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Abstract

Strategy annotations are used in several programming languages as replacement re-
strictions aimed at improving efficiency and/or reducing the risk of nontermination.
Unfortunately, rewriting restrictions can have a negative impact on the ability to
compute normal forms. In this paper, we first ascertain/clarify the conditions en-
suring correctness and completeness (regarding normalization) of computing with
strategy annotations. Then, we define a program transformation methodology for
(correct and) complete evaluations which applies to OBJ-like languages.
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1 Introduction

Strategy annotations are used in the OBJ family of languages > (OBJ2 [FGJMS85],
OBJ3 [GWMFJ00], CafeOBJ [FN97], and Maude [CELM96]) to avoid nonter-
mination ((GWMFJ00], Section 2.4.4).

Example 1.1 The following OBJ program:

obj EXAMPLE 1is
sorts Nat LNat .

op O : => Nat .
op s : Nat -> Nat [strat (1)]
op nil : => LNat .

op cons : Nat LNat -> LNat [strat (1)]
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op from : Nat -> LNat [strat (1 0)]
op sel : Nat LNat -> Nat [strat (1 2 0)]
op first : Nat LNat -> LNat [strat (1 2 0)]
vars X Y : Nat .
var Z : LNat .
eq sel(s(X),cons(Y,Z)) = sel(X,Z)
eq sel(0,cons(X,Z2)) = X .
eq first(0,Z) = nil .
eq first(s(X),cons(Y,Z)) = cons(Y,first(X,Z)) .
eq from(X) = cons(X,from(s(X))) .
endo

specifies an explicit strategy annotation for the list constructor cons which
disables replacements on the second argument. In this way, we can ensure
that computations with this program are terminating (see Example 4.4 below
for a formal justification of this claim).

Termination of rewriting under strategy annotations has been studied in
a number of papers [FGKO1,LucOla,Luc0lb]. Unfortunately, using rewrit-
ing restrictions may cause incompleteness, i.e., normal forms of input ex-
pressions could be unreachable by restricted computation. For instance, us-
ing the program in Example 1.1 we are not able to compute the list of
integers that corresponds to the evaluation of first(s(0),from(0)). As
we show below, the evaluation of this expression stops yielding the term
cons(0,first (0,from(s(0)))). On the other hand, from the user’s point
of view, this must be thought of as a kind of incorrect evaluation, when nor-
mal forms are expected as the result of a computation.

We show that these problems can be solved by using a program transfor-
mation while we are still able to preserve termination of computations.

2 Preliminaries

Given a set A, P(A) denotes the set of all subsets of A. Let R C A x A be
a binary relation on a set A. We denote the reflexive closure of R by R=, its
transitive closure by RT, and its reflexive and transitive closure by R*. An
element @ € A is an R-normal form, if there exists no b such that a R b; NFg
is the set of R-normal forms [BN98]. We say that b is an R-normal form of
a (written a R'b), if b is an R-normal form and a R*b. We say that R is
terminating iff there is no infinite sequence ay R a3 R as---. Throughout the
paper, X denotes a countable set of variables and F denotes a set of function
symbols {f,g,...}, each having a fixed arity given by a function ar : F — N.
We denote the set of terms built from F and X by T(F,X). A context C[]
is a term from T(F U{O}, X'), where O is a new constant symbol. A term is
said to be linear if it has no multiple occurrences of a single variable. Terms
are viewed as labelled trees in the usual way. Positions p, ¢, ... are represented

2



ALPUENTE, ESCOBAR, AND LUCAS

by chains of positive natural numbers used to address subterms of t. By A, we
denote the empty chain (referring to the root of the term). Given positions
p,q, we denote its concatenation by p.q. If p is a position, and () is a set
of positions, p.Q) is the set {p.q | ¢ € Q}. By Pos(t), we denote the set of
positions of a term t. Positions of non-variable symbols in ¢ are denoted as
Posz(t) and Posy(t) are the variable occurrences. The subterm at position
p of t is denoted as t|, and t[s], is the term ¢ with the subterm at position p
replaced by s. The symbol labelling the root of ¢ is denoted as root(t) and
root(t,p) is root(t|,). A substitution is a mapping o : X — T(F,X) which
homomorphically extends to a mapping o : T(F,X) — T(F,X).

A rewrite rule is an ordered pair ([,r), written { — r, with [,r € T(F,X),
[ ¢ X and Var(r) C Var(l). The left-hand side (lhs) of the rule is [ and the
right-hand side (rhs) is r. A TRS is a pair R = (F, R) where R is a set of
rewrite rules. L(R) denotes the set of [hs’s of R. R is left-linear if L(R) is
a set of linear terms. Given R = (F, R), we consider F as the disjoint union
F = C WD of symbols ¢ € C, called constructors, and symbols f € D, called
defined functions, where D = {f | f(l1,...,lx) = r € R} and C = F — D.
Then, T(C,X) is the set of constructor terms. Let Posp(t) (resp. Posc(t))
be the set of positions of defined (resp. constructor) symbols of term ¢. An
instance o(l) of a lhs [ € L(R) is a redex. A term t € T(F,X) rewrites to s
(at position p), written t Bz s (or just ¢t — s), if t|, = o(l) and s = t[a(r)],,
for some [ — r € R, p € Pos(t) and substitution o. A term is a normal form
if 1t 1s a —-normal form. Let NFz be the set of normal forms of R. A term ¢
is a head-normal form if it cannot be rewritten to a redex. Let HNF¢ be the
set of head-normal forms of R. A TRS is terminating if — is terminating.

