Improving On-Demand Strategy Annotations*

M. Alpuente!, S. Escobar!, B. Gramlich?, and S. Lucas'

! DSIC, UPV, Camino de Vera s/n, E-46022 Valencia, Spain.
{alpuente,sescobar,slucas}@dsic.upv.es
2 AQG Theoretische Informatik und Logik, Institut fiir Computersprachen,
TU Wien, Favoritenstr. 9, E185/2 A-1040 Wien, Austria.
gramlich@logic.at

Abstract. In functional languages such as OBJ*, CafeOBJ, and Maude,
symbols are given strategy annotations which specify (the order in) which
subterms are evaluated. Syntactically, they are given either as lists of nat-
ural numbers or as lists of integers associated to function symbols whose
(absolute) values refer to the arguments of the corresponding symbol.
A positive index enables the evaluation of an argument whereas a nega-
tive index means “evaluate on-demand”. While strategy annotations con-
taining only natural numbers have been implemented and received some
recent investigation endeavor (regarding, e.g., termination and complete-
ness), fully general annotations (also called on-demand strategy anno-
tations), which have been proposed to support laziness in OBJ-like lan-
guages, are disappointingly under-explored to date. In this paper, we
first point out a number of problems of current proposals for handling
on-demand strategy annotations. Then, we propose a solution to these
problems which is based on a suitable extension of the FE-evaluation
strategy of OBJ-like languages (that only considers annotations given as
natural numbers) to on-demand strategy annotations. Our strategy in-
corporates a better treatment of demandness and also exhibits good com-
putational properties; in particular, we show how to use it for comput-
ing (head-)normal forms. We also introduce a transformation for proving
termination of the new evaluation strategy by using standard techniques.

Keywords: Declarative programming, demandness, lazy evaluation, OBJ,
on-demand strategy annotations

1 Introduction

Eager rewriting-based programming languages such as Lisp, OBJ*, CafeOBJ,
ELAN, or Maude evaluate expressions by innermost rewriting. Since nontermi-
nation is a known problem of innermost reduction, syntactic annotations (gen-
erally specified as sequences of integers associated to function arguments, called
local strategies) have been used in OBJ2 [FGJMS85], OBJ3 [GWM™00], CafeOBJ
[FN97], and Maude [CELM96] to improve efficiency and (hopefully) avoid non-
termination. Local strategies are used in OBJ programs! for guiding the evalu-
ation strategy (abbr. E-strategy): when considering a function call f(t1,..., 1),

* Work partially supported by CICYT TIC2001-2705-C03-01, Acciones Integradas
HI2000-0161, HA2001-0059, HU2001-0019, and Generalitat Valenciana GV01-424.
! As in [GWM™00], by OBJ we mean OBJ2, OBJ3, CafeOBJ, or Maude.

only the arguments whose indices are present as positive integers in the local
strategy for f are evaluated (following the specified ordering). If 0 is found,
then the evaluation of f is attempted. The limits of using only positive annota-
tions regarding correctness and completeness of computations are discussed in
[AEL02,Luc01,Luc02b,0F00,NO01]: the obvious problem is that the absence of
some indices in the local strategies can have a negative impact in the ability of
such strategies to compute normal forms.

Ezample 1. Consider the following OBJ program (borrowed from [NOO1]):

obj Ex1 is
sorts Nat LNat .
op O : => Nat .
op s : Nat -> Nat [strat (1)] .
op nil : -> LNat .
op cong : Nat LNat -> LNat [strat (1)] .
op 2nd : LNat -> Nat [strat (1 0)] .
op from : Nat -> LNat [strat (1 0)] .

vars X Y : Nat . var Z : LNat .

eq 2nd(cons(X,cons(Y,Z))) =Y .

eq from(X) = cons(X,from(s(X))) .
endo

The OBJ evaluation of 2nd(from(0)) is given by the sequence:

2nd (from(0)) — 2nd(cons(0,from(s(0))))
The evaluation stops here since reductions on the second argument of cons are
disallowed. Note that we cannot apply the rule defining 2nd because the subterm
from(s(0)) should be further reduced. Thus, a further step is demanded (by the
rule of 2nd) in order to obtain the desired outcome:

2nd (cons (0,from(s(0)))) — 2nd(cons(0,cons(s(0),from(s(s(0))))))
Now, we do not need to reduce the second argument of the inner occurrence of
cons anymore, since reducing at the root position yields the final value:

2nd (cons (0, cons (s (0) ,from(s(s(0))))) — s(0)

Therefore, the rather intuitive notion of demanded evaluation of an argu-
ment of a function call (see [AL02] for a survey discussing this topic) arises as a
possible solution to this problem. In [OF00,NO01], negative indices are proposed
to indicate those arguments that should be evaluated only ‘on-demand’, where
the ‘demand’ is an attempt to match an argument term with the left-hand side
of a rewrite rule [Eke98 GWM*00,0F00]. For instance, in [NOO1] the authors
suggest (1 -2) as the “apt” local strategy for cons in Example 1. The inspira-
tion for the local strategies of OBJ comes from lazy rewriting (LR) [FKWO00],
a demand-driven technique where syntactic annotations allow the eager evalu-
ation of function arguments, whereas the default strategy is lazy. However, the
extended, on-demand E-strategy of [OF00,NOO1] presents a number of draw-
backs, which we formally address in the paper. The following example illustrates
that the notion of demandness which is formalized in [NOO1] needs to be refined
to be entirely satisfactory in practice.

Ezxample 2. Consider the following OBJ program:

obj Ex2 is
sorts Nat LNat .
op O : => Nat .
op s : Nat -> Nat [strat (1)]
op nil : -> LNat .
op cong : Nat LNat -> LNat [strat (1)] .
op from : Nat -> LNat [strat (1 0)]
op length : LNat -> Nat [strat (0)]

op length’ : LNat -> Nat [strat (-1 0)]

var X : Nat . var Z : LNat .

eq from(X) = cons(X,from(s(X))) .

eq length(nil) = 0 .

eq length(cons(X,Z)) = s(length’(Z)) .

eq length’(Z) = length(Z)

endo

The expression length’ (from(0)) is rewritten (in one step) to length(from(0)).
No evaluation is demanded on the argument of length’ for enabling this step
and no further evaluation on length(from(0)) should be performed due to
the local strategy (0) of length. However, the annotation (-1 0) of function
length’ is treated in such a way that the on-demand evaluation of the expression
length’ (from(0)) yields an infinite sequence (whether? we use the operational
model® in [OF00] or whether we use [NOO1]). This is because the negative an-
notations are implemented as marks on terms which can (unproperly) initiate
reductions later on; see Example 3 below.

