45

n,d(Sp, a) < e. If such an element a exists, it is unique and it is called the limit
of the sequence. A sequence S is said to be a Cauchy sequence if Ve > 0,3n €
N*t.Vp > n,Vq > n,d(S,,S;) < ¢. Every convergent sequence is a Cauchy
sequence but there are Cauchy sequences which do not have a limit in A. A
metric space 1s said to be complete if every Cauchy sequence is convergent. It
is well-known that every metric space (A, d) can be embedded into a complete
metric space (ﬁ, c?) by a standard procedure called metric completion [AN80].

10.1 Infinitary normalization

To discuss infinitary (term) rewriting, we follow Middeldorp’s approach [Mid97]
which is simpler but still adequate for programming purposes (see [Luc0Olc] for
a comparison of different transfinite!® rewriting frameworks and their semantic
correspondences). An infinite rewrite sequence is an infinite sequence t1,%a, ...
of (finite) terms such that t,, — ¢, 41 for alln > 1. The depth d of (an occurrence
of) a subterm s = ¢|, of a term t is the length of position p: d = |p|. Given
terms ¢, s, the largest natural number % such that all nodes of ¢t and s at a depth
less than or equal to k have the same label is given by k = mch(t, s), (maximal
common height) where:

0 if root(t) # root(s)

meh(t, s) = { |+ min({meh(ti,s;) | 1 <i <ar(f)}) ift=f@) and s = £(5)
A distance d : T(F, X) x T(F,X) = R on terms is given as follows:

0 ift=s
d(t, s) = { 9= meh(ts) otherwise
The metric completion of (T (F, X), d) yields the set 7°°(F, X) of infinite terms.
Thus, every infinitary Cauchy convergent rewriting sequence has a limit which
is either a finite or an infinite term.

In infinitary normalization, we consider infinite sequences of length w (the
first limit ordinal) whose limit is a (possibly infinite) normal form. Kennaway et
al. have developped the notion of strongly converging (infinite) rewrite sequence
[KKSV95]. In sequences of this kind, the depth of the contracted redexes tends
to infinite.

Definition 4 [Mid97] An infinite rewrile sequence t1 — to — -+ is strongly
converging if for all d > 0, there is an index i > 1 such that the depth of every
redex contracted in t; — tig1 — -+ s al least d. Also dll finile sequences are
strongly converging.

14 Transfinite rewrite sequences are obtained by considering mappings S : o — 7 (F, Xx)
for an arbitrary ordinal number o (and possibly involving infinite terms from the beginning)
rather than mappings S : w — T (F, X) for representing infinite sequences (of finite terms,
which only become infinite at the limit). Remind that w = N is the first ordinal limit.

46

Note that every infinite strongly converging sequence {1 — {5 — - - has a limit
t,, which is necessarily an infinite term. If ¢, is a normal form!'®, then, for all
d > 0 there exists an index ¢ > 0 such that the depth of every subterm which is
not root-stable in ¢; is at least d.

Definition 5 [Mid97] A rewrite sequence is called infinitary normalizing if it
strongly converges to a (possibly infinite) normal form. An infinite rewrite se-
quence that is not infinitary normalizing s called perpetual.

Definition 6 [Mid97] A reduction strategy S for a TRS is called infinitary nor-
malizing if there are no perpetual S-rewrite sequences starting from terms that
admit an infinitary normalizing rewrite sequence.

Definition 7 A TRS is infinitary normalizing if every (finite) term t admits
an mfinitary normalizing sequence.

For a given context C[] having at least a hole, we denote by sphole(C[]) the
length of the shortest path from the root of C[] to a hole (excluding the hole):
sphole(C[]) = min({|sprefivcp1(p)| such that C[]|, = O}).

Theorem 24 Let R be a left-linear TRS, and p € CMgr be such that R is
p-normalizing. If there exists a p-normalizing p-strategy for R, then R s in-
finitary normalizing.

ProOF. Let H be a p-normalizing p-strategy for R. Given a term ¢, we
show that it is possible to use H to build a strongly converging sequence of
reductions starting from ¢{. Since R is p-normalizing, ¢ has a p-normal form.
Assume that ¢ <}, #; and ¢, is a g-normal form. This is well defined because
H is p-normalizing. Let Ci[] = MRC"(t1), t1 = Ci[t11, ... ,t1n,] and dy =
sphole(C1]]). By Proposition 9, Cy[] is rigid. Since C1[] # O, d; > 0. Now
we use H for p-reducing each ¢1; up to a p-normal form sy;; we obtain the
corresponding maximal replacing contexts Ch;[| = MRC*(s1;) which are also
rigid for 1 < i < n;. By Lemma 2, context Cs[] = C1[C11[],...,C1in,[1] is
also rigid and we have obtained ¢; —* Cs[ta, ... ,tan,] = to. We let dy to be
dy = dy + min({d1;] 1 < i < ny}) where dy; = sphole(C;[]) (note that di; > 0)
for 1 < ¢ < n;. Notice that 0 < dy < ds. Reductions starting from ¢, take
place on redexes whose depth is greater than or equal to dy. Subterms whose
depth is lower than ds are stable, since they overlap the rigid context Cy[]. We
repeat this process. It is easy to show that the sequence t —* t; —* t5 —* - -+
constructed in this way is a strongly converging sequence: if d > 0 there always is
J > lsuchthat d;_1 < d < d; (welet dy = 0). By construction of the derivation,
the depth d’ of any redex contracted in the tail subderivation t; —* ¢; 11 —* -
satisfles d' > d; and therefore d’ > d as desired. Since any strongly converging
derivation has a limit (which in this case is a normal form), the conclusion
follows. ad

The following corollary connects p-termination and infinitary normalization.

15Notice that the notion of normal form of [DKP91] (a term ¢ such that ¢ = ¢’ whenever
t — t') differs from the standard one (which we use here).

47

Corollary 11 Let R be a left-linear TRS and p € CMp. If R is p-termanating,
then R is infinitary normalizing.

This result only makes sense if ;1 # pt since, in this case, termination and p-
termination differ (terminating TRSs do not admit infinite rewrite sequences).
Thus, we apply the result to non-terminating TRSs which are py-terminating.
In this way, p-termination criteria [BLR02, FR99, GL02, GM99, GM02, Luc96,
Luc02¢, SX98, Zan97] can also be used for proving infinitary normalization.

Finally, there are infinitary normalizing TRSs R which are not p%" -terminating.

Example 41 Consider the nonterminating TRS R.:
f(a) — f£(£(a))

This TRS 1s infinitary normalizing. However, since p§"™ = pt, R ts not u-
terminating for any p € CMp.

10.2 Fairness and infinitary normalization

As remarked in [DKP91, KKSV95, Mid97], we cannot hope to achieve infinitary
normalization without imposing a fairness condition [Mid97].

Definition 8 [Mid97] An infinite rewrite sequence t1 — t3 — - - is called fair
iof for every i > 1 and every mazimal non-root-stable subterm s of t; that has a
root-stable reduct there is a j > 1 such that the position of the redex contracted
in the step t; — ;41 15 below the position of s in 1.

Given a (possibly infinite) rewrite sequence A : ¢ = t; B3 and p e
Pos(t), we say that s; By B .oiisa p-subsequence of A if it is empty or

there are integers j > ¢ > 1 such that p || p forall k € {1,...,j — 1} — {i},
q .

Pi = P-q1, Pj = P-q2, 51 = tilp, 52 = tiz1lp, and so =3 -+ is a p-subsequence of

t; % tip1 P4l .. The following lemma is used below.

Lemma 14 Lel R be an infinitary normalizing TRS. Let t = C[sy, ... ,s,] be
such that C[] is rigid, let p; € Pos(t) be such that s; = t|,, for 1 <i < n. Every
rewrite p;-subsequence of a fair infinite rewrite sequence A 1t =t —ts — -
1s etther normalizing or fair infinite.