3 Rewriting with syntactic replacement restrictions

A mapping p : F — P(N) is a replacement map (or F-map) if Vf € F, u(f) C
{1,...,;ar(f)} [Luc98a]. The inclusion ordering C on P(N) extends to an
ordering C on Mz, the set of all F-maps: p C g/ if for all f € F, u(f) C
' (f). In this way, ¢ C y' means that p considers less positions than ' for
reduction. We also say that p is more restrictive than (or equally restrictive
to) u'. Given a TRS R = (F, R), we write Mg rather than Mz. The set
of p-replacing positions Pos"(t) of t € T(F,X) is: Post(t) = {A} ift € X,
and Pos"(t) = {A} U Uicuprooney 1-Pos” (i) if t ¢ X In conteat-sensitive
rewriting (CSR [Luc98a)]), we (only) rewrite replacing redexes: t p-rewrites
to s (written ¢t <, s) if t B» s and p € Pos*(t). The —,-normal forms
are called pg-normal forms. NF% is the set of g-normal forms of R. The pu-
normal forms include all normal forms of R (but not viceversa). A TRS R
is p-terminating if <, is terminating. The canonical replacement map p3"
is the most restrictive replacement map which ensures that the non-variable
subterms of the left-hand sides of the rules of R are replacing. Note that pu3™
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is easily obtained from R: for all f € F and i € {1,...,ar(f)},
e pg™(f) it e L(R),p € Posg(l), (root(l,p) = f Ap.i € Posg(l))
Let CMr = {p € Mg | u$$" = u} be the set of replacement maps which are

less restrictive than or equally restrictive to p%".

4 FE-strategies

A (positive) local strategy (or F-strategy) for a k-ary symbol f € F is a se-
quence @( f) of integers taken from {0, 1,..., k} which are given in parentheses
(see Example 1.1). A mapping ¢ that associates a local strategy ¢(f) to every
| € Fis called an E-strategy map [NOO1]. Algebraic languages such as OBJ2,
OBJ3, CafeOBJ and Maude admit the specification of E-strategies. Symbols
without an explicit local strategy are given a default strategy whose concrete
shape depends on the language considered®. Given an OBJ program P, we
(separately) consider the corresponding TRS R which consists of the set of
rewriting rules in P and the F-strategy map ¢ that corresponds to its strategy
annotations. Semantics of OBJ programs under a given E-strategy map ¢ is
given by means of a mapping eval, : T(F,X) — P(T(F,X)) (from terms to
their sets of ‘computed values’). Following [Nag99,NOO1] we describe eval,,
by using a reduction relation —, on pairs of labelled terms and positions.

Let £ be the set of all lists consisting of natural numbers. By £,,, we denote
the set of all lists of natural numbers not exceding n € N. We use the signature
Fe=Afc|fe€FNLEL,y} and labelled variables Xy = {z, | € X'}
An E-strategy map ¢ for F is extended to a (labelling) mapping from 7 (F, X)
to T(Fe, Xr) as follows:

Tl ift=xzeX

Fon(e(ti)s o p(ty)) it t = f(tr, ... k)

The mapping erase : T (Fg, Xz) — T(F,X) removes labellings from symbols
in the obvious way. Given a TRS R = (F, R) and an E-strategy map ¢ for F,
the binary relation —, on T (Fg, Xz) x N (i.e., pairs (Z,p) of labelled terms
t and positions p) is [NOO1,Nag99]: (¢,p) —, (s,q) if and only if p € Pos(t)
and either

p(t) =

(i) root(t,p) = fui, s =1t and p = g.i for some 7; or
(ii) tl, = fir(t1, ... tg) with i > 0, s = t[fr(t1,...,tx)], and ¢ = p.i; or
(iii) t|, = for(t1,. .., tr), erase(t|,) is not a redex, s = t[fr(t1, ..., tk)]p, ¢ = P;
or

(iv) tl, = for(ts,....,tx) = o(l'), erase(l’) = [, s = tlo(e(r))], for some
[ — r € R and substitution o, ¢ = p.

6 For instance, in Maude, the default local strategy associated to a k-ary symbol f, is

(12 ---k0), see [Eke98].
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We let eval,(t) = {erase(s) € T(F,X) | (¢(t),A) =, (s,A)} [Nag99,NOO1].
A TRS R is ¢-terminating if, for all t € T(F, &), there is no infinite — -
rewrite sequence starting from (¢(¢),A). An OBJ program P is terminating

if the corresponding TRS R is ¢-terminating [LucOla].

4.1  E-strategies and context-sensitive rewriting

Rewriting with strategy annotations is closely related to CSR. Given an F-
strategy map ¢ for F, we define p¥ € My as follows: p?(f) = {v € o(f) |
i # 0} for all f € F, where ¢ € L means that item ¢ appears somewhere
within the list L. We will drop superscript ¢ from p¥ if no confusion arises.
Moreover, we also write ¢ € CMg meaning that u¥ € CMx.

Example 4.1 The TRS R:

sel(0,cons(x,z)) — X
sel(s(x),cons(y,z)) — sel(x,z)
first(0,z) — nil
first(s(x),cons(y,z)) — cons(y,first(x,z))

from(x) — cons(x,from(s(x)))
together with the replacement map
p(s) = p(cons) = p(from) = {1} and p(sel) = u(first) = {1,2}.
correspond to the OBJ program in Example 1.1.

Every —,-reduction step issued on (¢, p) correspond to a p¥-rewriting step
on the unlabelled version erase(t) of ¢ (or erase(t) just remains unchanged).

Theorem 4.2 [LucOla] Let R be a TRS and ¢ be an E-strategy map. Let
t € T(FeoXe), and p € Pos”(erase(t)) be s.t. root(t,p) = fr for some suffix L
of p(f). If (t,p) = (s,q), then q € Pos"(erase(s)) and erase(t) —7 erase(s).

Termination of OBJ programs and termination of CSR are also related.

Theorem 4.3 [LucOla] An OBJ program P with E-strategy map ¢ is termi-
nating if the corresponding TRS R s u¥-terminating.