In this paper, after some preliminaries in Section 2, in Section 3 we recall the
current proposals for dealing with on-demand FE-strategy annotations in OBJ
languages and discuss some drawbacks regarding the treatment of demandness.
In Section 4 we (re-)formulate the computational model of on-demand strategy
annotations by handling demandness in a different way. We demonstrate that
the new on-demand strategy outperforms the original one. We also show that
our definition behaves better than lazy rewriting (LR) regarding the ability to
compute (head-)normal forms. Section 5 introduces a transformation which can
be used to formally prove termination of programs that use our computational
model for implementing arbitrary strategy annotations. Section 6 concludes and
summarizes our contributions.

2 Preliminaries

Given a set A, P(A) denotes the set of all subsets of A. Let R C Ax A be a binary
relation on a set A. We denote the transitive closure by RT and its reflexive and
transitive closure by R* [BN98]. An element a € A is an R-normal form, if there

2 Actually, the operational models in [OF00] and [NOO1] differ and deliver different
computations, see Example 4 below.

? Negative annotations are (syntactically) accepted in current OBJ implementations,
namely OBJ3 and CafeOBJ, but they have no effect over the computations.

exists no b such that a R b. We say that b is an R-normal form of a (written
a R'b), if b is an R-normal form and a R*b. Throughout the paper, A" denotes
a countable set of variables and F denotes a signature, i.e. a set of function
symbols {f,g,...}, each having a fixed arity given by a function ar : F — N.
We denote the set of terms built from F and X by T(F,X). A term is said to
be linear if it has no multiple occurrences of a single variable. Terms are viewed
as labelled trees in the usual way. Positions p,q,... € N} are represented by
chains of positive natural numbers used to address subterms of ¢{. We denote
the empty chain by A. By Pos(t) we denote the set of positions of a term ¢.
Positions of non-variable symbols in ¢ are denoted as Posz(t), and Posy (t) are
the positions of variables. Given positions p, ¢, we denote its concatenation as p.q.
Positions are ordered by the standard prefix ordering <. Given a set of positions
P, minimal< (P) is the set of minimal positions of P w.r.t. <. The subterm at
position p of ¢ is denoted as t|,, and £[s], is the term ¢ with the subterm at
position p replaced by s. The symbol labelling the root of ¢ is denoted as root(t).

A rewrite rule is an ordered pair ({,r), written { — r, with [,r € T(F,X),
l ¢ X and Var(r) C Var(l). The left-hand side (lhs) of the rule is [and r is
the right-hand side (rhs). A TRS is a pair R = (F,R) where R is a set of
rewrite rules. L(R) denotes the set of [hs’s of R. A TRS R is left-linear if for
all { € L(R), [is a linear term. Given R = (F, R), we take F as the disjoint
union F = C WD of symbols ¢ € C, called constructors, and symbols f € D,
called defined functions, where D = {root(l) |l = r € R} and C = F—D. An
instance o () of a lhs [€ L(R) by any substitution ¢ is called a redex. A term
t € T(F,X) rewrites to s (at position p), written t Sz s (or just t — s), if
tl, = o(l) and s = t[o(r)],, for | — r € R, p € Pos(t) and substitution o.

3 Rewriting with strategy annotations

A local strategy for a k-ary symbol f € F is a sequence ¢(f) of integers
taken from {—k,...,—1,0,1,..., k} which are given in parentheses. We define
an ordering C between sequences of integers as: nil T L, for all sequence L,
(i @2 - i) C (J1 Jo - Jn) if iy = jy and (ia -+ 4) T (J2 -+ Jjn), OF
(i 42 - i) T (J1 Jo -+ Jn) ifdy # j1 and (41 d2 -+ 4) C (G2 - Jn)-

A mapping ¢ that associates a local strategy ¢(f) to every f € F is called an
E-strategy map [Nag99,NOO1]. An ordering C between strategy maps is defined:
pC ¢ ifforall feF, o(f) C¢'(f). Roughly speaking, ¢ C ¢’ if for all f € F,
¢'(f) is ¢(f) where some additional indices have been included.

Semantics of rewriting under a given E-evaluation map ¢ is usually given by
means of a mapping eval, : T(F,X) = P(T (F, X)) from terms to the set of its
computed values (technically E-normal forms).

Rewriting with positive F-strategy maps. Nagaya describes the map-
ping eval, for positive E-strategy maps ¢ (i.e., E-strategy maps where neg-
ative indices are not allowed) by using a reduction relation on pairs (¢, p) of

labelled terms ¢t and positions p [Nag99]. Let I be the set of all lists consist-
ing of integers and L, be the set of all lists of integers whose absolute value
does not exceed n € N. Given an FE-strategy map ¢ for F, we use the sig-
nature }"§ ={ft | f€F L€ Luy (L C @)} and labelled variables
XY = {xna | # € X}. An E-strategy map ¢ for F is extended to a map-
ping from 7T (F,X) to T(}"ﬁ, Xg) by introducing the local strategy associated
to each symbol as a subscript of the symbol. The mapping erase : T(}"ﬁ, Xg) —
T(F,X) removes labellings from symbols in the obvious way. Then, given a
TRS R = (F,R) and a positive E-strategy map ¢ for F, eval, is defined as

eval, (t) = {erase(s) € T(F,X) | <g0(t),/1>ﬁ>!w<s,/1>}, where the binary relation

ﬁ)w on T(}"ﬁ, Xg) x N7 behaves as follows: given (¢, p), where ¢t € T(}"ﬁ, Xg)
and p € Pos(t), if a positive index ¢ > 0 is found in the list labelling the symbol
at t|p, then the index is removed from the list, the “target position” is moved
from p to p.i, and the subterm ¢|,; is next considered. If 0 is found, then the
evaluation of t|, is attempted: if possible, a rewriting step is performed; other-

wise, the 0 is removed from the list. In both cases; the evaluation continues at
the same position p (see Definition 6.1.3 of [Nag99] or Definition 2.2 of [NOO01]).

The on-demand evaluation strategy. Ogata and Futatsugi [OF00] have
provided an operational description of the on-demand evaluation strategqy eval,
where negative integers are also allowed in local strategies. Nakamura and Ogata
[NOO1] have described the corresponding evaluation mapping eval, by using a
reduction relation. We recall here the latter one since the former one is not
appropriate for our objectives in this paper.