Proo¥. Letp € {p1,...,pn}. If there is a finite p-subsequence B of A starting
from t|, and yielding a term s which is not a normal form, let s’ be a maximal
non-root-stable subterm of s. By definition of p-subsequence, there are ¢ > 1
and ¢ € Pos(t;) such that p < ¢ and ¢;|; = ¢'. Since C[] is rigid, s’ is a maximal
non-root-stable subterm of ¢;. Since R is infinitary normalizing, ¢; admits an
infinitary normalizing sequence. Then, s’ has a root-stable reduct. Since A
is fair, there is j > ¢ such that the redex contracted in the step t; — #;41 is
below the position of s’ in t;. Hence, s should be further reduced in B thus
contradicting that s ends B. If B is infinite, by definition of p-subsequence, it
is fair. ad

48

Definition 9 [Mid97] A reduction strategy S for a TRS is called infinitary fair-
normalizing if there are no perpetual fair S-sequences starting from terms that
admit an infinitary normalizing rewrite sequence.

The proof of Theorem 24 suggests that it is possible to build infinitary normal-
izing strategies which are based on p-normalizing p-strategies.

Proposition 25 Let R be a left-linecar TRS and p € CMp be such that R is
p-normalizing. Let H be a p-normalizing p-strategy. For all infinite fair Sy-
sequence

Aitl—)sHt2—>sH"'

and every d € N, there is i > 1 such that t; = C[s1,...,sn], C[] is rigid,

S1,...,8n are not normal forms, and d < sphole(C1]).

ProoF. By induction on d. If d = 0, we take ¢ = 1 and C[] = O. If
d > 0, we note that, by Proposition 15, Sy is g-normalizing. Thus, since R is
p-normalizing, ¢; has a g-normal form and A can be written as follows:

1y =gy ta =gy o syl sy

where t; is a g-normal form (and, by Proposition 14, every t¢; for j > ¢). Let
Co[] = MRC"(t;), t; = Culs1,...,s,] and p; be such that ¢|,, = ¢; for 1 <
J < n. Let dg = sphole(Cp[]) and d' = d — dy. Since Cy[] # O, we have that
dg > 0; hence d' < d. For each 1 < j < n, let A; be the (finite or infinite)
rewrite p;-subsequence extracted from the tail of A which starts in ¢;. In fact,
by definition of Sy, each A; is an Sy-sequence, 1.e.,

e, — ol 2
Aj.SJ—Sj Sy S; ISy

Since Theorem 24 ensures that every term is infinitary normalizing and Propo-
sition 9 ensures that Cy[] is rigid, by Lemma 14, each A; is either finite (and
normalizes s; into u;) or a fair infinite Sy-sequence. If A; is finite, we let k; to
be the length of A;. If A; is infinite, by the induction hypothesis, there is k; > 1

ki _ upet / fa e o) ! !
such that s;7 = Ci[s},...,s7,], Cj[] isrigid, s, ..., s, are not normal forms,

and d' < sphole(Ci[]). Let C[]= Co[C4[],...,Cn[]] Wilere, for 1 <j<mn,

Ci[]= Uj %f A; %s ﬁnitej, and
! Ci[] if A;j is infinite

Note that, by definition of subsequence, k = ¢ + X7_k; is such that #; =

Clsh,...,s,]. Since normal forms u; are rigid contexts (having no hole), by

Lemma 2, C[] is rigid. Note that

sphole(C[]) = sphole(Co[]) + min({sphole(Ci[]) | A; is infinite})

49

Hence,

u
(l

do+ d

sphole(Co[) + d'

sphole(Col]) + min({sphole(C}[]) | A; is infinite}
sphole(C[])

vl

O

Theorem 25 Let R be a left-linear TRS and p € CMg be such that R 1s
p-normalizing. If H is a p-normalizing p-strategqy, then Sy is infinitary fair-
normalizing.

ProoF. We must show that every infinite fair Sy-sequence A is infinitary
normalizing, i.e., derivation A strongly converges to a (possibly infinite) normal
form. This is an immediate consequence of Proposition 25. a

Theorem 25 shows that, in contrast to (most) normalizing strategies, g-normalizing
p-strategies are useful for obtaining infinitary normal forms.

Corollary 12 Let R be a left-linear TRS and p € CMp. If R is p-termanating,
then Sy is infinitary fair-normalizing for every p-strateqy H.

Theorem 25 and Corollary 12 complement the results on infinitary normalizing
strategies given in [Mid97, KIKKSV95] since they do not apply to left-linear TRSs
but only to orthogonal TRSs. As a counterpart, we require p-termination.

For non-p-terminating TRSs, we can still use g-normalizing strategies.

Theorem 26 [Mid99] Let R be a confluent TRS. Every reduction strategy S
for R that can be extended to a context-free root-normalizing reduction strategy
for R s infinitary fair-normalizing.

Proposition 26 If H is a context-free p-strategy, then Sy is context-free.

Theorem 27 Let R be a left-linear, confluent TRS and p € CMp. IfH is a p-
strategy for R that can be extended to a context-free root-normalizing p-strategy
for R, then Sy is infinitary fair-normalizing.

ProOF. Let H' be the context-free root-normalizing extension of H. By
Proposition 15, Sy is root-normalizing. By Proposition 26, Sy is context-free.
Since Sy can be extended to Syr, by Theorem 26 the conclusion follows. a

According to Theorem 27, Theorem 19, and Proposition 24, whenever p € CMp,
strong and nwv-index reduction pu-strategies are infinitary fair-normalizing for
every almost orthogonal, strong and NV-sequential TRS R (respectively).

50

10.3 Using context-sensitive rewriting for infinitary nor-
malization

The parallel outermost strategy, S,,, is proved infinitary normalizing for almost
orthogonal TRSs ([Mid97], Corollary 7.6). This is because S,, is infinitary
fair-normalizing and fair; unfortunately, H,, is not fair.

Example 42 Consider the following (orthogonal) TRS R [Mid97]:

a — f(a,a)
f(b,x) — ¢

and g = p". Note that a has no normal form. The Hy,-sequence:

a —y,, f(a,a) =y, £(f(a,a),a) =y, -

1s not fair, since the redex a in the second term f(a,a) of the derivation is
never considered for reduction as it is placed in a non-replacing position (2 ¢

Post(f(a,a))).

Example 42 shows that Sy, is not infinitary normalizing. This is because
whenever Sy, applies on non-p-normalizing terms, it behaves exactly like H,,
(which is not fair). In this way, ensuring pg-normalization of TRSs turns out to
be very important for achieving good behavior of Sy in infinitary normalization.

Remark 6 A weaker notion of fairness that does not consider non p-replacing
positions of mazimal non-root-stable subterms would not be useful without en-
suring the p-normalizing character of the TRS: if we cannot ensure that H even-
tually stops giving a p-normal form, then Sy cannot explore the non p-replacing
positions; thus, infinitary normalization is not ensured.

Unfortunately, we do not obtain fairness with Sy even with g-normalizing TRSs
and a p-normalizing p-strategy H.

Example 43 Consider the TRS R:
a — c(a,a)

Note that R is p"-terminating. Since the only p-reducible term is a, there is
can

only one possible p"-strategy H for R. The Sy-sequence
a —s, c(a,a) —s, clc(a,a),a) —s, -
1s not fair.

When dealing with g-normalizing p-strategies in p-normalizing TRSs, fairness
is obtained without any specific effort when using the following strategy

H(t) ift ¢ NFf
gl (1) = C'”[Sul(tl),...,sllh(tn)] if t € NF%; — NFz, where:
H C[]= MRC*(t) and t = C[ty,... 5]
& otherwise

51

Here, for a given context C[] and sets of rewrite sequences Si,...,S,, issued
form terms ¢1,... ,t,, we let C’”[Sl, ..., 5] denote the set of derivations from
Clt1,...,tn] to C[s1,...,sy] such that there is ¢ € {1,... ,n} such that #; is
not a normal form and for all 1 < j < n, either ¢; is not a normal form (and is
t; =1 s; € S; as well), or ¢; is a normal form and s; = ¢;.