Termination of CSR has been studied in a number of papers, see [Luc02b]
for an overview of the different methods for proving termination of CSR.

Example 4.4 Consider R and p as in Example 4.1. The p-termination of (a
superset of ) R is demonstrated in Example 7 of [BLR02]. Hence, by Theorem
4.3, the OBJ program in Example 1.1 is terminating.

5 Correctness and completeness

A rewriting semantics for a TRS R = (F, R) is a mapping S : T(F,X) —
P(T(F,X)) such that, for all t € T(F,X) and s € S(t), t =% s [LucOlc].
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Note that, given a TRS R and an FE-strategy map ¢, eval, is a rewrit-
ing semantics for R. A semantics S is deterministic (resp. defined) if ¥t €
T(F,X),S(t)] <1 (resp. |S(¢)| > 1). In general, eval, is not deterministic or
defined. Note that ¢-termination of R implies definedness of eval,.

The semantics which is most commonly considered in functional program-
ming is the set of constructor terms that R is able to produce in a finite
number of rewriting steps (eval(t) = {s € T(C,X) | t =% s}). Other kinds
of semantics often considered for R are, e.g., the set of all possible reducts
of a term which are head-normal forms (hnf(t) = {s € HNF |t =% s}), or
normal forms (nf(¢) = hnf(¢) " NFz). Thus, given a semantics S for R (e.g.,
S € {eval, hnf,nf}), a different rewriting semantics for R (e.g., eval,) is:

correct (w.r.t. S) if eval,(t) C S(t) for all t € T(F,X), and
complete (w.r.t. S)if, S(t) C eval,(t) for all t € T(F, X).

Computations with OBJ programs produce expresions (by means of eval,)
called E-normal forms (ENFs). Such terms are not generally normal forms
(i.e., terms without redexes). Therefore, eval, is not guaranteed to be either
correct or complete w.r.t. nf. In fact, we have the following:

Theorem 5.1 [LucOla] Let R = (CW D, R) be a TRS and ¢ be a E-strategy
map such that for all f € D, o(f) ends in 0. If s € evaly(t), then s is a
p-normal form of t.

Requiring that ¢(f) ends in 0 for all f € D is essential in our development
(see also [Eke98] for a thorough analysis of the relevance of this requirement).
Thus, we say that a E-strategy map ¢ is regular” if this condition holds.

If the strategy annotations are ‘compatible’ with the canonical replacement
map, we can ensure that the E-strategy is correct w.r.t. hnf.

Theorem 5.2 [LucOla] Let R = (C WD, R) be a left-linear TRS and ¢ be
a reqular E-strategy map such that ¢ € CMg. If s € eval,(t), then s is a
head-normal form.

If we restrict the attention to the computation of values (i.e., constructor
terms), then CSR is powerful enough to compute them. Given TRS R =
(F,R) = (CWD,R)and B CC, welet ii5 to be () = {1,...,ar(c)} for all
c € Band yB(f) = p$™(f)if f € F — B. Note that u% € CMg.

Theorem 5.3 [Luc98a] Let R = (F,R) = (C WD, R) be a left-linear TRS,
B CC and € Mg be such that 5 . Lett € T(F,X), and § € T(B,X).
Then, t == 6 iff t =7, 6.

Theorem 5.3 is very easy to use in sorted signatures (as in OBJ programs),
since, given a term ¢ (of sort 7), we are able to establish the set of constructors
B C C which should be considered (namely, the constructor symbols of sort 7).
Unfortunately, Theorem 5.3 does not directly apply to OBJ computations, as

7 This terminology is used in [OF97], with a slightly different meaning.
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they must obey the order of evaluation expressed by the strategy annotations.
However, we have the following.

Theorem 5.4 Let R = (F,R) = (CW D, R) be a left-linear, confluent TRS
and B C C. Let ¢ be a regular E-strateqgy map such that R is p-terminating.
Lett € T(F,X) and § € T(B,X). If u2 C %, then t —' 8 iff § € eval(t).

For instance, ¢ can be used to compute the value of every expression of
the sort Nat in the OBJ program in Example 1.1 (since /,Lg)’s} C u#). This is
not true for expressions of the sort LNat as the following example shows.

Example 5.5 The evaluation of expression ¢ = first(s(0),from(0)) of
sort LNat using the program in Example 1.1 yields (we use the version 1.0.5
of the Maude interpreter® but other interpreters behave likewise?):

reduce in EXAMPLE : first(s(0), from(0)) .
rewrites: 2 in -10ms cpu (Oms real) (~ rewrites/second)
result LNat: cons(0, first(0, from(s(0))))

Note that cons(0,first(0,from(s(0)))) is not a normal form. However,
t —* cons(0,nil) € T(C, &), i.e., cons(0,nil) is a value of ¢ which cannot
be obtained by using the OBJ interpreter.

Correctness of OBJ computations w.r.t. nf can also be achieved:

(i) Nagaya shows that if ¢(f) contains all indices 0,1,...,ar(f) for each
symbol f € F, and ¢(f) ends in 0 for defined symbols f € D, then eval,
is correct w.r.t. nf (Theorem 6.1.12 in [Nag99]).

(ii) Nakamura and Ogata show that given a strategy map ¢, if eval, is correct
w.r.t. hnf, then eval, is correct w.r.t. nf for any ¢’ given by ¢'(f) =
o(f)++(i1 -+ ip) for all symbol f € F (where ‘447 appends two lists,
and {iy, ..., i, ={1,....ar(f)} — p?(f)) (Theorem 3.2 in [NOO1]).

For instance, ¢ as given in Example 1.1 is correct w.r.t. hnf (use Theorem 5.2).
Moreover, since the OBJ program in Example 1.1 is @-terminating, eval, is
defined. Thus, the evaluation of every term ¢ yields a head-normal form of ¢
(i.e., ¢ can be thought of as being head-normalizing). Unfortunately eval, is
not defined anymore: the head-normalizing behavior of ¢ gets lost.