Given an E-strategy map ¢, we use the signature* F, = {f2 | f€ FAL €
Lar(s)-(L C @(f)) Ab e {0,1}} and labelled variables X, = {5, | # € X'}. An
on-demand flag & = 1 indicates that the term may be reduced if demanded. An
E-strategy map ¢ for F is extended to a mapping from 7 (F, X') to T (F,, X,) as

2. fit=xe X
follows: o(t) = { il : . On the other hand,
ollows: (1) {fg(f)«o(u),...,so(tk)) 1= f(ty, ... 1) 0 O the other han

the mapping erase : T(F,, X,) — T(F,X) removes labellings from symbols
in the obvious way. The (partial) function flag : T(F,, X,) x N7 — {0,1}
returns the flag of the function symbol at a position of the term: flag(t,p) = b if
root(t),) = f2. The map up : T(Fy, Xyp) = T (Fp, Xp) (vesp. dn : T(Fp, Xyp) —
T(Fp, X)) raises (lowers) the on-demand flag of each function symbol in a term,
e up(xl,) = dn(22,;) = 2%, up(fE(t1, ..., tx)) = fi(up(ts), ..., up(tx)), and
dn(fo(ty, ..., t)) = f2(dn(t1), ..., dn(ty)).

When it is being examined whether a term ¢ matches the left-hand side [
of a rule, a top-to-bottom and left-to-right pattern matching is performed. Let

4 Note that Nakamura and Ogata’s definition uses JF and A7 instead of F, and X,
where the restriction to L T ¢(f) is not considered. However, using terms over F,
does not entail loss of generality; furthermore, it actually provides a more accurate
framework for formalizing and studying the strategy, since they are the only class of
terms involved in the computations.

Posz(t,l) = {p € Posxr(t) N Posz(l) | root(l],) # root(t|,)} be the set of
(common) positions of non-variable disagreeing symbols of terms ¢ and {. Then,
the map df; : 7(F,X) — N U {T} returns the first position where the term
and the lhs differ (on some non-variable position) or T if each function symbol
of the term coincides with [:

_ | min<, (Posz(t,1)) if Posx(t,l) # @
dfi(t) = {T otherwise

where <j., 1s the lexicographic ordering on positions: p <i, ¢ iff p < ¢q or
p=wip,g=w.jq, 1,7 €N and i < j.

Similarly, given a TRS R, the map DFr : T(F,X) = N3 U{T} returns the
first position where the term differ w.r.t. all lhs’s:

T if dfi(t) =T for somel—>reRrR
DFr(t) = {maxQEI{dfl (t) |l = r € R} otherwise

Definition 1. Given a TRS R = (F,R) and an arbitrary E-strategy map ¢
for F, eval, : T(F,X) — P(T(F,X)) is defined as eval,(t) = {erase(s) €
T(F,X) | {p(t), A) _>!w (s, A)}. The binary relation —, on T(F,, X,) x WY
is defined as follows ([NOO1], Definition /.4): {t,p) —, {(s,q) if and only if
p € Pos(t) and either

root(t),) = f,,, s =t and p = q.i for some i; or

thy = fop(te, .. te), i>0, s=t[f2(t1,...,tx)], and ¢ = p.i; or

t = fo, (b1,), 8> 0, s = t[f2(t1, ..., up(t;), ..., tx)], and ¢ = p; or

thy = fo (t1,. . t), s =t[t'],, ¢ = p where t' is a term such that

(a) t' = 0(p(r)) if DFr(erase(t|y)) = T, t|, = 6(I'), erase(l') = | and
l—>reR.

(b) U = fi(t1,... 1) if either DFg(erase(t],)) = T and erase(t],) is not
a redex, or DFg(erase(t|,)) = A, or DFg(erase(t|,)) = p' # A and
flag(t,p.p’) = 0;

(c)t' = [o(tr,... . t;[up(s)]pn, ..., tx) if DFgr(erase(t|,)) = p' = ip”,
flag(t,p.p') = 1, {dn(t|pp), A) _>!w (s, A), and DFg(erase(t|p[s]y)) =
p/’.

(@) ¢ = tylup(s)ly if DFr(eraseltl,)) = of # A, flaglt,ps)) = 1,
(dn(t|p.pr), A) _>!w (s, A), and either p' <jp DFr(erase(t|p[s],r)) or
DFr(erase(t|,[s]p)) = T;

T Lot~

Case 1 means that no more annotations are provided and the evaluation is
completed. In case 2, a positive argument index is found and the evaluation
goes down to the subterm at such argument. In case 3, the subterm at the
argument indicated by the (absolute value of the) negative index is completely
marked with on-demand flags. Case 4 considers the attempt to match the term
against the left-hand sides of the program rules. Case 4.a applies if the considered
(unlabelled) subterm is a redex (which is, then, contracted). If the subterm is not
a redex, cases 4.0, 4.c and 4.d are considered possibly involving some on-demand

evaluation steps on some subterm. The selected demanded position for term ¢
(w.r.t. program R) is denoted as DFg(t) (eventually, symbol T is returned if ¢
matches the left-hand side of some rule of the TRS). According to DFg(¢), case
4.0 applies if no demanded evaluation is allowed (or required). Cases 4.¢c and
4.d apply if the on-demand evaluation of the subterm ¢|, s is required. In both
cases, the evaluation is attempted; if it finishes, the evaluation of ¢|, continues
according to the computed value.

Note that the computational description of on-demand strategy annotations
above involves recursive steps. A single reduction step on a (labelled) term ¢
may involve the application of more than one reduction step on subterms of ¢
(as shown by steps 4(¢) and 4(d)). In fact, the definition of a single rewriting
step may depend on the possibility of evaluating some arguments of the con-
sidered function call. This implies that the one-step reduction relation proposed
by Nakamura and Ogata is generally undecidable. Therefore, associated notions
such as normal form (w.r.t. their reduction relation) are also undecidable.

Furthermore, as remarked in our introduction, the notion of demandness
formalized in [NOO1] needs to be refined to be entirely satisfactory in practice.

Ezrample 3. Following the Example 2. The on-demand evaluation of
length’ (from(0)) yields the following infinite sequence:

(length’{_,)(from(()l 0 (00:a)), A)

-, {1 ength’ (from(1 oy (0 LAY = (1ength()(from(l1 0)(0;”)),/1>
—5 (s(()l (length’? (=1 0) (from Oni))))s A)
1

Onit))))s 1)

(S(()l (
e <S(7)w (length’(10 (from(()l 0 (S(()l (

Note that within the labelled term length?o)(from(l1 0)(
not recognize that the (activated) on-demand flags on from and 0 does not come

L)), the strategy does
from the local annotation for length. That is, the strategy does not maintain any
kind of memory about the origin of on-demand flags. Hence, it (unnecessarily)
evaluates the argument of length. Moreover, at this point, this evaluation does
not correspond to the ‘intended’ meaning of the strategy annotations which the
programmer may have in mind (since the specific annotation (0) for length
forbids reductions on its argument).

On the other hand, the two existing definitions for the on-demand E-strategy
(namely Nakamura and Ogata’s [NOO1] and Ogata and Futatsugi’s [OF00]) sen-
sibly differ. For instance, Nakamura and Ogata select a demanded position for
evaluating a given term ¢ by taking the maximum of all positions demanded on
t by each rule of the TRS (according to the lexicographic ordering on positions).
On the other hand, in Ogata and Futatsugi’s selection of demanded positions,
the ordering of the rules in the program is very important.