According to this definition, we have the following results which can be
proved in a way similar to previous ones.

Theorem 28 Let R be a left-linear TRS and p € CMg be such that R 1s
p-normalizing. If H is a p-normalizing p-strategy, then SIIL s infinttary fair-
normalizing.

Theorem 29 Let R be a left-linear TRS and p € CMg be such that R 1s
p-normalizing. If H 1s a p-normalizing p-strategy, then SIIL 1s fair.

According to Theorem 28 and Theorem 29, we have the following.

Corollary 13 (Infinitary normalization via y-normalization) Let R be a
left-linear TRS and p € CMg be such that R is p-normalizing. If H is a p-

normalizing p-strategy, then SIIL 15 infinitary normalizing.

Example 44 Continuing Ezample 43, we now only have the following SUI-
sequence

a =) c(a,a) = clcla,a),c(a,a)) —g -
H H H

which is fair.

Note that SIIL has some advantages with respect to S,,: in general, S,, is waste-
ful, i.e., it can perform useless reductions since (for almost orthogonal TRSs) it
rewrites a root-necessary set of redexes rather than a set of root-needed redexes
(see [Mid97, SR93] for further details about this). However, whenever H is op-
timal (in the sense that it only reduces root-needed redexes), it is easy to show
that SIIL is also optimal. This i1s due to the rigidness of the maximal replacing
context where the reducible parts to which the strategy ‘jumps’ are placed. For
instance, (one-step) index reduction p-strategies of Section 8 are optimal and
can be used to provide optimal infinitary normalizing strategies by using SIIL to
extend their computational scope (with left-linear, g-normalizing TRSs).

11 Applications

In this section, we use the theory that has been developed for the definition
of normalizing strategies for TRSs which do not admit a normalizing strategy
based on the usual techniques for doing so. We also show that the theory is
suitable for analyzing the computational properties of certain types of strategies
than can be specified within programming languages such as OBJ and ELAN.

52

11.1 Normalizing strategies for left-linear (possibly over-
lapping) TRSs

Example 38 shows the use of CSR for defining an optimal normalizing strategy
Sh,, for a given TRS R. Indeed, other techniques can be used for defining a nor-
malizing strategy for R. For instance, it is not difficult to see that R is strongly
sequential'®. Therefore, it admits a computable normalizing strategy. The ap-
pealing point of our normalizing strategy Sp,, in Example 38 is its simplicity
(based on reducing replacing leftmost-outermost redexes) which may eventually
drive to a simpler implementation. In this section, we go one step beyond and
consider a TRS which cannot be given a normalizing strategy by using the usual
techniques for doing so. Fortunately, we can define a normalizing strategy based
on a p-normalizing context-sensitive strategy.

When considering the interaction between functions half (see Example 13)
and dbl (see Example 2), the introduction of the rule

half (dbl(x)) — x

immediately arises as a suitable optimization which eventually permits more
efficient computations when executed using a suitable strategy. Consider the
left-linear TRS R which is obtained by joining the rules of the TRSs of Examples
2 and 13 together with the previous rule. Thus, R:

sqr (0) —+ 0 0+ x —+ x

sqr(s(x)) — s(sqr(x)+dbl(x)) s(x) +y — s(x+y)

dbl (0) — 0 first (0,x) - [
dbl(s(x)) — s(s(dbl(x))) first(s(x),y:z) — y:first(x,z)
half (0) — 0 half(s(s(x))) — s(half(x))
half(s(0)) — 0 half (dbl(x)) — X

terms (n) — recip(sqr(n)) :terms(s(n))

is not terminating and we need a normalizing strategy for computing normal
forms. Note that R is not even weakly orthogonal: it has two critical pairs

(half(0),0) and (half(s(s(dbl(x)))),s(x))

which are not trivial. Therefore, most existing results describing normalizing
strategies for weakly or almost orthogonal TRSs (e.g., [Ant92, AM96, DM97,
HLI1, Ken89, NT99, O’Do77, O’Do85, SR93, Toy92]) do not apply to R.

As far as the author knows, only [Toy92] provides some results ensuring nor-
malization of (strong) index reduction strategies for left-linear (possibly overlap-
ping) strongly sequential TRSs. However, in this case, normalization is ensured
only for the so-called root-balanced joinable TRSs (see Theorem 6.8 in [Toy92])
for which the critical pairs are root-balanced joinable (Definition 6.2 in [Toy92]).
A critical pair (¢, s) is root-balanced joinable if both ¢ and s reduce to a common

term u using the same number k > 0 of root-reduction steps (i.e., A>—steps). Note
that, e.g., weakly orthogonal TRSs are trivially root-balanced joinable. Unfor-
tunately, the previous critical pairs for R are not root-balanced joinable, as

®Indeed, R is inductively sequential in the sense of [Ant92]. These TRSs are strongly
sequential, see [HLM98].

53

components 0 or s(x) are normal forms which cannot be reduced. Moreover,
root-reduction is not able to join the components of the second pair, see below.
Thus, Toyama’s results do not apply, either.

Consider R together with the replacement map u given by u(:) = {1} and
u(f) =A{1,... k} for any other k-ary symbol f. Note that 1 € CMg. Corollary
10 allows us to define a normalizing strategy for this TRS. First, we need to
prove that R (which is left-linear) is confluent and p-terminating.

Let S be the TRS containing all rules of R but the last one (for terms). Note
that & ‘contains’ all critical pairs in R. Those critical pairs are convergent:

half(0) — 0
and
half(s(s(dbl(x)))) — s(half(dbl(x))) — s(x)

Hence, by Huet’s critical pairs theorem, § is locally confluent. § is terminating:
use a recursive path ordering (rpo) based on the precedence

sqr > dbl,+>s; first> [1,: and half > s

Therefore, by Newman’s lemma, & is confluent. On the other hand, the TRS
T consisting of the rule for terms is also confluent (by orthogonality). Now, we
can use the following fact from!” [RV80]:

Confluence is preserved under the combination of left-linear TRSs
(R1 and R) satisfying that there are no critical pairs between rules
of Ry and of R».

Therefore, by taking R;1 = & and R2 = 7T, we conclude that R is confluent.
The TRS R is p-terminating: by using the contractive transformation of
[Luc96], we obtain:

sqr (0) —+ 0 0+ x —+ x
sqr(s(x)) — s(sqr(x)+dbl(x)) s(x) +y — s(x+y)

dbl (0) — 0 first (0,x) - [
dbl(s(x)) — s(s(dbl(x))) first(s(x),: (y)) — :(y)

half (0) — 0 half (s (s(x))) — s(half(x))
half(s(0)) — 0 half (dbl(x)) - X

terms (n) — :(recip(sqr(n)))

which is terminating: again use the rpo which is based on precedence
terms > : recip,sqr; sqr >dbl,+>s; first> [] and half > s

Therefore, according to Corollary 10, we can use any p-strategy H as a basis
for obtaining a normalizing strategy Sy. Similarly, we could also use Corollary
13 for ensuring that SIIL is an infinitary normalizing strategy for R. Also note
that existing infinitary normalizing strategies require (at least) almost orthogo-

nality!® (see [KKSV95, Luc98b, Mid97]). Thus, they do not apply to R.

17T thank Bernhard Gramlich for pointing out this result which permits a formal proof of
confluence of R [Gra02].

18 Whether strong index reduction strategies are infinitary (fair) normalizing for left-linear,
strongly sequential, root-balanced joinable TRSs is an open problem.

54

11.2 Context-sensitive rewriting and the evaluation strat-

egy of OBJ

Algebraic languages, such as OBJ2 [FGJM85], OBJ3 [GWMFJ93, GWMFJ0(],
CafeOBJ [FN97], or Maude [CELM96] admit the specification of local strategies
which are associated to function symbols. Syntactically, they are sequences of
integers'® in parentheses, given as an operator attribute following the keyword

strat [GWMFJ00].