Example 5.6 Consider the program in Example 1.1 with ¢'(cons) = (1 2)
and ¢'(f) = p(f) for every other symbol f. Consider again the evaluation of
t = first(s(0) ,from(0)):

8 Available at http://maude.csl.sri.com/system/.

® We have reproduced all our experiments using the OBJ3 interpreter v. 2.0 (available
at http://www.kindsoftware.com/products/opensource/obj3/0BJ3/) and the CafeOBJ
interpreter v. 1.3.1 (available at http://www.ipa.go.jp/STC/CafeP/cafe.html).
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reduce in EXAMPLE : first(s(0), from(0)) .
Segment violation

The problem is that the evaluation of ¢, i.e., the evaluation of
©'(t) = firsty 2 0)(51)(0ni) ,fromy ¢y (0n))
using —,s does not terminate (we underline the contracted redexes):

(first( o 0)(s(1)(0nir) sEfromy ¢)(0,:)), A)

—r <f1rst 2 0) (S (Om'l) ,from(1 0) (Om'l))7 1>

—r <first(2 0)(Sml(0m'1) ,from(1 O)(Onil))7 1.1>

—ror (£irst(y 0)(8ni(0ni) sEromy ¢)€0,i)), 1)

—r <first(2 0) (8, €0 ,from(1 0)(0m1)),/\>

—r <first(0)(sml(0m1) from(1 0)(0m1)),2>

—r <f1rst(0)(sml(oml) from(o)(onil)),2.1>

—ror (£irst(o)(snu(0n) s fromg) (0,:1) ), 2)

—r <first(0)(sml(0m1) »COns (g 2)(Om1,from(1 0)(5(1)(Oni1))))72>
—>Z, <first(0)(sml(0m1) ,conS(z)(On”,from(l 0)(5(1)(Oni1))))72>
—r <first(0)(sml(0m1) ,consm'l(om'l,from(l 0)(5(1)(Oni1))))72-2>
—>Z, <first(0)(sml(0m1) ,cons (0,4 ,from(o) (8,3100,0))), 2.2>
—r !

The Maude interpreter ‘shows’ this infinite sequence as a ‘segment violation’.

Thus, the ¢-termination of R (see Example 4.4) does not ensure defined-
ness of eval, as the previous results by Nagaya, and Nakamura-Ogata may
suggest. Moreover, eval, was able to obtain head-normal forms that eval,
does not obtain (compare the evaluation of ¢ in Examples 5.5 and 5.6). Ex-
ample 5.6 also shows that requiring p-termination in Theorem 5.4 is essential
for ensuring correct and complete evaluations (note that R and ¢’ in Example
5.6 fulfill all requirements in Theorem 5.4, except for ¢'-termination).

In the following section, we propose a solution to (partially) overcome this
problem which is based on program transformation.

6 Program transformations for complete evaluations

The discussion and examples in the previous section suggest to isolate the
replacement restrictions which are needed to achieve the head-evaluation of
a term t (which, at least, requires p%", see Theorem 5.2) from the restric-
tions which are needed to get them within a constructor context C[ | €
T(BU{O},X) for some B C C (which, at least, requires ;% see Theorem
5.4). In practice, we only need (and want) to fix the sort 7 of input expres-
sions we want to evaluate in order to fix the ‘interesting’ constructor terms.

Assume that symbols f € F are sorted by: f: 7 x---x7 — 7. The (output)
8
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sort of f is sort(f) = 7. Variables & € A" also have a sort, sort(x). We also
assume that all terms are well sorted everywhere. The sort of a term ¢ is the
sort of its outermost symbol. Given a sort 7, let C* C C be the set of construc-
tor symbols that can be found in constructor terms of sort 7. For instance,
Char = 10,8} and Cfye = {0,8,nil, cons}. We introduce a set C’ of fresh
constructor symbols: they are renamed versions ¢’ of the original constructors
¢ € CZ that evaluate all the arguments.

The renaming of constructor symbols ¢ € C* into new constructor symbols
¢ € (' is performed by the rules

quote,(c(xy,...,7x)) — ¢(quote_ (z1),...,quote_ (7}))

where ¢, : 7 X -+ x 1, = 7. Let Quote be the set containing all these
symbols: Quote = {quote_, | ¢ € C*, sort(c) = 7'}. The evaluation of a term
t would proceed by reducing quotesort(t)(t). The obtained value is built by
using symbols in C" only. After the evaluation, new symbols unquote_:7 — 7
are used to reverse the renamings. For each constant b € C*, we add a rule

unquote,, (b') — b

For each ¢ € CF such that ¢: 7y X -+ X7, = 7/, k > 0, and p?(c) ={1,...,k},
we add a rule

unquote_,(¢(x1,..., 7)) — c(unquote_(z1),...,unquote_ (7))
Finally, for each ¢ € C* such that ¢: 7y X -+ X7, = 7/, k > 0, and pu¥(c) #
{1,...,k}, we consider a new symbol f.: 7 X -+ x 7, = 7’5 we add two rules
unquote,,(c/(z1,...,21)) = f.(unquote (z1),...,unquote  (z1))
felar, oo xk) = c(ay, ... xp)

We collect these new symbols together in a new set Unquote. Denote the
TRS obtained from joining these rules together with those of R as E.(R).
The transformed TRS E,(R) includes the rules of the original TRS R. The
added rules manage the appropriate quoting and unquoting of constructor
symbols: quoted constructors enable the evaluation of all their arguments:
after evaluating them, symbol unquote restores the original constructor ec.
Therefore, we also extend the (original) F-strategy o: let o' = Emap,(¢) as
follows: @' (f)=@(f)if feF, ()= (1 --- ar(c))if ¢ € ', ¢’'(quote ) =
¢'(unquote ,) = (10) for all sort 7/, and p(f.) = (1 --- ar(c) 0) for each ¢ € C
such that p#(c) # {1,...,ar(c)}. In the following results, eval, uses ¢’ and
E.(R) to evaluate terms (eval, uses ¢ and R, as above). Our transformation
is correct 1% in a very general setting.