Example 4. Consider the OBJ program of Example 2 with the strategy (1 0)
for 1ength together with the function geq defined by the following module:

obj Ex3 is
protecting Ex2 .
sorts Bool .

op true : -> Bool .
op false : -> Bool .
op geq : Nat Nat -> Nat [strat (-1 -2 0)] .

vars X Y : Nat .

eq geq(s(X),s(Y)) = geq(X,Y) .

eq geq(X,0) = true

endo

Consider the expression geq(length(from(0)),length(nil)). According to
Ogata and Futatsugi’s definition of on-demand FE-strategy, an infinite reduc-
tion sequence is started since position 1 is selected as demanded and, thus, its
(non-terminating) evaluation attempted. However, Nakamura and Ogata’s def-
inition of on-demand E-strategy selects position 2 as demanded and, after the
evaluation, the second rule is applied, thus obtaining true.

We claim that it is possible to provide a more practical framework for implement-
ing and studying OBJ computations, which may integrate the most interesting
features of modern evaluation strategies with on-demand syntactic annotations.
This is made more precise from now on.

4 Improving rewriting under on-demand strategy
annotations

As discussed at the end of the previous section, the existing operational models
for arbitrary strategy annotations have a number of drawbacks: (1) the one-
step reduction relation is, in general, undecidable; (2) the implementation of
demandness by using negative annotations (via the marking of terms with flag
0 or flag 1) allows evaluation steps that shouldn’t be possible, since (3) it does
not properly keep track of the origin of the marks (loss of memory, see Example
3). Here, we want to introduce a further consideration which can be used for
improving the previous definitions. Let us show it up by means of an example.

Ezample 5. Consider the OBJ program of Example 4 together with the following
function 1t:
obj Ex4 is
protecting Ex3 .
op 1t : Nat Nat -> Nat [strat (-1 -2 0)] .
vars X Y : Nat .
eq 1t(0,s(Y)) = true .
eq 1t(s(X),s(Y)) = 1t(X,Y) .
endo
Consider the expression ¢ = 1t(length(from(0)),0), which is a head-normal
form since no possible evaluation could lead the expression to match the left-
hand side of a rule. Neither Nakamura and Ogata’s nor Ogata and Futatsugi’s
formulations are able to avoid evaluations on ¢. Nevertheless, by exploiting the
standard distinction between constructor and defined symbols of a signature in

the presence of a TRS, it i1s easy to detect that no rule could ever be matched.
Indeed, 0 is a constructor symbol in the input term ¢ and, hence, 1t cannot be
reduced for improving the matching of ¢ against the left-hand side of the rule for
1t. See [AFJV97,AL02,MR92] for a more detailed motivation and formal discus-
sion of the use of these ideas for defining and using demand-driven strategies.

In the following, we propose a rectified and refined definition of the on-
demand E-strategy which takes into account all previous considerations.

Given a E-strategy map ¢, we use the signature® f& = U{fL1|L2aTL1|L2 | f e
F ALy, Ly € Lgp(gy-(L14++L2 € o(f))} and labelled variables X£ = {Znitpnir |
z € X'} for marking ordinary terms ¢t € T (F, X) as terms ¢ € T(}"&, Xﬂ). Over-
lining the root symbol of a subterm means that no evaluation is required for
that subterm and the control goes back to the parent; the auxiliary list Ly in
the subscript Ly | Lo is interpreted as a kind of memory of previously consid-
ered annotations. We use f! to denote f or f for a symbol f € F. We define
the list of activable indices of a labelled symbol fLILz as activable(f}llh) =
{i; i éi i ZZ . The operator ¢ is extended to a mapping from 7 (F,X) to
Tnil|nil ift=xecd
fnil|ap(f)(§0(t1)a ceey go(tk)) lft = f(tl, .. .,tk) ’
Also, the operator erase : T(}"&, Xﬂ) — T(F, X) removes labellings from terms.

We define the set of demanded positions of ¢ w.r.t. { (a lhs of a rule defining
root(t)), i.e. the set of (positions of) maximal disagreeing subterms as:

T(}"&,Xﬂ) as follows: ¢(t) = {

DP(t) = minimal< (Posx(t,1)) if minimal< (Posx(t,1)) C Posp(t)
W= e otherwise

and the set of demanded positions of ¢ w.r.t. TRS R as DPr(t) = U{DPF(t) |
l = r € R Aroot(t) = root(l)}. Note that the problem described in Example 5
is solved (along the lines of [MR92]) by restricting the attention to disagreeing
positions that correspond to defined symbols (by using Posp(t)).

Ezample 6. Continuing Example 5. Let ¢; = 1t(length(from(0)),0),
ty = 1t(length(from(0)),length(nil)), and {3 = 1t(0,length(nil)). We
have DPg(t1) = @, DPg(t2) = {1,2}, and DPg(t3) = {2}.

We define the set of positive positions of a term s € T(}"&, Xﬂ) as Posp(s) =
{AYU{iPosp(s];) | ¢ > 0 and activable(root(s)) contains ¢} and the set of ac-
tivable positions as Posa(s) = {A}U{i.Posa(s|;) | i > 0 and activable(root(s))
contains i or —i}. Given a term s € T(}"&, Xﬂ), the total ordering <; between
activable positions of s is defined as (1) A <; p for all p € Posa(s); (2) if
i.p,i.q € Posa(s) and p <y, ¢, then i.p <, i.q; and (3) if i.p,j.q € Posa(s),
i # j, and ¢ (or —i) appears before j (or —j) in activable(root(s)), then i.p <; j.q.
The ordering <; allows us to choose a position from the set of all demanded
(and activable) positions in s, which is consistent with user’s annotations (see

5 The function ++ defines the concatenation of two sequences of integers.

min<_ below). We define the set ODg(s) of on-demand positions of a term
s € T(FL,XL) wrt. TRS R as follows:

if DPr(erase(s)) NPosp(s) # @ or DPr(erase(s)) NPosa(s) = &
then ODg(s) = @ else ODg(s) = {min< (DPr(erase(s)) NPosa(s))}

Example 7. Continuing Example 2. For ¢t; = lengthmll(o)(fromm”(l 0)(Onitjnit))
we have DPg(erase(t;)) = {1} but ODg(t1) = @. Let us consider ¢, =
length(_l)l(o)(fromm”(l 0)(Onit|nit)). We have ODg (t2) = {1}. Finally, for t3 =
length(l)l(o)(fromm”(l 0)(Onit|nit)), we have ODg (t3) = @.