Example 45 The following specification:

obj EXAMPLE is
sorts Nat LNat .

op O : —> Nat .
op s : Nat -> Nat .
op nil : -> LNat

op cons : Nat LNat -> LNat [strat (1 0)]
op from : Nat -> LNat .
op sel : Nat LNat —-> Nat .
op first : Nat LNat —-> LNat .
var X Y : Nat .
var Z : LNat .
eq sel(s(X),cons(Y,Z)) = sel(X,Z)
eq sel(0,cons(X,Z)) = X .
eq first(0,Z) = nil .
eq first(s(X),cons(Y,Z)) = cons(Y,first(X,Z))
eq from(X) = cons(X,from(s(X)))
endo

is an OBJ version of the TRS of Example | (with the natural typing expressed
by sorts Nat and LNat). Note the local strategy (1 0) for the list constructor
cons.

If a given symbol f has no explicit local strategy, a default local strategy is
determined according to each particular language. Local strategies serve to
completely guide OBJ E-strategy (E for ‘evaluation’): When considering a func-
tion call f(t1,...,tx), only the arguments whose indices are present in the list
associated to the local strategy of f are evaluated (following the ordering which
has been specified in the list). If an index 0 is found, then the reduction of the
external function call is attempted.

Nagaya describes the operational semantics of term rewriting under strategy
maps ¢ (which map each symbol f to its individual local strategy ¢(f)) by using
a reduction relation on labelled terms which helps to implement the necessary
control of the arguments which must be evaluated and the order on which the
evaluations must be performed [Nag99]. Starting from the canonical labelling
¢(t) induced by the strategy map ¢ (which decorates each symbol f € F with

19Here we only consider non-negative integers.

55

@(f)), the evaluation eval, (t) C T (F,X) of t € T(F, X) is modeled as normal-
ization of ¢(t) under this reduction relation followed by the ‘unlabelling’ of the
obtained term(s). In [LucOla, Luc01b], we have demonstrated that this evalua-
tion process can be completely described by using CSR under the replacement
map pt, obtained by collecting as u,(f) all positive indices appearing in ¢(f)
for each symbol f (see Theorem 1 in [Luc01b]). For instance, C'SR can be used
to analyze termination of OBJ programs (Theorems 2 and 4 of [Luc01b]).

Example 46 Consider R and p as in Example 1. The p-termination of R can
be ensured by proving termination of the following TRS R, (see [Zan97]):

first (0,x) — [gel(0,x:y) — X

first(s(x),y:z) — y:first’(x,a(z)) sel(s(x),y:z) — sel(x,a(z))
from(x) — x:from’ (s(x))

first(x,y) — first’(x,y) from(x) — from’ (x)
a(first’(x,y)) — first(x,y) a(from’ (x)) — from(x)
a(x) —+ x

where first’, from’, and a are new symbols introduced by the transformation.
Termination of RY, is proved by using an rpo based on precedence

sel > ans first > from, :,first’,nil and from > : from’,s,

and giving sel the usual (left-to-right) lexicographic status.
Since p = p, for ¢ as given in Example |5, according to [LucOla, Luc01b]
this means that the OBJ program of Example 45 is terminating.

We have also established conditions ensuring that terms in eval,(t) are fi,-
normal forms. This happens whenever the local strategies ¢(f) for defined
symbols f € D end in 0 (Theorem 9 in [LucOlal; see [Eke98] for a discussion
on the problems arising when such a requirement is not fulfilled). In this case,
Nagaya’s formalization of OBJ evaluation strategy can be thought of as the
specification of a p,-rewriting strategy, since our requirement of ‘being active
as long as a p,-normal form is not reached’ (see Definition 2) is fulfilled:

Ho(t) = {t =k s|s€evaly(t)} if t & NFyy
AT @ otherwise

where the ‘rough’ description ¢ f—>+ s could be exactly given (as a pw—reductlon
sequence) from the concrete OBJ evaluation sequence by using Theorem 1 in
[Luc01b]. Note that a single H,-step achieves the complete evaluation of a term
t as done by using eval,,.

As occurs for CSR, OBJ computations do not obtain normal forms (unless
the local strategies contain all indices for the arguments of symbols, see [Nag99]).
By using Theorem 23, we easily conclude the following.

Theorem 30 (Normalization via ¢-normalization) Let R = (CWD, R) be
a left-linear, confluent TRS and ¢ be an E-strateqy map such that for all f € D,
@(f) ends in 0. If u¥ € CMg and R s p-terminating, then Sy, is normalizing.

56

Obtaining normal forms in OBJ computations is also guaranteed as follows:
given a strategy map ¢ ensuring that terms in eval, (¢) are root-stable (for all
t e T(F, X)), any ¢ given by ¢'(f) = ¢(f)++(i1 - in) for all symbol f € F
(where ‘+4’ appends two lists, and for all ¢ € {1,... ar(f)} — po(f), i €
{#1,...,i,}) ensures that terms in eval, (t) are normal forms (Theorem 3.2 in
[NOO1]). In principle, this appears to be similar to the ‘lifting’ of computational
activity that Sy performs regarding H. Unfortunately (in contrast to Theorem
30), this does not ensure a normalizing behavior for ¢’. For instance, we are
able to obtain the normal form [0,1,2,3,4] of term first(5,from(0)) (for ¢
as in Example 45) by using Sy, . In contrast, with ¢'(cons) = (1 0 2), this is
not possible with OBJ evaluation strategy which would realize a computation
equivalent to the following infinite p,/-sequence:

first(5,from(0)) u first(5,0:from(1))
u first(5,0:1:from(2))
%NAPI e
Thus, the p1,-termination of R (see Example 46) does not ensure ¢/'-normalization.
Moreover, even though eval, is root-normalizing, now eval,s is no longer root-
normalizing (also in contrast to Proposition 15).

Still, by using the results in [Luc98a, LucOla], we can prove that it is pos-
sible to obtain (using ¢) the value?® of any expression of the sort Nat with-
out entering into infinite computations. For instance, it is possible to evaluate
sel(s(0),from(0)) to s(0), i.e., s(0) € eval,(sel(s(0),from(0))).

Similar kinds of annotations have been utilized in term (graph) rewriting [FKWO00,
KW95, Mar90, Ngu01, Pol01]. They have mainly been used to define restric-
tions of rewriting that permit the implementation of lazy reductions via eager
rewritings in a transformed TRS [FKW00, KW95, Ngu01]. In [Luc98a, Luc01b,
Luc02a] we have analyzed how these proposals relate to CSR.

11.3 Context-sensitive rewriting and evaluation strategies

of ELAN

Most computational systems whose operational principle is based on reduction
(e.g., functional, algebraic, and equational programming languages as well as
theorem provers based on rewriting techniques) incorporate a predefined reduc-
tion strategy which is used to break down the non-determinism which is inherent
to reduction relations. The ELAN system provides an environment for specify-
ing and prototyping deduction systems in a language based on rules controlled
by strategies [BKKMRI8]. In the context of rewriting, user-defined strategies
were first introduced in ELAN [BKK98].

In ELAN, there are labelled and unlabelled rules. The operational semantics
of ELAN takes advantage of this difference: the evaluation of a term proceeds
in two steps [BCDK*00]:

20We mean a term built from constructor symbols, rather than just a normal form.

57

1. First, a leftmost-innermost reduction strategy is applied to attempt the
normalization with respect to the unlabelled rules. The user is recom-
mended to provide a confluent and terminating unlabelled rewrite system
in order to ensure termination and unicity of the result.

2. As for the normalized term (with respect to unlabelled rules), one first
tries to apply a labelled rule following the strategy described in the logic
description. This leads to a possibly empty collection of terms. If this set
is empty, the evaluation backtracks to the last choice point; if it is not
empty, then the evaluation continues after setting a new choice point and
evaluating one of the returned terms by starting from the first step.