Theorem 6.1 Let R = (F,R) = (CWD,R) be a TRS. Let ¢ be a regular
E-strategy map. Let t € T(F,X) be such that sort(t) =7 and 6 € T(C). Let

10T this section we do not use ‘corrrect’ and ‘complete’ in the technical sense defined in
Section 5 because we need to consider two rewrite systems rather than only one.
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R' = E;(R) and ¢ = Emap,(p). If § € eval,(unquote (quote (t))), then
t—5% 0.

Thus, no ‘unexpected’ value can be obtained when evaluating t € 7 (F, X))
of sort 7 as unquote (quote (¢)). Moreover, no constructor term (of sort 7)
obtained by using ¢ and R gets lost when Emap,(¢) and E.(R) are used
instead.

Theorem 6.2 Let R = (F,R) = (CWD,R) be a TRS. Let ¢ be a regu-
lar E-strateqy map Let t € T(F,X) be such that sort(t) = 7 and § €
T(C). Let R = E,(R) and ¢ = Emap,(¢). If § € evaly(t), then § €
eval,(unquote (quote (1))).

Completeness of the transformation (regarding the computation of con-
structor terms) requires some additional conditions.

Theorem 6.3 Let R = (F,R) = (CWD, R) be a left-linear, confluent TRS.
Let ¢ be a regular E-strateqy map such that o € CMyg, and R is p-terminating.

Let t € T(F,X) be such that sort(t) =7 and 6 € T(C). Let R = E.(R) and
¢ = Emap; (). If t =% &, then § € eval,(unquote (quote (1))).

Note that, in contrast to Theorem 5.4, we can now start with any FE-
strategy map ¢ € CMg:
Example 6.4 The following OBJ program:

obj EXAMPLE-STR is
sorts Nat LNat .

ops 0 0’ : => Nat .
ops 8 8’ : Nat -> Nat [strat (1)]
ops nil nil’ : -> LNat .

op cons : Nat LNat -> LNat [strat (1)]

op cons’ : Nat LNat -> LNat [strat (1 2)]

op fcons : Nat LNat -> LNat [strat (1 2 0)]

op from : Nat -> LNat [strat (1 0)]

op sel : Nat LNat -> Nat [strat (1 2 0)]

op first : Nat LNat -> LNat [strat (1 2 0)]

ops quote unquote : Nat -> Nat [strat (1 0)]

ops quote’ unquote’ : LNat -> LNat [strat (1 0)]
vars X Y : Nat .

var Z : LNat .

eq sel(s(X),cons(Y,Z)) = sel(X,Z) .

eq sel(0,cons(X,Z)) =

eq first(0,Z) = nil .

eq first(s(X),cons(Y,Z)) = cons(Y,first(X,Z)) .
eq from(X) = cons(X,from(s(X))) .

eq quote(0) =

eq quote’ (cons(X,Z)) = cons’(quote(X),quote’(Z)) .

10
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eq quote’(nil) = nil’
eq quote(s(X)) = s’(quote(X))

eq unquote(0’) = 0 .

eq unquote(s’ (X)) = s(unquote(X)) .

eq unquote’(nil’) = nil .

eq unquote’(cons’(X,Z)) = fcons(unquote(X) ,unquote’(Z)) .
eq fcons(X,Z) = cons(X,Z) .

endo

is the transformed version of the OBJ program in Example 1.1. Now, the
evaluation of term unquote’ (quote’ (first(s(0),from(0)))) yields:

reduce in EXAMPLE-STR : unquote’(quote’ (first(s(0), from(0)))) .
rewrites: 11 in -10ms cpu (Oms real) (~ rewrites/second)
result LNat: cons(0, nil)

Note the difference between ‘unquoting’ rules for symbols s’ and cons’.
The unquoting of cons”’ is indirect; the obvious short-cut:

unquote(cons’ (X,Z)) = cons(unquote(X) ,unquote’ (Z))

in the program in Example 6.4 does not work: the reason is that after applying
this rule, the second arqgument of cons remains non-replacing. For instance, by
using such a rule (instead of the last two rules of the program in Example 6.4)
the evaluation of unquote’ (quote’ (first(s(0) ,from(0)))) would yield

cons (0,unquote’ (nil?))

This is solved by introducing the intermediate defined symbol fcons which
first evaluates its arguments (thus performing the renaming) and then re-
duces to cons. In this sense, the explicit annotation (1 2 0) is also crucial
for symbol fcons; otherwise, the interpreter could associate a default strategy
which does not permit the renamings (for instance, OBJ3 associates the strat-
egy (0 1 2 0) to fcons; with this default annotation, we would also obtain
cons(0,unquote’ (nil’)) instead of the desired value).

Unfortunately, the previous transformation does not preserve termination
of the original program (proved in Example 4.4).

Example 6.5 The evaluation of t = quote’ (from(0)) yields:

reduce in EXAMPLE-STR : quote’ (from(0)) .

ADVISORY: closing open files.
Debug(1)> Bye.