Given a term t € T(}"&, Xﬂ) and position p € Pos(t), mark(t,p) is the term s
with all symbols above p (except the root) marked as non-evaluable, in symbols
Pos(s) = Pos(t) and Yq € Pos(t), if A < ¢ < p and root(t|y) = fr,1,, then
root(s|lq) = fr,|L,, otherwise root(s|y) = root(t|y).

Erample 8. Consider the program of Example 1 and the term ¢ = 2nd(1y|(o)(
cons(1 —2)jnit(Onitjnit, £TOMy1 (1 0)(Snit)(1) (Onitjnir)))). We have that mark(t,1.2) =
2nd (1)) (0)(CORS (1 —2)[nit (Onitjnit, ETOMy41 (1 0)(Snit) (1) (Onitjnit))))-

We formulate a binary relation Lw on the set T(}"&, Xﬂ) x N7, such that a
single reduction step on a (labelled) term ¢ does not involve the application of
recursive reduction steps on ¢. In the following definition, the symbol @ denotes
appending an element at the end of a list.

Definition 2. Given a TRS R = (F,R) and an arbitrary E-strategy map ¢
for F, eval, : T(F,X) — P(T(F,X)) is defined as eval,(t) = {erase(s) €
T(F,X) | {pt), A) —u>'w (s, AY}. The binary relation Lw on T(}"&, Xﬂ) x N7 s
defined as follows: (t,p) —u>w (s,q) if and only if p € Pos(t) and either

tlp = frpa(ts, .. tk), s =t and p = q.i for some i; or

. t|p = fL1|i:L2(t1a .. .,tk), 7> 0, § = t[le@Z'|L2(t1, .. .,tk)]p and q = pl, or

ctlp = frag—ina (o tk), 1> 0, s = fr,amin, (B, - - -, t)]p and ¢ = p; or

ctlp = Jrgors (- tk) = o(l'), erase(l’) =1, s = tlo(p(r))], for some

l = r € R and substitution o, ¢ = p; or

5.ty = fryora(ty, ... k), erase(t|p) is not a redexr, ODr(t|,) = @, s =
tfrn. (e, . t)]p, and ¢ = p; or

6. tlp = frijo:o(ty, ... tx), erase(t|y) is not a redexr, ODg(t],) = {p'}, s =
timark(tly, p')lp, ¢ =p.p'; or

7oty = frop, (s te), s =tfr, 0. (t1, .. tk)]p and p = q.i for some i.

S Lo © ~

Cases 1 and 2 of Definition 2 essentially correspond to cases 1 and 2 of
Nakamura and Ogata’s definition; that is, (1) no more annotations are provided
and the evaluation is completed, or (2) a positive argument index is provided
and the evaluation goes down to the subterm at such argument (note that the
index is stored). Case 3 only stores the negative index for further use. Cases 4,
5, and 6 consider the attempt to match the term against the left-hand sides of

10

the rules of the program. Case 4 applies if the considered (unlabelled) subterm
is a redex (which is, then, contracted). If the subterm is not a redex, cases 5 and
6 are considered (possibly involving some on-demand evaluation). We use the
lists of indices labelling the symbols for fixing the concrete positions on which
we are able to allow on-demand evaluations; in particular, the first (memoizing)
list is crucial for achieving this (by means of the function activable and the
order <; used in the definition of the set ODg(s) of on-demand positions of
a term s). Case b applies if no demanded evaluation is allowed (or required).
Case 6 applies if the on-demanded evaluation of the subterm t|, , is required. In
this case, the symbols lying on the path from t|, to t|, s (excluding the ending
ones) are overlined. Then, the evaluation process continues on t|, . Once the
evaluation of ¢|, + has finished, the only possibility is the repeated (but possibly
empty) application of steps issued according to the last case 7 which implements
the return of the evaluation process back to position p (which originated the
on-demand evaluation).

Ezrample 9. Following the Examples 2 and 3. The on-demand evaluation of
length’ (from(0)) under the refined on-demand strategy is the following:

(Length’, ;;j(—1 o) (fTomui1 0)(Onitpnir)), A)

S (length? o) (Eromuir o) (Onapnin)), A)

o (Tength, o) (Er0m1(1 o) (Onitinat)), A)

S (Length, i (Eromuin o) (Onitpnir)), A)

Therefore, we obtain length(from(0)) as the computed value of the evalua-

tion since, in the third step, the set of demanded positions ODg is empty (see
Example 7 above).

4.1 Properties of the refined on-demand strategy

The following theorem shows that, for positive strategy annotations, each reduc-
tion step with —ﬁ>w exactly corresponds to the original Nagaya’s ﬁ)w [Nag99,NOO01].
For an FE-strategy map ¢ and a term ¢t € T(}"&,Xﬂ), we define positive :
T(}"&,Xﬂ) — T(}"ﬁ,Xﬁ) as positive(Tpini) = ng for 2 € A and
positive(f}illh(tl, oy tn)) = fri (positive(ty), . .., positive(t,)) where L5 is Ly
without negative indices.

Theorem 1. Let R be a TRS and ¢ be a positive E-strateqgy map. Let t,s €
T(}"&,Xﬂ) and p € Pos(t). Then, (t,p) —u>w (s,q) if and only if
<p05itive(t),p>ﬁ>w<positive(5), q).

Sometimes, it is interesting to disregard from the ordering of indices in local
strategies. Then, we use replacement maps. A mapping p : F — P(N) is a
replacement map (or F-map) if p(f) C {1,...,ar(f)} for all f € F [Luc98]. Let

Mg be the set of all F-maps. The ordering C on Mz, the set of all F-maps, is:
pCplifforall f € F, u(f) C p'(f). Let ux" be the canonical replacement map,

11

1.e. the most restrictive replacement map which ensures that the non-variable
subterms of the left-hand sides of the rules of R are replacing, which is easily
obtained from R: Vf € F, i € {1,...;ar(f)}, i € p&"(f) if I € L(R),p€
Posz(l), (root(l|,) = f Ap.i € Posz(l)). Let CMr = {p € Mz | pg™ C u} be
the set of replacement maps which are less than or equally restrictive to pg".

Given an FE-strategy map ¢, we let ¥ to be the following replacement map
() ={lil | i € o(f) Ni# 0}. We say that ¢ is a canonical E-strategy map
(and, by abuse, we write ¢ € CMg) if u¥ € CMg. Given an E-strategy map,
we let o to be the E-strategy map obtained after taking away all negative
indices for each symbol f € F. Note that ¢ T ¢, for all E-strategy map ¢.
We show that, for F-strategy maps ¢ whose positive part ¢! is canonical, extra
negative annotations can be completely disregarded. This means that negative
annotations are only useful if the positive indices do not collect all indices in the
canonical replacement map of the TRS.