According to this description, the user can completely control the evaluation by
specifying an adequate strategy only when the set of non-labelled rules is empty.
ELAN provides a language for the definition of strategies whose semantics is
given in a functional style: a strategy i1s considered to be a mapping from terms
to sets of terms which are obtained as a consequence of the application of the
rewriting steps indicated by the strategy (see [BKK98]). The application of
a strategy < to a term ¢ is denoted by ¢. If [¢](t) = @, we say that the
strategy ¢ fails on t. The most elementary strategy, called a primal strategy, is
a rewrite rule; a rule can be considered as a function which maps a term to its
reduct at the top position [BKK98]. Actually, if different rules share the same
label, then such a label can be also considered a mapping from terms to sets
of terms (each of which comes from different rules). According to this, ELAN
incorporates a rich suite of primitive strategies as well as operators for combining
them (see [BKKMR98, BCDK™00]). For instance, given the strategies ¢1, ... ,
and a symbol f of the signature, the strategy f(s1,..., <) is defined as follows
[KKV95, BKK98]:

o sy = { 500 =g

where f is overloaded. In particular, when it is applied to sets of terms 51, ... | Sk,
we have that f(Sy,...,S%) = {f(s1,...,8) | 1 € S1,...,8k € Sk }. The first
operator is applied to a list of strategies and selects the first strategy which does
not fail among its arguments and returns all of its results. id is the identity
strategy that does nothing and never fails. Strategies can also be defined by
means of rewrite rules involving terms built from the preceding operators.
It is possible to specify context-sensitive rewriting strategies as an ELAN

strategy. We exemplify the procedure by defining a leftmost-innermost restricted
strateqy.

Example 47 Consider the following ELAN specification of the TRS in Example
1 (symbols for lists are included for better comprehension; first is renamed as
fst as first is used by ELAN itself)

module restrictedLeftmostInnermost
// The module identity is part of the standard library

58

import
local identity[X];
end

sort nat listNat; end

operators
global
Zero : nat;
nil : listNat;
s (0) : (nat) nat;
from (@) : (nat) listNat;
e . @ : (nat listNat) listNat;
sel (@,0) : (nat listNat) nat;
fst (@,0) : (nat listNat) listNat;
end
stratop
global
ev-nat : <nat -> nat>
ev-listNat: <listNat -> listNat>
end

rules for listNat

X,y: nat;
z : listNat;
global

[ruleLNat] from(x) => x.from(s(x)) end

[ruleLNat] fst(zero,z) => nil end

[rulelLNat] fst(s(x),y.z) => y.fst(x,z) end
end

rules for nat

X,y: nat;
z : listNat;
global

[ruleNat] sel(zero,x.z) => x end
[ruleNat] sel(s(x),y.z) => sel(x,z) end
end

strategies for nat
implicit
[.] rli-nat => first([s(rli-nat),sel(rli-nat,id),
sel(id,rli-listNat),ruleNat]) end
end

strategies for listNat
implicit
[.] rli-listNat => first([rli-nat.id,fst(rli-nat,id),
fst(id,rli-listNat) ,rulelLNat]) end
end
end

59

This specification corresponds to the leftmost-innermost evaluation strateqy re-
stricted to p-replacing redexes, where p(from) = @, p(s) = p(.) = {1}, and
p(sel) = up(fst) = {1,2}. Note that p € CMp. This strategy fails if no
p-replacing redex is available for reductions.

The definition is easy to understand (see a similar definition for leftmost-
outermost reductions in A-calculus in [BKK98]): every argument of a symbol of
the considered sort is considered for reduction, starting from left to right and
skipping non-replacing arguments. Notice that, in some cases (for instance,
for the operator from which has no replacing argument), there is no strategy
from(rli-nat) within the list associated to rli-listNat. Since reductions in
the argument of from are not allowed, it is not necessary to include the argu-
ment. Thus, this reflects the fact that p(from) = @. A similar remark applies to
“.7: no component id.rli-listNat is needed for defining rli-listNat since
reductions on the second arqument of ‘. " are not allowed. Hence, this reflects
the fact that p(.) = {1}. Finally, the system attempts to apply every rule of the
considered sort on the top position.

The theory of CSR can be also used to study the computational properties of this
ELAN-strategy: Following the discussion at the end of Section 11.2, we conclude
that it is possible to use this ELAN-strategy to obtain the complete evaluation
of expressions of the sort nat without entering into an infinite computation. For
instance, the evaluation of sel(s(zero),from(zero)) to s(zero) would not
be possible by using the default (unrestricted) leftmost-innermost evaluation
strategy of ELAN since it leads to an infinite computation.

12 Conclusions and future work

We have investigated the main computational properties of p-normal forms re-
garding root-normalization and normalization. We proved that, for left-linear
TRSs R and canonical replacement maps p € CMp:

1. the p-normal forms are strongly root-stable. This refines a previous result
that identified such pg-normal forms as root-stable terms [Luc98a]. Indeed,
this fact can be viewed now as a consequence of the results established in
this paper.

2. the confluence of a (left-linear) TRS does not ensure the unicity of the
p-normal forms of a term ¢, but it does ensure that the mazimal replacing
context of such p-normal forms is unique.

3. (unrestricted) reducts of g-normal forms are g-normal forms, and the max-
imal replacing context of a p-normal form remains unchanged under fur-
ther (unrestricted) reductions.

We have formalized the notion of context-sensitive rewriting strategy. We have
investigated the definition, properties, and use of context-sensitive rewriting

60

strategies (or p-strategies, for a given replacement map p). The effective defi-
nition of g-normalizing p-strategies relies on the notions of root-normalization,
and root-neededness [Mid97] and its decidable approximations [Luc98b]. This
provides a measure for the efficiency of context-sensitive strategies, by taking the
theory of root-needed reductions as a reference. We have proven that, whenever
1 € CMpg, every orthogonal TRS R admits a one-step p-normalizing strategy.
Moreover, for almost orthogonal NV-sequential TRSs, such strategies can be
effectively given. We have also shown that the restricted parallel outermost
p-strategy is p-normalizing for every orthogonal TRS R (whenever y € CMg).

Finally, we have shown how to use p-normalizing strategies for defining ef-
ficient normalizing and infinitary normalizing strategies. These results can be
summarized as follows: (1) each left-linear, confluent, TRS R which has a pu-
normalizing p-strategy (in particular p-terminating TRSs) admits a (one-step)
normalizing strategy (where p € CMg is assumed), and (2) every left-linear,
p-normalizing TRS R which admits a p-normalizing strategy also admits an
infinitary normalizing strategy. In both cases, optimality of the underlying pu-
strategy is also inherited by the induced normalizing or infinitary normalizing
strategy.

The theory is applied to define (infinitary) normalizing strategies for TRSs
which do not admit a (infinitary) normalizing strategy based on the usual tech-
niques for doing so. We also apply the theory to the analysis of computational
properties of the evaluation strategies used in OBJ or ELAN. We believe that
our work makes a contribution to the practical use and understanding of these
languages.

We conclude by summarizing a number of results presented in the paper
which complement or improve some results of the standard theory of rewriting:

1. We refine Middeldorp’s result: ‘every non-root-stable term has a root-
needed redex’ by considering pu3"-replacing redexes. This means that cs-

restrictions provide a first, simple, and correct bound to root-neededness.

2. Since nv-sequential indices have been proved to be (currently) the best de-
cidable approximation to root-neededness (see [Luc98b]), we are able to re-
fine this result by taking into account p"-replacing nv-indices which suf-
fice for approximating root-needed redexes (without losing any nv-index).

3. We have demonstrated that, whenever p1 € CMpg, left-linear p-terminating
TRSs are infinitary normalizing.

4. We have shown that the use of computational restrictions of rewriting
such as CSR can be helpful for defining normalizing strategies. Moreover,
we have presented two complementary approaches to achieve this: (1) the
analysis of termination of the computational restriction (that, for CSR,
is formally analogous to the standard case, see [Zan97] for an abstract
description), and (2) the definition of ‘good’ strategies for the computa-
tional restriction (which, for CSR, we have based on the notions of root-
normalization and root-neededness). We believe this is an interesting link

61

between the two approaches (and theoretical fields) which has probably
not yet been sufficiently explored.