11
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where we were forced to abort the non-terminating execution. Again, the
problem is that the evaluation of ¢, i.e., the evaluation of

©(t) = quote’ (1 oy (fromy 0)(0,i))
does not terminate:

(quote’(; gy(fromy y(0,i1)), A)
uote’ (from 1 0)(0nid), 1)

—¢ (cons’(; gy(quote(; ¢)(0,:) ,quote’(; o)(from; o)(s(y 0)(0m1)))),A>
—>;|f COIlS’ yC07 i1, quote’ (1 gy (from(; gy (s 0)(Onil))))72>
%

— (9 (0)
— <quote’(0)(from (Oml)) 1.1)
—¢ (quote’ () (fromip) (0,:1)), 1)
— <quote’(0)(cons ) (Onir s Eromy gy (s(y 0)(Onil)))71>
— <quote’(0)(consml(oml,from(1 0 (1 0)(0ni1))), 1.1)
— (quote’ (gy(cons, (Onir, fromy o) (s 0)(0,i))), 1)
—¢ (quote’ (g)(cons, (Oni,fromyy oy (s(1 0)(0,i))), A)
(
<

6.1 Preserving completeness and termination

Example 6.5 shows that the annotation ¢'(quote ) = (1 0) may cause non-
termination. We can try to avoid this problem by restricting the F-strategy for
quote_to (0). In this case, however, we need to add new rules to enable the
evaluation in some alternative way. In [Luc97], we have introduced a program
transformation which is able to achieve a similar effect. In the following,
by an outermost (occurrence of a) defined symbol in a term ¢, we mean a
defined symbol which only has constructor symbols above it in ¢. The new
constructors are now introduced in computations by the contraction of redexes
of outermost defined symbols f. Thus, we add both new defined symbols f’,
which will show up when these outermost defined f symbols emerge, and new
rules for defining these symbols. The new rules f'(l4,...,l;) — ' come from
the original ones f(ly,...,{x) — r as follows: occurrences of outermost defined
symbols ¢ in r are renamed in ' as ¢’; occurrences of constructor symbols ¢
above those ¢ in r are renamed in 1’ as ¢’; occurrences of variables x in r which
only have constructor symbols above them are marked as quotesort(l,)(:zj) in
r’. Now (in contrast to the previous transformation) symbols quote_ are also
intended to rename outermost defined symbols f (of sort 7) as their alias f’
(of the same sort). In order to simplify the transformation, it is tempting
not to take into account the number of extra rules which are added to the
transformed TRS and introduce new rules f'(l1,...,{;) — 1’ for each defined
symbol f. Unfortunately, this may unnecessarily cause non-termination.

Example 6.6 Consider the rule
from(x) — cons(x,from(s(x)))
of our running example. We then introduce the rule:

12
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from’ (x) — cons’(quote(x),from’(s(x)))

For example, in the evaluation of { = first(s(0),from(0)) in Example
5.5, the symbol from does not emerge as outermost: roughly speaking, the
only possibility is that either the right-hand side of a rule defining first
contains a variable of sort LNat having only constructor symbols above, or
that from is outermost in some right-hand side. This does not happen in
our example. Thus, we do not need the rule which would introduce non-
termination since reductions are allowed on both arguments of cons’. For
this reason, we perform a more accurate analysis of the required additional
rules by carefully identifying the outermost defined symbols that can emerge
during the evaluation of a given expression.

The following notations are auxiliary [Luc97]: Given f: 7 X ... X7 — T,
the sorts of arguments of f are gathered in the set '* sortarg(f) = {m,..., 7}
Given a term t € T(F, &),

o CVar(t) = {& € Var(t) | dp € Pos(t), t|, = 2 AV g < p, ¢ € Posc(t)}
is the set of constructor variables of t, i.e., variables of ¢ having a maximal
proper prefix which only points to constructor symbols. We also use C, =
{c €C | sort(c) =7}.

» The set of possible sorts for symbols arising by instantiation of a constructor
variable x is C'VSort(sort(x)) where, given a sort 7,

CVSort(r)={r}ulJ ; CVSort(r')
c e

7' e sortarg(c)
o Vouler(t) = U, covery{f € D | sort(f) € CVSort(sort(x))} are the defined

symbols which can root the subterms introduced in ¢ by instantiation of
constructor variables of ¢ (that is, which emerge as outermost in ¢ after
instantiation).

Example 6.7 Consider the term ¢t = cons(y,first(x,z)), where sort(y) =
Nat and first : Nat x LNat — LNat. Then,

o CVar(t) = {y}; note that sort(y) = Nat.
o CVSort(Nat) = {Nat} and

CVSort(LNat) = {LNat} U |J CVSort(r')

c € {nil7 cons}
7' e sortarg(c)
= {LNat} U C'VSort(Nat) U CVSort(LNat)

= {LNat, Nat}

1 Here, we disregard from the ordering of the argument sorts (i.e., we do not use a list of
sorts) since it is not important for our purposes.

13
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o Vouter(t) = {f € D | sort(f) € CVSort(sort(y))} = {f € D | sort(f) €
{Nat}} = {sel}.

Givena TRS R =(F,R)=(CWD,R) and f € D,

o outrhsr(f) C D contains the outermost defined symbols in rhs’s of the
f-rules: outrhsg(f) = Uy, —reriroot(r,p) | p € Posp(r)AY ¢ < p.q€
Pose(r)}.

o Vrhsg(f) C D is the set of outermost defined symbols which can appear by
instantiation of constructor variables in rhs’s of the f-rules: Vrhsg(f) =
Us(iy,.ip)—srer Vouter(r).

o newouterr (f) = outrhsg(f) U Vrhsg(f).

.....

Example 6.8 Consider the TRS R in Example 4.1 (assume the sorts as given
in the signature of the original OBJ program in Example 1.1). We have:

o outrhsg(sel) = {sel} and outrhsg(first) = {first}. Let us develop the
first one: the rules defining sel are

sel(0,cons(x,z)) — x and sel(s(x),cons(y,z)) — sel(x,z).