Theorem 2. Let R be a TRS and ¢ be an E-strateqy map such that " € CMg.
Let t,s € T(}"&, Xﬂ) and p € Pos(t). Then, (t,p) —u>w (s,q) if and only if

(positive(t), p>ﬁ>wN<positive(s), q).

Example 9 shows that evaluating terms by using on-demand strategy annotations
can lead to terms which are not even head-normal forms. The following result
establishes conditions ensuring that the normal forms of our refined on-demand
strategy are ordinary head-normal forms (w.r.t. the TRS). A TRS R = (C¥D, R)
is a constructor system (CS) if for all f(l1,...,lx) = r € R, ; € T(C,X), for
1<i<k.

Theorem 3. Let R = (F,R) = (CWD, R) be a left-linear CS, ¢ € CMr and
o(f) ends in 0 for all f € D. Lett € T(F, X). If s € eval,(t), then s is a

head-normal form of t.

Left-linearity and CS conditions cannot be dropped (see [Luc01] for examples
that also apply to our setting).

Theorem 3 suggests the following normalization via p-normalization pro-
cedure to obtain normal forms of a term ¢: given an E-strategy map ¢ and
s = f(s1,...,8,) € eval,(t), we continue the evaluation of ¢ by (recursively)
normalizing si, ..., s using eval,. It is not difficult to see that confluence and
p-termination of the TRS guarantee that this procedure actually describes a
normalizing strategy (see [Luc01,Luc02al).

In the next section, we show that our on-demand strategy improves lazy
rewriting, a popular demand-driven technique to perform lazy functional com-
putations which inspired the development of local strategies in OBJ.

4.2 Comparison with lazy rewriting

In lazy rewriting [FKW00,Luc02b], reductions are issued on a different kind of
labelled terms. Nodes (or positions) of a term ¢ are labelled with e for the so-called

12

eager positions or £ for so-called lazy ones: Let F be a signature and £ = {e, £};
then, F x £ (or F.) is a new signature of labelled symbols. The labelling of a
symbol f € F is denoted f¢ or f* rather than (f, e) or (f,¢). Labelled terms
are terms in 7 (Fz, Xz). Given t € T(Fz, Xz) and p € Pos(t), if root(t|,) = z°
(= % or root(tl,) = f¢ (= f*), then we say that p is an eager (resp. lazy)
position of t.

Given a replacement map pu € My and s € T(F,X), label,(s) denotes the
following intended labelling of s: the topmost position A of label,(s) is eager;
given a position p € Pos(label,(s)) and i € {1,...,ar(root(s|,))}, position p.i of
label,,(s) is lazy if and only ¢ & p(root(s|,)); otherwise, it is eager.

Ezample 10. Consider the replacement map p given by p(2nd) = p(from) =
p(cons) = u(s) = {1}. Then, the labelling of s = 2nd(cons(0,from(s(0))))
is t = label,(s) = 2nd®(cons®(0°,from‘(s°(0°)))). Thus, A,1,1.1,1.2.1, and
1.2.1.1 are eager positions; position 1.2 is lazy.

Given t € T(Fg,X;), erase(t) is the term in 7 (F,X) that (obviously) corre-
sponds to ¢ after removing labels.

Asremarked above, givent € T(F., X), a position p € Pos(t) is eager (resp.
lazy) if root(t|,) is labelled with e (resp. ¢). The so-called active positions of ¢ are
those positions which are always reachable from the root of the term via a path
of eager positions. For instance, positions A, 1, and 1.1 are active in term ¢ of
Example 10; positions 1.2.1 and 1.2.1.1 are eager but not active, since position
1.2 below is lazy in t. Let Act(t) be the set of active positions of a labelled
term t € T(Fg, Xz). In lazy rewriting, the set of active nodes may increase as
reduction of labelled terms proceeds. Each lazy reduction step on labelled terms
may have two different effects:

1. changing the “activation” status of a given position within a term, or
2. performing a rewriting step (always on an active position).

The activation status of a lazy position immediately below an active position
within a (labelled) term can be modified if the position is ‘essential’, i.e. ‘its
contraction may lead to new redexes at active nodes’ [FKWO00].

Definition 3 (Matching modulo laziness [FKW00]). Let | € T(F,X) be
linear, t € T(Fp, X)), and p be an active position of t. Then, | matches modulo
laziness s = t|, if either Ll € X, orl = f(li,... lx), s = f°(s1,...,sk) and, for
alli € {1,... k}, if p.i is eager, then l; matches modulo laziness s;. If position
p.i is lazy and l; & X, then position p.i is called essential.

If p is an active position in ¢t € T(Fz, Xz) and [— r is a rewrite rule of a left-
linear TRS R such that [matches modulo laziness ¢|, giving rise to an essential
position ¢ of ¢ and t|, = f*(t1,...,1x), then we write ¢ A tfe(ts, ... te)]q for
denoting the activation of position p.

Lazy rewriting reduces active positions: let p be an active position of ¢t €

T(Fe, X)), u = t|, and | — r be a rule of a left-linear TRS R such that !

13

matches erase(u) using substitution . Then, ¢ E)u s, where s is obtained from ¢
by replacing t|, in ¢ by label,(r) with all its variables instantiated according to
o but preserving the label of the variable in label,(r), see [Luc02b] for a formal
definition.

Ezample 11. Consider the program of Example 1 (as a TRS) and the term ¢ of
Example 10. The reduction step that corresponds to such term is:
2nd®(cons®(0°, from’(s°(0°)))) A> 2nd°(cons®(0°,from®(s€(0%)))) iu
2nd®(cons®(0°,cons®(s°(0°) :from‘(s¢(s%(0%)))))). Note that term

2nd®(cons®(0°, cons®(s°(0°) : *from’(s®(s°(0°)))))) is a A>—normal form.

The lazy term rewriting relation on labelled terms (LR) is gu =4 v iu
and the evaluation LR-eval,(t) of a term ¢ € T(F,X) using LR is given by

LR-eval,(t) = {erase(s) € T(F,X) | label,(t) i)'u s}. We say that a TRS
is LR(u)-terminating if, for all ¢ € T(F,), there is no infinite E?>~M—rewrite
sequence starting from label, (t) [Luc02b].

We show that each evaluation step of our refined on-demand strategy 1is in-
cluded into some evaluation steps of lazy rewriting. Given a term ¢ € T(}"&, Xﬂ)
and p € Pos(t), we translate the labeling of terms in T(}"&,Xﬂ) into the la-
beling of 7(F¢,Xz) as follows: lazyl(t) = pg(p;(labelwpf(erase(t)))) where
(1) Pt ta)) = Fp (1), ph, () iE T = Fryp,(se,isn), (2)
p;(fb(tl’ ctn)) = fb(p{s’l(tl)’ - 'ap;n(tn)) ift = fL1|L2(51’ ---55n), and (3)
py(s) = s[f(s1,...,sk)]p for s|, = IP(s1, ..., 8,). We define the ordering <.y
between terms T (Fc, Xz) by extending the ordering f° <jq4., f¢ and ft <lazy
fe, for all f € F, to terms.