The problem of implementing computational systems based on rewriting redexes
pointed by strong indices was considered in [Dur94, HL79, O’Do095, Str89]. Un-
fortunately, no comparable effort has been devoted to nv-indices. In practice,
strong index reduction strategies are not implemented by means of Q2-reduction,
1.e., -reduction is not used for identifying redexes that should be reduced at
each computation step. Instead, there are two main approaches. The first one
is to describe a class of TRSs for which the calculus of strong indices is very
simple; for instance: in weakly orthogonal, left-normal TRSs (i.e., TRSs where
the function and constant symbols occur to the left of variables in all left-hand
sides [BN98]), the leftmost-outermost redex of any term is addressed by a strong
index [0’Do85, Toy92]. The second approach is to provide an adequate data
structure which is able to combine the pattern matching operation with the
search for a strong index, thus finding not only a redex within a term but more
precisely a redex addressed by a strong index (e.g., matching dags [HL79], index
trees [Dur94, Str89], or even definitional trees [Ant92] for constructor systems
[HLMO98]). As for future work, we plan to systematically adapt these meth-
ods to ease the specification and implementation of context-sensitive rewriting
strategies in our setting.

Acknowledgements. 1 would like to thank Maria Alpuente, Bernhard Gram-
lich, and Aart Middeldorp for their comments on preliminary versions of this
paper. I also thank the anonymous referees for their helpful remarks.

References

[AGO0] T. Arts and J. Giesl. Termination of Term Rewriting Using De-
pendency Pairs Theoretical Computer Science, 236:133-178, 2000.

[AM96] S. Antoy and A. Middeldorp. A Sequential Reduction Strategy.
Theoretical Computer Science 165:75-95, 1996.

[ANS0] A. Arnold and M. Nivat. The metric space of infinite trees. Alge-
braic and topological properties. Fundamenta Informaticae 4:445-
476, 1980.

[Ant92] S. Antoy. Definitional Trees. In H. Kirchner and G. Levi, editors,

Proc. of 3rd International Conference on Algebraic and Logic Pro-
gramming, ALP’92 LNCS 632:143-157, Springer-Verlag, Berlin,
1992.

[BCDK*00] P. Borovansky, H. Cirtea, H. Dubois, C. Kirchner, H. Kirchner,
P.-E. Moreau, C. Ringeissen, and M. Vittek. ELAN User Manual
(version 3.4). January 2000.

62

[BEGK+87]

[BFRO0]

[BKKO8]

[BKKMRYS]

[BLROZ]

[BNOS]

[Bur91]

[CELM96]

[CGY9]

[Com00]

H.P. Barendregt, M.C.J.D. van Eekelen, J.R.W. Glauert, J.R.
Kennaway, M.J. Plasmeijer, and M.R. Sleep. Term Graph Rewrit-
ing. In J.W. de Bakker, A.J. Niyjman, and P.C. Treleaven, editors,
Proc. of 2nd Conference on Parallel Architectures and Languages
FEurope, PARLE’87, LNCS 259:141-158, Springer-Verlag, Berlin,
1987.

C. Borralleras, M.C.F. Ferreira, and A. Rubio. Complete Mono-
tonic Semantic Path Ordering. In D.A. McAllester, editor,
Proc. of 17th International Conference on Automated Deduction,

CADE’00, LNCS 1831:346-364, Springer-Verlag, Berlin, 2000.

P. Borovansky, C. Kirchner, and H. Kirchner. A functional view of
rewriting and strategies for a semantics of ELAN. In M. Sato and
Y. Toyama, editors, Proc. of 3rd Fuji International Symposium
on Punctional and Logic Programming, FLOPS’98, pages 143-
166, World Scientific Press, Singapore, 1998.

P. Borovansky, C. Kirchner, H. Kirchner, P.-E. Moreau, and C.
Ringeissen. An Overview of ELAN. In C. Kirchner and H. Kirch-
ner, editors, Proc. of 2nd International Workshop on Rewriting
Logic and its Applications, WRLA’98, Electronic Notes in Com-
puter Science, 15(1998):1-16, 1998.

C. Borralleras, S. Lucas, and A. Rubio. Recursive Path Orderings
can be Context-Sensitive. In A. Voronkov, editor Proc. of 18th
International Conference on Automated Deduction, CADE’02,
LINAIT 2392:314-331, Springer-Verlag, Berlin, 2002.

F. Baader and T. Nipkow. Term Rewriting and All That. Cam-
bridge University Press, 1998.

G.L. Burn. Lazy Functional Languages: Abstract Interpretation
and Compilation. Pitman, London and The MIT Press, Cam-
bridge, MA, 1991.

M. Claver, S. Eker, P. Lincoln, and J. Meseguer. Principles of
Maude. In Proc. 1st International Workshop on Rewriting Logic
and its Applications, Electronic Notes in Theoretical Computer
Science, Elsevier Sciences, 1996.

A. Corradini and F. Gadducci. Rational Term Rewriting. In
M. Nivat, editor, Proc. of 1st International Conference on Foun-
dations of Software Science and Computation Structures, FOS-
SACS’98, LNCS 1378:156-171, Springer-Verlag, Berlin, 1998.

H. Comon. Sequentiality, Monadic Second-Order Logic and Tree
Automata. Information and Computation, 157(1-2): 25-51, 2000.

63

[Cor93]

[CP85]

[Der87)

[DJ90]

[DKPY1]

[DM97]

[Dur94]

[Eke98]

[ENPS92]

[FGIMS5]

[FHSS)

A. Corradini. Term Rewriting in C'Tx. In M.-C. Gaudel and J.-P.
Jouannaud, editors, Proc. of 1st International Joint Conference
CAAP/FASE on Theory and Practice of Software Development,
TAPSOFT 93, LNCS 668:468-484, Springer-Verlag, Berlin, 1993.

C. Clack and S.L. Peyton-Jones. Strictness analysis — a practical
approach. In J.-P. Jouannaud, editor, Functional Programming
and Computer Architecture, LNCS 201:35-39, Springer-Verlag,
Berlin, 1985.

N. Dershowitz. Termination of rewriting. Journal of Symbolic

Computation, 3:69-115, 1987.

N. Dershowitz and J.-P. Jouannaud. Rewrite Systems. In J.
van Leeuwen, editor, Handbook of Theoretical Computer Science,
volume B: Formal Models and Semantics, pages 243-320. Elsevier,
Amsterdam and The MIT Press, Cambridge, MA, 1990.

N. Dershowitz, S. Kaplan, and D. Plaisted. Rewrite, rewrite,
rewrite, rewrite, rewrite. Theoretical Computer Science 83:71-96,

1991.

I. Durand and A. Middeldorp. Decidable Call by Need Com-
putations in Term Rewriting (Extended Abstract). In W. Mec-
Cune, editor, Proc. of 14th International Conference on Auto-
mated Deduction, CADE’97, LNAI 1249:4-18, Springer-Verlag,
Berlin, 1997.

I. Durand. Bounded, Strongly Sequential and Forward-Branching
Term Rewriting Systems. Journal of Symbolic Computation,

18:319-352, 1994.

S. Eker. Term Rewriting with Operator Evaluation Strategies. In
C. Kirchner and H. Kirchner, editors, Proc. of 2nd International
Workshop on Rewriting Logic and its Applications, WRLA’98,
Electronic Notes in Computer Science, 15(1998):1-20, 1998.

M.C.J.D. van Eekelen, E.G.J.M.H. Nocker, M.J. Plasmeijer, and
J.E.W. Smetsers. Concurrent Clean. Language Manual - Version
0.8. Technical Report 92-18, University of Nijmegen, 1991.

K. Futatsugi, J. Goguen, J.-P. Jouannaud, and J. Meseguer. Prin-
ciples of OBJ2. In Conference Record of the 12th Annual ACM
Symposium on Principles of Programming Languages, POPL’85,
pages 52-66, ACM Press, 1985.

A.J. Field and P.G. Harrison. Functional Programming. Addison-
Wesley Publishing Company, 1988.