The rhs of the first rule is a variable; hence it does not contribute to
outrhsg(sel). On the other hand, the only outermost defined symbol of
the second rhs is sel; hence, outrhsg(sel) = {sel}.

o Vrhsg(sel) = Vouter(x) U Vouter(sel(x,z)) = Vouter(x) = {sel} (note
that sort(x) = Nat) and, according to Example 6.7:

Vrhsg(first) = Vouter(nil) U Vouter(cons(y,first(x,z)))
= Vouter(cons(y,first(x,z)))
= {sel}

o Finally, newouterg(sel) = outrhsg(sel) U Vrhsg(sel) = {sel} and
newouterg (first) = outrhsg(first) U Vrhsg(first) = {first, sel}.

In contrast to transformation E., here we are mainly interested in evaluating
term f(t1,...,t) for a given defined symbol f € D. Given R = (F,R) =
(CWD,R) and f € D, we let D{z C D be:

D} = {f}U U D%

genewoulery (f)

D{z contains the outermost defined symbols which arise when a (well sorted)
f-rooted term f(¢1,...,tx) is arbitrarily rewritten. In practice, since the def-
inition of D{z is mutually recursive, we must consider all possible equations

f1
DR = {fl} U UgenewouterR(fl) Dgz

In
DR = {fn} U UgenewouterR(fn) Dgz
14
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(where f; = fand f,..., f, are all the defined symbols successively occurring
in newouterg(fi) U --- U newouterg(f,)) and compute the (least) solutions
D{é, . ,Dﬁ;" by using fixpoint techniques (see [Luc97,Luc98b]).

Example 6.9 (Continuing Example 6.8) Since newouterg(sel) = {sel} and
newouterg(first) = {first, sel}, we have the system:

DEITSt — {first} U D5t U DETST

D5l = [sel} U DSSL

which has a simple solution: DE*SY = {first, sel} and D§e! = {sel}. Note
that from ¢ DEITSY and from Q Dsel

The set evf(F,X) of terms is given as follows: (1) X C ev/(F, ), (2)
g(1) € ev(F,X)if g € D), and (3) ¢(ty, ..., 1;) € ev (F,X)ifc € C*
ti, ...ty € ev!(F,X). If we do not require (1) (and change the mductlve case
(3) to be ¢(t1,...,t) € gev! (F,X)if c € C: yand by, ...t € gev! (F, X)),
then we are deﬁnmg the set gev!(F,X). Roughly speaking, if we rewrite on

and
sort

sort

a term ¢t = g() for some g € Dg;, then every possible reduct of ¢ belongs to
ev! (F,X). If t is ground, then we only need to consider gev’!(F,X).

We now define the program transformation. First, we give the new signa-
ture. Note that the transformation is parametric w.r.t. a TRS R = (F, R) =
(CW D, R) and a defined symbol f € D.

Definition 6.10 Given a TRS R = (F,R) = (C WD, R) and f € D, we let
Fl=FwC'wD W Quote W Unquote, where: ¢ €' & ¢ € Crore(ry N ar( ') =
ar(¢) and ¢ € D' & g € Df A ar(g') = ar(g). Quote and Unquote are as

above.

The transformation introduces rules to deal with the different symbols that
we consider, according to the informal description above.

Definition 6.11 [Transformation V] Let R = (F,R) = (CW D, R) be a TRS
and f € D. Welet V/(R) = (F/,RUSUQUU), where:

« S={g(l) = k' (r)| g() = r e RAge DL}, where

wl(z) = quote,, (., )( z), for = € X, kf(g(1)) = ¢'(1) if g € D{z, and
w!l(c(t)) = (k' (1)) if cel.

* Rules in () define symbols quote_ in order to rename external constructors
¢ € Cf (where 7 = sort(f)) to constructors ¢ € C' where ¢, ¢/ : 7y X+ - X7 —
7/, and outermost application of g € D{z to outermost applications of the
corresponding ¢ € D'.

Q = {quote_(c(x1,...,2t)) = c'(quote, (z1),...,quote  (vx)) | c € C}

U{quote,,.(g(x1,- . 2k) = ¢ (w1, k) [ g € Dr}
15
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* Rules in U define symbols in Unquote exactly as in the previous transfor-
mation E..

Given an F-strategy map ¢, we define the new F-strategy map ¢'; we let
¢ = Emap!(p) as follows: ¢'(g) = o(f) if g € D, ¢(¢) = ¢(g) i g € Dy,
O'(e) = ple)if e € C,and () = (1 --- ar(d)) if ¢ € C', p(quote ) = (0)
and ¢(unquote ) = (1 0) for all sort 7; and ¢(f.) = (1 --- ar(c) 0) for each
¢ € C; s such that p?(c) #{1,...,ar(c)}.

For the new transformation, we have similar results as for the simpler one.

Theorem 6.12 Let R = (F,R) = (CWD, R) be a TRS. Let ¢ be a reqular E-
strategy map. Let f € D, t € ev/(F,X), and § € T(C). Let R' = V/(R) and
@' = Emap’(p). If & € evaly(unquote,, ., (quote,, (1)), then t =% 4.
Theorem 6.13 Let R = (F,R) = (CWD, R) be a TRS. Let ¢ be a reqular E-
strategy map. Let f € D, t € ev/(F,X), and § € T(C). Let R' = V/(R) and
@' = Emap’(p). If§ € eval (), then § € evaly(unquote, ,y(quote,, (1))
Theorem 6.14 Let R = (F,R) = (CWD, R) be a left-linear, confluent TRS.
Let ¢ be a reqular E-strategy map such that ¢ € CMp and R is p-terminating.
Let f € D, t € e (F,X), and § € T(C). Let R' = V/(R) and ¢ =
Emap’ (). Ift =% 6, then 6 € evaly(unquote,, . (quote,, ,,(1))).
Example 6.15 The following OBJ3 program:

obj EXAMPLE-TR is
sorts Nat LNat .