The following theorem shows that each evaluation step of our refined on-
demand strategy corresponds to some evaluation steps of lazy rewriting. Also,
it shows that lazy rewriting (potentially) activates as many symbols (within a
term) as our strategy (we use the ordering <j,., for expressing this fact).

Theorem 4. Let R be a left-linear TRS and ¢ be an E-strateqy map. Let t €
T(}"&,Xi); p € Pos(t) and pp = /JWN. If {t,p) —ﬁ>w (s,q) and p € Act(lazyh (1)),
then q € Act(lazyl(s)), and lazyl (1) i)i} s for s’ € T(}"&,Xﬂ) such that
lazyg(s) <lasy 8-

In general, our strategy is strictly more restrictive than LR as the following
example shows.

Ezrample 12. Consider the TRS R and the E-strategy map ¢ of program of
Example 2. In Example 14 below, we prove that R is ¢—terminating. How-
ever, LR enters an infinite reduction sequence starting with the expression
label,» (length’ (from(0))):

length’®(from’(0%)) —R>M length®(from(0°)) A length®(from®(0°))
Em length®(cons®(0%, from’(s%(0%)))) —R>M s°(length’®(from’(s%(0%)))) Bm

14

Note that if no positive annotation is provided for an argument of a symbol, LR
freely demands on this argument. Then, in contrast to ¢ (where ¢(length) =
(0)) LR can evaluate position 1 in the expression length(from(0)).

In the following section, we formulate methods for proving termination of our
on-demand strategy.

5 Proving termination of programs with negative
annotations by transformation

In [Luc02b] a method for proving termination of LR as termination of context-
sensitive rewriting (CSR [Luc98]) is described. In contrast to LR, context-sensitive
rewriting forbids any reduction on the arguments not included into pu(f) for
a given function call f(t1,...,tx). A TRS R is p-terminating if the context-
sensitive rewrite relation associated to R and p is terminating. The idea of the
aforementioned method is simple: given a TRS R and a replacement map g,
a new TRS R’ and replacement map p’ is obtained in such a way that p’'-
termination of R’ implies LR(yt)-termination of R. Fortunately, there is a num-
ber of different techniques for proving termination of CSR (see [GM02,Luc02c]
for recent surveys) which provide a formal framework for proving termination of
lazy rewriting. A simple modification of such transformation provides a sound
technique for proving ¢-termination of TRSs for arbitrary strategy annotations
¢ by taking into account that only those symbols which have associated a neg-
ative index may be activated by demandness. Here, as in [Luc01,Luc02b], by
p-termination of a TRS R we mean the absence of infinite —ﬁ>w -sequences of
terms starting from {(p(?), A).

As for the transformation in [Luc02b], the idea is to encode the demandness
information expressed by the rules of the TRS R together with the (negative)
annotations of the E-strategy map ¢ as new symbols and rules (together with
the appropriate modification/extension of ¢) in such a way that ¢-termination
is preserved in the new TRS and FE-strategy map, but the negative indices are
finally suppressed (by removing from the lhs of the rules the parts that introduce
on-demand computations). We iterate on these basic transformation steps until
obtaining a canonical E-strategy map. In this case, we can stop the transforma-
tion and use the existing methods for proving termination of CSR. Let ¢ be an
arbitrary E-strategy map. Given [— r € R and p € Pos(l), we let

I(l,p)={i>0]|pi€Posr(l) and —1i € w(root(l|,))}

Assume that Z(I,p) = {i1,..., i} for some n > 0 (i.e., Z(,p) # @) and let f =
root(l|,). Then, R® = (F°, R°®) and ¢° are as follows: F* = FU{f; | 1 <j < n},

where each f; is a new symbol of arity ar(f;) = ar(f), and
RO =R—{l—=r}Ully = r izl = Gelpi, | 1< <n}

where I = I[fj(l|p1,..,l|px)lp if ar(f) = k, and z is a new variable. We let
©°(f;) = (; 0)for 1 < j<mnand feD, ¢°(f;) = (4;) for 1 < j < n and

15

feC, and ¢°(g) = p(g) for all g € F.(g # f). Moreover, we let ¢°(f) = ¢™(f)
if uSge(f) C LWN(f), or °(f) = ¢(f) otherwise. The transformation proceeds in
this way (starting from R° and x°) until obtaining R = (F%, R") and ¢! such
that ¢ = go“N. If o = ¢ then Rf =R and ¢ = ¢.

Finally, we can state a sufficient condition for ¢-termination as termination

of C'SR for the transformed TRS.

Theorem 5. Let R be a TRS, ¢ be an E-strategy map. If R is uwh-termmatmg,
then R 1s p-terminating.

Ezample 13. Consider the TRS R associated to Example 1 but where ¢(cons) =
(1 —2). Then, R is:

2nd(cons’ (x,cons(y,z))) — y

2nd (cons (x,y)) — 2nd(cons’ (x,y))

from(x) — cons (x,from(s(x)))
and ¢! is given by ¢ (2nd) = ¢ (from) = (1 0), ¢¥(cons) = (1), and ¢’ (cons’) =
(2). The ﬂwh—termination of RY is proved by using Zantema’s transformation for
proving termination of CSR [Zan97]: the TRS

2nd(cons’ (x,cons(y,z))) — y

2nd (cons (x,y)) — 2nd(cons’ (x,activate(y)))
from(x) — cons (x,from’ (s(x)))
activate (from’ (x)) — from(x)

from(x) — from’ (x)

activate (x) — X

which is obtained in this way (where activate and from’ are new symbols
introduced by Zantema’s transformation) is terminating®.

Ezxample 1. Consider the TRS R and the E-strategy map ¢ that correspond to
the OBJ program of Example 2. Our transformation returns the original TRS,
ie., RYis:

from(x) — cons (x,from(s(x)))
length(nil) — 0
length(cons(x,z)) — s(length’(z))
length’ (z) — length(z)

together with the simplified E-strategy ¢"(s) = ¢%(cons) = (1), ¢"(from) =
(1 0) and ¢! (length) = ¢"(length’) = (0). The ﬂwh—termination of R can be
automatically proved by splitting up the rules of the program into two modules
R1 (consisting of the rule for from) and R (consisting of the rules for length

and length’). The uwh—termination of Ry can easily be proved by using Zan-
tema’s transformation (in fact, the proof can be extracted from that of Example

13). The uwh—termination of R4 1is easily proved: in fact, Ro can be proved ter-
minating (regarding standard rewriting) by using a polynomial ordering”. Now,

ﬂwh—termination of R follows by applying the modularity results of [GL02].