64

[FKW00]

[FN97]

[FW76]

[FROY]

[GL02]

[GM99)]

[GMO02]

[Gra02]
[GWMFJ00]

[GWMFJ93]

W. Fokkink, J. Kamperman, and P. Walters. Lazy Rewriting on
Eager Machinery. ACM Transactions on Programming Languages

and Systems, 22(1):45-86, 2000.

K. Futatsugi and A. Nakagawa. An Overview of CAFE Specifica-
tion Environment — An algebraic approach for creating, verifying,
and maintaining formal specification over networks —. In Proc.
of 1st International Conference on Formal Engineering Methods,

1997.

D.P. Friedman and D.S. Wise. CONS should not evaluate its
arguments. In S. Michaelson and R. Milner, editors, Automata,
Languages and Programming, pages 257-284, Edinburgh Univer-
sity Press, 1976.

M.C.F. Ferreira and A.L. Ribeiro. Context-Sensitive AC-
Rewriting. In P. Narendran and M. Rusinowitch, editors, Proc. of
10th International Conference on Rewriting Techniques and Ap-
plications, RTA’99, LNCS 1631:286-300, Springer-Verlag, Berlin,
1999.

B. Gramlich and S. Lucas. Modular termination of context-
sensitive rewriting. In C. Kirchner, editor, Proc. of Jth Inter-
national ACM SIGPLAN Conference on Principles and Practice
of Declarative Programmang, PPDP’02, ACM Press, New York,
to appear, 2002.

J. Giesl and A. Middeldorp. Transforming Context-Sensitive
Rewrite Systems. In P. Narendran and M. Rusinowitch, editors,
Proc. of 10th International Conference on Rewriting Techniques
and Applications, RTA’99, LNCS 1631:271-285, Springer-Verlag,
Berlin, 1999.

J. Giesl and A. Middeldorp. Transformation Techniques for
Context-Sensitive Rewrite Systems. Technical Report AIB-2002-
02, Department of Computer Science, RWTH Aachen, 2002.

B. Gramlich. Personal communication. April 2002.

J.A. Goguen, T. Winkler, J. Meseguer, K. Futatsugi, and J.-P.
Jouannaud. Introducing OBJ. In J. Goguen and G. Malcolm,
editors, Software Engineering with OBJ: algebraic specification
wn action, Kluwer, 2000.

J.A. Goguen, T. Winkler, J. Meseguer, K. Futatsugi, and J.-P.
Jouannaud. Introducing OBJ*. In D. Coleman, R. Gallimore,
and J. Goguen, editors, Applications of Algebraic Specifications
Using OBJ, 1993.

65

[HL79]

[HL91]

[HLMO98]

[FIM76]

[HPF99]

[HPW92]

[Hue80]

[Jac96]

[Jon92]

[7594]

[Ken89]

[Ken94]

G. Huet and J.J. Lévy. Call by need computations in nonambigu-
ous linear term rewriting systems. Technical Report 359, IRIA
Laboria, LeChesnay, France, 1979.

G. Huet and J.J. Lévy. Computations in orthogonal term rewrit-
ing systems. In J.L. Lassez and G. Plotkin, editors, Computa-
tional logic: essays in honour of J. Alan Robinson, pages 395-414
and 415-443. The MIT Press, Cambridge, MA, 1991.

M. Hanus, S. Lucas, and A. Middeldorp. Strongly sequential
and inductively sequential term rewriting systems. Information
Processing Letters, 67(1):1-8, 1998.

P. Henderson and J. Morris, Jr. A Lazy Evaluator. In Conference
record of the 3rd. ACM Symposium on Principles of Programmaing
Languages, POPL’76, ACM Press, pages 95-103, 1976.

P. Hudak, J. Peterson, and J.H. Fasel. A Gentle Introduction
to Haskell 98. Yale Unwersity, Department of Computer Science
Technical Report YALEU, October 1999.

P. Hudak, S.J. Peyton-Jones, and P. Wadler. Report on the Func-
tional Programming Language Haskell: a non-strict, purely func-
tional language. Sigplan Notices, 27(5):1-164, 1992.

G. Huet. Confluent reductions: abstract properties and applica-
tions to term rewriting systems. Journal of the ACM 27:797-821,
1980.

F. Jacquemard. Decidable approximations to Term Rewriting
Systems. In H. Ganzinger, editor, Proc. of 7th International
Conference on Rewriting Techniques and Applications, RTA 96,
LNCS 1103:362-376, Springer-Verlag, Berlin, 1996.

M.P. Jones. Introduction to Gofer 2.20. Oxford Programming
Research Group, 1992.

J.P. Jouannaud and W. Sadfi. Strong Sequentiality of Left-
Linear Overlapping Rewrite Systems. In N. Dershowitz and
N. Lindenstrauss, editors, Proc. of Workshop on Conditional
Term Rewriting Systems, CTRS’94, LNCS 968:235-246, Springer-
Verlag, Berlin, 1995.

R. Kennaway. Sequential Evaluation Strategies for Parallel-Or
and Related Reduction Systems. Journal of Pure and Applied
Algebra, 43:31-56, 1989.

R. Kennaway. A Conflict Between Call-By-Need Computation
and Parallelism. In N. Dershowitz and N. Lindenstrauss, editors,
Proc. of 4th Workshop on Conditional Term Rewriting Systems,
CTRS’94, LNCS 968:247-261, Springer-Verlag, Berlin, 1994.

66

[KKV95]

[K1092]

[KKSV95]

[KM91]

[KW95]

[Luc96]

[Luc98a]

[Luc98b]

[LucOla]

[Luc01b]

[LucO1c]

C. Kirchner, H. Kirchner, and M. Vittek. Designing Constraint
Logic Programming Languages using Computational Systems. In
P. van Hentenryck and S. Saraswat, editors, Principles and Prac-
tice of Constraint Programming. The MIT Press, 1995.

J.W. Klop. Term Rewriting Systems. In S. Abramsky, D.M.
Gabbay, and T.S.E. Maibaum. Handbook of Logic in Computer
Science, volume 2, pages 1-116. Oxford University Press, 1992.

R. Kennaway, J.W. Klop, M.R. Sleep, and F.-J. de Vries. Trans-
finite reductions in Orthogonal Term Rewriting Systems. Infor-
mation and Computation 119(1):18-38, 1995.

J.W. Klop and A. Middeldorp. Sequentiality in Orthogonal Term
Rewriting Systems. Journal of Symbolic Computation 12:161-195,
1991.

J.F.Th. Kamperman and H.R. Walters. Lazy Rewriting and Ea-
ger Machinery. In J. Hsiang, editor, Proc. of the 6th International
Conference on Rewriting Techniques and Applications, RTA 95,
LNCS 914:147-162, Springer-Verlag, Berlin, 1995.

S. Lucas. Termination of context-sensitive rewriting by rewrit-
ing. In F. Meyer auf der Heide and B. Monien, editors, Proc.
of 23rd. International Colloquium on Automata, Languages and
Programming, ICALP’96, LNCS 1099:122-133, Springer-Verlag,
Berlin, 1996.

S. Lucas. Context-sensitive computations in functional and func-
tional logic programs. Journal of Functional and Logic Program-

ming, 1998(1):1-61, January 1998.

S. Lucas. Root-neededness and approximations of neededness.
Information Processing Letters, 67(5):245-254, 1998.

S. Lucas. Termination of on-demand rewriting and termination
of OBJ programs. In Proc. of 3rd International Conference on
Principles and Practice of Declarative Programming, PPDP’01,
pages 82-93, ACM Press, 2001.

S. Lucas. Termination of Rewriting With Strategy Annotations.
In R. Nieuwenhuis and A. Voronkov, editors, Proc. of 8th Inter-
national Conference on Logic for Programmang, Artificial Intel-
ligence and Reasoning, LPAR’01, LNAI 2250:669-684, Springer-
Verlag, Berlin, 2001.

S. Lucas. Transfinite Rewriting Semantics for Term Rewriting
Systems. In A. Middeldorp, editor, Proc. of 12th International
Conference on Rewriting Techniques and Applications, RTA 01,
LNCS 2051:216-230. Springer-Verlag, Berlin, 2001.