ops 0 0’ : => Nat .
ops 8 8’ : Nat -> Nat [strat (1)] .
ops nil nil’ : -> LNat .

op cons : Nat LNat -> LNat [strat (1)] .

op cons’ : Nat LNat -> LNat [strat (1 2)] .

op fcons : Nat LNat -> LNat [strat (1 2 0)]

op from : Nat -> LNat [strat (1 0)]

ops sel sel’ : Nat LNat -> Nat [strat (1 2 0)] .
ops first first’ : Nat LNat -> LNat [strat (1 2 0)]
op quote : Nat -> Nat [strat (0)] .

op unquote : Nat -> Nat [strat (1 0)]

op quote’ : LNat -> LNat [strat (0)]

op unquote’ : LNat -> LNat [strat (1 0)] .

vars X Y : Nat .

var Z : LNat .

eq sel(s(X),cons(Y,Z)) = sel(X,Z) .

eq sel(0,cons(X,Z2)) = X .

eq first(0,Z) = nil .

eq first(s(X),cons(Y,Z)) = cons(Y,first(X,Z)) .
eq from(X) = cons(X,from(s(X))) .

eq sel’(s(X),cons(Y,Z)) = sel’(X,Z) .
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eq sel’(0,cons(X,Z)) = quote(X)
eq first’(0,Z) = nil’
eq first’ (s(X),cons(Y,Z)) = cons’(quote(Y),first’(X,Z))
eq quote(0) = 0O’
eq quote’ (cons(X,Z)) = cons’(quote(X),quote’(Z))
eq quote’(nil) = nil’
eq quote(s(X)) = s’(quote(X))
eq quote(sel(X,Z)) = sel’(X,Z)
eq quote’ (first(X,Z)) = first’(X,Z)
eq unquote(0’) = 0 .
eq unquote(s’ (X)) = s(unquote(X))
eq unquote’(nil’) = nil .
eq unquote’(cons’(X,Z)) = fcons(unquote(X) ,unquote’ (Z))
eq fcons(X,Z) = cons(X,Z)
endo

is the new transformed version of the OBJ program in Example 1.1. Now, the
evaluation of unquote’ (quote’ (first(s(0) ,from(0)))) yields:

reduce in EXAMPLE-TR : unquote’(quote’ (first(s(0), from(0))))
rewrites: 10 in -10ms cpu (Oms real) (~ rewrites/second)
result LNat: cons(0, nil)

By using the context-sensitive recursive path ordering (CSRPO) of [BLR02]
we can even prove termination of the program in Example 6.15.

Example 6.16 Consider again the evaluation of the non-terminating expres-
sion from(0) using the program in Example 6.15. Now, we obtain:

reduce in EXAMPLE-TR : unquote’(quote’ (from(0))) .
rewrites: 0 in -10ms cpu (Oms real) (~ rewrites/second)
result LNat: unquote’(quote’ (from(0)))

Conditions under which this second transformation preserve termination
of the original program should be further investigated.

7 Conclusions and Related work

We summarize the contributions of this paper as follows:

o We first clarify our notion of correct and complete computations with (pos-
itive) strategy annotations. As there is no standard, commonly accepted
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terminology, current definitions are rather misleading and we think this
may cause an erroneous understanding (e.g., compare the mix of different
concepts for the notion of correctness/completeness in [NFO1,NOO1,Pol01]).

o We demonstrate that previously known approaches for computing normal
forms with (non-terminating) OBJ programs using positive strategy an-
notations (e.g., Nakamura and Ogata’s technique of ‘completing’ head-
normalizing F-strategy maps ¢ for obtaining a normalizing one ¢') are not
completely satisfactory in practice: they do ensure correctness (that is, that
computed F-normal forms are normal forms) but the desired definedness do
not.

» We ascertain the conditions (on ) ensuring that OBJ programs using (pos-
itive) strategy annotations do compute the value of any given expression
(Theorem 5.4). As shown in Example 5.6, termination of the program (un-
der ) is essential for achieving correct (and complete) computations.

o Theorem 5.4 requires that all arguments of constructor symbols be replac-
ing. This may incur in unnecessary nontermination. Thus, we have for-
malized a transformation which can achieve (correct and) complete com-
putations without worsening the termination behavior. Our technique dif-
fers from Nakamura and Ogata’s (or Nagaya’s) approach: we only relax
the replacement restrictions associated to the (constructor) symbols after a
thorough analysis of their role in the computation.

The only work addressing completeness of the F-strategy (w.r.t. normaliza-
tion) is Nagaya’s thesis (although completeness is called ‘normalizability’ in
Nagaya’s terminology). Nagaya establishes conditions (on the TRS and the
E-strategy ) ensuring that ¢ is normalizing, i.e., it is able to compute a
normal form of a term whenever it exists [Nag99]. However, these results only
apply to a rather restricted subclass of orthogonal TRSs. In this paper, we
have focused on the functional evaluation semantics, i.e., computations leading
to constructor terms or values. We are able to deal with more general pro-
grams (represented by left-linear and confluent TRSs); as a counterpart, the
termination of the program must be proved either before or after transforming
it to ensure correctness and completeness (regarding functional evaluation).
In CSR, normal forms of a term ¢ can be obtained by successively comput-
ing its p-normal forms s, and continuing the evaluation of ¢ by (recursively)
normalizing the maximal non-replacing subterms of s (normalization via p-
normalization [Luc02a,Luc02b]). In OBJ programs, we could proceed in a sim-
ilar way provided that E-normal forms are g-normal forms. Unfortunately, we
would need a ‘meta-operation’ that uses eval, to obtain partially evaluated
results (i.e., F-normal forms) and then ‘jumps’ into the non-replacing parts
of them in order to obtain normal forms. Of course, this procedure is not di-
rectly available in current OBJ implementations. The possibility of achieving
a similar effect by using program transformation is a subject of future work.
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