¢ Using the CiME 2.0 system (available at http://cime.lri.fr).
7 CYME 2.0 can also be used for achieving this proof.

16

6 Conclusions

We have provided a suitable extension of the positive E-evaluation strategy of
OBJ-like languages to general (positive as well as negative) annotations. Such
an extension is conservative, i.e., programs which only use positive strategy an-
notations and that are executed under our strategy behave exactly as if they
were executed under the standard OBJ evaluation strategy (Theorems 1 and 2).
The main contributions of the paper are (a) the definition of a rectified and
well-defined approach to demandness via E-strategies (see Examples 2, 3, 9,
and 12 for motivation regarding some of the problems detected on the previous
proposals), (b) the better computational properties associated to such a new
on-demand strategy (Theorems 3 and 4), (¢) the definition of techniques for an-
alyzing computational properties such as termination (Theorem 5), and that (d)
our approach is (hopefully) better suited for implementation. Our on-demand
strategy also improves lazy rewriting, a popular, demand-driven technique to
perform lazy functional computations which inspired the development of on-
demand strategies in OBJ. We conjecture that the on-demand rewriting (ODR)
[Luc01], which extends the context sensitive rewriting of [Luc98] by also consid-
ering “negative annotations”, can also be compared with our refined on-demand
strategy, whereas it does not directly apply to OBJ nor it is comparable to LR.

There are still some open problems regarding completeness of our refined
on-demand strategy which are out of the scope of this paper (see [AEL02] for a
thorough discussion and proposal of implementable solutions when dealing with
programs that only use positive annotations).

Acknowledgements. We thank the anonymous referees for their helpful remarks.

References

[AEL02] M. Alpuente, S. Escobar, and S. Lucas. Correct and complete (positive)
strategy annotations for OBJ. Electronic Notes in Theoretical Computer
Science, volume 71. Elsevier Sciences, to appear 2002.

[AFJV97] M. Alpuente, M. Falaschi, P. Julidn, and G. Vidal. Specialization of Lazy
Functional Logic Programs. Sigplan Notices, 32(12):151-162, ACM Press,
New York, 1997.

[AT.02] S. Antoy and S. Lucas. Demandness in rewriting and narrowing. Electronic
Notes in Theoretical Computer Science, volume 76. Elsevier Sciences, to
appear 2002.

[BN9g] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge
University Press, 1998.

[CELM96] M. Clavel, S. Eker, P. Lincoln, and J. Meseguer. Principles of Maude. Elec-
tronic Notes in Theoretical Computer Science, volume 4. Elsevier Sciences,
1996.

[Fke98] S. Eker. Term rewriting with operator evaluation strategies. Electronic
Notes in Theoretical Computer Science, volume 15. Elsevier Sciences, 1998.

[FGIM85] K. Futatsugi, J. Goguen, J.-P. Jouannaud, and J. Meseguer. Principles
of OBJ2. In Proc. of the 12th Annual ACM Symposium on Principles of
Programming Languages, POPL’85, pages 52—66. ACM Press, 1985.

17

[FKWO00]

[FN97]

[GL02]

[GMO2]

W. Fokkink, J. Kamperman, and P. Walters. Lazy rewriting on eager
machinery. ACM Transactions on Programming Languages and Systems,
22(1):45-86, 2000.

K. Futatsugi and A. Nakagawa. An overview of Cafe specification envi-
ronment — an algebraic approach for creating, verifying, and maintaining
formal specification over networks —. In Proc. of 1st International Confer-
ence on Formal Engineering Methods, 1997.

B. Gramlich and S. Lucas. Modular termination of context-sensitive rewrit-
ing. In C. Kirchner, editor, Proc. of 4th International ACM SIGPLAN Con-
ference on Principles and Practice of Declarative Programming, PPDP 02,
Pittsburg, USA, 2002. ACM Press, New York. To appear, 2002.

Jirgen Giesl and Aart Middeldorp. Transformation techniques for context-
sensitive rewrite systems. Aachener Informatik-Berichte (AIBs) 2002-02,
RWTH Aachen, 2002.

[GWM'100] J. A. Goguen, T. Winkler, J. Meseguer, K. Futatsugi, and J.P. Jouannaud.

[Luc9g]

[Luc01]

[Luc02a]

[Luc02b]

[Luc02c]

[MR92]

[Nag99]

[NOO1]

[OF00]

[Zan97]

Introducing OBJ. In Joseph A. Goguen and Grant Malcolm, editors, Soft-
ware Fngineering with OBJ: algebraic specification in action. Kluwer, 2000.
S. Lucas. Context-sensitive computations in functional and functional logic
programs. Journal of Functional and Logic Programming, 1998:1-61, 1998.
S. Lucas. Termination of on-demand rewriting and termination of OBJ
programs. In Harald Sondergaard, editor, Proc. 3rd International ACM
SIGPLAN Conference on Principles and Practice of Declarative Program-
ming (PPDP’01), pages 82-93, Firenze, Italy, September 2001. ACM Press,
New York.

S. Lucas. Context-sensitive rewriting strategies. Information and Compu-
tation, to appear, 2002.

S. Lucas. Lazy rewriting and context-sensitive rewriting. Electronic Notes
in Theoretical Computer Science, volume 64. Elsevier Sciences, to appear,
2002.

S. Lucas. Termination of (canonical) context-sensitive rewriting. In Sophie
Tison, editor, Proc. 13th International Conference on Rewriting Techniques
and Applications, RTA’02, LNCS 2378:296-310, Springer-Verlag, Berlin,
2002.

J.J. Moreno-Navarro and M. Rodriguez- Artalejo. Logic Programming with
Functions and Predicates: the Language BABEL. Journal of Logic Pro-
gramming, 12(3):191-223, 1992.

T. Nagaya. Reduction Strategies for Term Rewriting Systems, PhD Thesis.
School of Information Science, Japan Advanced Institute of Science and
Technology, 1999.

M. Nakamura and K. Ogata. The evaluation strategy for head normal
form with and without on-demand flags. Electronic Notes in Theoretical
Computer Science, volume 36. Elsevier Sciences, 2001.

K. Ogata and K. Futatsugi. Operational semantics of rewriting with the
on-demand evaluation strategy. In Proc of 2000 International Symposium
on Applied Computing, SAC’00, pages 756-763. ACM Press, 2000.

H. Zantema. Termination of context-sensitive rewriting. In Proc. of 8th In-
ternational Conference on Rewriting Techniques and Applications, RTA’97,
pages 172-186. Springer-Verlag, LNCS 1232, 1997.

18