67

[Luc02a]

[Luc02b]

[Luc02c]

[Mar90]

[McC60]

[McC78]

[Mid97]

[Mid99]

[MN92]

[Myc80]

[Nag99]

[Ngu01]

S. Lucas. Lazy Rewriting and Context-Sensitive Rewriting. Elec-
tronic Notes in Theoretical Computer Science, volume 64, Else-
vier, 2002.

S. Lucas. MU-TERM version 1.0. User’s manual. Technical Report
DSIC-11/01/02, DSIC, Universidad Politécnica de Valencia, 2002.

S. Lucas. Termination of (Canonical) Context-Sensitive Rewrit-
ing. In S. Tison, editor, Proc. of 13th International Conference on
Rewriting Techniques and Applications, RTA 02, LNCS 2378:296-
310, Springer-Verlag, Berlin, 2002.

L. Maranget. Optimal Derivations in Weak Lambda-calculi and
in Orthogonal Term Rewriting Systems. In Conference Record of
the 18th Annual ACM Symposium on Principles of Programmaing
Languages, POPL’90, pages 255-269, ACM Press, 1990.

J. McCarthy. Recursive Functions of Symbolic Expressions and
their Computations by Machine, Part I. Communications of the

ACM, 3(4):184-195, 1960.

J. McCarthy. History of Lisp. In R.L. Wexelblat, editor, History
of Programming Languages, Academic Press, New York, 1978.

A. Middeldorp. Call by Need Computations to Root-Stable Form.
In Conference Record of the 24th Annual ACM Symposium on
Principles of Programming Languages, POPL’97, pages 94-105,
ACM Press, 1997.

A. Middeldorp. Context-Freeness and Infinitary Normalization.
Presented at the 14th Japanese Term Rewriting Meeting, Nara
Institute of Science and Technology, March 15-16, 1999.

A. Mycroft and A.C. Norman. Optimising Compilation. Part II:
lazy functional languages. In Proc. of XIX Seminar on Current
Trends in Theory and Practice of Informatics, SOFSEM’92, 1992.

A. Mycroft. The theory and practice of transforming call-by-need
into call-by-value. In B. Robinet, editor, Proc. of the jth Interna-
tional Symposium on Programming, LNCS 83:269-281, Springer-
Verlag, Berlin, 1980.

T. Nagaya. Reduction Strategies for Term Rewriting Systems.
PhD Thesis, School of Information Science, Japan Advanced In-
stitute of Science and Technology, March 1999.

Q.-H. Nguyen. Compact Normalisation Trace via Lazy Rewrit-
ing. FElectronic Notes in Theoretical Computer Science, volume

57, Elsevier, 2001.

68

[NOO1]

[NSEP92]

[NST95]

[NT99]

[0’Do77]

[0’Do85)

[0'Do95]

[OV02]

[Oya93]

[PE93)]

[Pey87]

[Pol01]

M. Nakamura and K. Ogata. The evaluation strategy for head
normal form with and without on-demand flags. In K. Futatsugi,
editor, Proc. of 3rd International Workshop on Rewriting Logic
and its Applications, WRLA 2000, Electronic Notes in Theoreti-
cal Computer Science, volume 36, 17 pages, 2001.

E.G.J.M.H. Nocker, J.E.W. Smetsers, M.C.J.D. van Eekelen, and
M.J. Plasmeijer. Concurrent Clean. In E.H.L. Aarts, J. Leeuwen,
and M. Rem, editors, Proc. of Parallel Architectures and Lan-
guages Europe, PARLE’91, LNCS 506:202-219, Springer-Verlag,
Berlin, 1992.

T. Nagaya, M. Sakai, and Y. Toyama. NVNF-Sequentiality of
Left-Linear Term Rewriting Systems. RIMS Technical Report
918, pages 109-117, University of Kyoto, 1995.

T. Nagaya and Y. Toyama. Decidability for Left-Linear Grow-
ing Term Rewriting Systems. In P. Narendran and M. Rusinow-
itch, editors, Proc. of 10th International Conference on Rewrit-
wing Techniques and Applications, RTA’99, LNCS 1631:256-270,
Springer-Verlag, Berlin, 1999.

M.J. O’Donnell. Computing in Systems Described by Equations.
LNCS 58, Springer-Verlag, Berlin, 1977.

M.J. O’Donnell. Equational Logic as a Programming Language.
The MIT Press, Cambridge, Massachusetts, 1985.

M.J. O’Donnell. Equational Logic Programming. In D.M. Gab-
bay, C.J. Hogger, and J.A. Robinson, editors, Handbook of Logic
wmn Artificial Intelligence and Logic Programming, volume 4, chap-
ter 3. Oxford University Press, 1995.

V. van Oostrom and R. de Vrijer. Strategies. In TeReSe, Term
Rewriting Systems, Chapter 9. Cambridge University Press, 2002.

M. Oyamaguchi. NV-Sequentiality: a decidable condition for call-
by-need computations in term-rewriting systems. STAM Journal

of Computing, 22(1):114-135, 1993.

R. Plasmeijer and M. van Eekelen. Functional Programming and

Parallel Graph Rewriting. Addison-Wesley, Reading, MA, 1993.

S. L. Peyton-Jones. The Implementation of Functional Program-
ming Languages. Prentice-Hall International, London, 1987.

J. van de Pol. Just-in-time: On Strategy Annotations. FElec-
tronic Notes in Theoretical Computer Science, volume 57, Else-
vier, 2001.

69

[Read3]

[Red85]

[RV80]

[Sla74]

[SR93]

[Str89)]

[SX98]

[TKS00]

[Toy92]

[Zan97]

[Zan02]

C. Reade. Elements of Functional Programming. Addison-Wesley
Publishing Company, 1993.

U.S. Reddy. Narrowing as the Operational Semantics of Func-
tional Languages In Proc. of IEEE International Symposium on
Logic Programming, pages 138-151, 1985.

J.C. Raoult and J. Vuillemin. Operational and Semantic Equiv-
alence Between Recursive Programs. Journal of the ACM

27(4):772-796, 1980.

J.R. Slagle. Automated theorem-proving for theories with sim-
plifiers, commutativity, and associativity. Journal of the ACM,

21(4):622-642, 1974.

R.C. Sekar and I.V. Ramakrishnan. Programming in Equational
Logic: Beyond Strong Sequentiality. Information and Computa-
tion 104:78-109, 1993.

R. Strandh. Classes of Equational Programs that Compile into
Efficient Machine Code. In N. Dershowitz, editor, Proc. of 3rd
International Conference on Rewriting Techniques and Applica-

tions, RTA’89, LNCS 355:449-461, Springer-Verlag, Berlin, 1989.

J. Steinbach and H. Xi. Freezing — Termination Proofs for Clas-
sical, Context-Sensitive and Innermost Rewriting. Institut fur
Informatik, T.U. Miinchen, January 1998.

T. Takai, Y. Kaji, and H. Seki. Right-Linear Finite Path Overlap-
ping Term Rewriting Systems Effectively Preserve Recognizabil-
ity. In L. Bachmair, editor, Proc. of 11th International Confer-
ence on Rewriting Techniques and Applications, RTA’00, LNCS
1833:246-260, Springer-Verlag, Berlin, 2000.

Y. Toyama. Strong Sequentiality of Left-Linear Overlapping
Rewrite Systems. In Proc. of 7th Annual IEEE Symposium on
Logic in Computer Science, LICS 92, pages 274-284, TEEE Com-
puter Society Press, 1992.

H. Zantema. Termination of Context-Sensitive Rewriting. In H.
Comon, editor, Proc. of 8th International Conference on Rewrit-
wing Techniques and Applications, RTA’97, LNCS 1232:172-186,
Springer-Verlag, Berlin, 1997.

H. Zantema. Termination. In TeReSe, Term Rewriting Systems,
Chapter 6. Cambridge University Press, 2002.

70

