
A Fast Algebraic Web Verification Service?

M. Alpuente1, D. Ballis2, M. Falaschi3, P. Ojeda1, and D. Romero1

1 DSIC, Universidad Politécnica de Valencia
Camino de Vera s/n, Apdo. 22012, 46071 Valencia, Spain.

{alpuente, pojeda, dromero}@dsic.upv.es
2 Dip. Matematica e Informatica

Via delle Scienze 206, 33100 Udine, Italy.
demis@dimi.uniud.it

3 Dip. di Scienze Matematiche e Informatiche
Pian dei Mantellini 44, 53100 Siena, Italy.

moreno.falaschi@unisi.it

Abstract. In this paper, we present the rewriting-based, Web verifica-
tion service WebVerdi-M, which is able to recognize forbidden/incorrect
patterns and incomplete/missing Web pages. WebVerdi-M relies on a
powerful Web verification engine that is written in Maude, which auto-
matically derives the error symptoms. Thanks to the AC pattern match-
ing supported by Maude and its metalevel facilities, WebVerdi-M enjoys
much better performance and usability than a previous implementation
of the verification framework. By using the XML Benchmarking tool
xmlgen, we develop some scalable experiments which demonstrate the
usefulness of our approach.

1 Introduction

Web-site management is an arduous task today. While it is not so difficult to
build a Web site, this task is still somehow a form of art, resulting in an increas-
ing volume of information contained in ever-larger, complex Web sites, which is
very difficult to keep up-to-date and correct. Recently, some sophisticated Web-
site management tools have been proposed. These provide helpful facilities (see
[4, 5]), but unfortunately, they are mostly oriented to Web-site syntactic check-
ing/restructuring so that they can do little by themselves to relieve the problem.
A lot of research work has been invested in consistency management and repair
of software applications and databases, whereas similar technologies are much
less mature for Web systems.

The automated management of data-intensive Web sites is an area to which
rule-based technology has a significant potential to contribute. Web sites typi-
cally contain and integrate several bodies of data that are linked into a rich nav-
igational structure. It is widely accepted today that declarative representations
? This work has been partially supported by the EU (FEDER) and Spanish MEC TIN-

2004-7943-C04-02 project, the Generalitat Valenciana under grant GV06/285, and
Integrated Action Hispano-Alemana HA2006-0007. Daniel Romero is also supported
by ALFA grant LERNet AML/19.0902/97/0666/II-0472-FA.

are the best way to specify the structural aspects of Web sites as well as many
forms of Web-site content. As an additional advantage, rule-based languages such
as Maude [14] offer an extremely powerful, rewriting-based “reasoning engine”
where the system transitions are represented/derived by rewrite rules indicating
how a configuration is transformed into another.

In previous work on GVerdi [2, 6], we proposed a rewriting-based approach to
Web-site verification and repair. In a nutshell, our methodology w.r.t. a given
formal specification is applied to discover two classes of important, semantic
flaws in Web sites. The first class consists of correctness errors (forbidden infor-
mation that occurs in the Web site), while the second class consist of complete-
ness errors (missing and/or incomplete Web pages). The original GVerdi system
was developed in Haskell as a stand-alone application with wx-Haskell graphical
interface. It allows the user to load a given Web site, together with a Web spec-
ification, and is able to recognize and fix the erroneous information appearing
in the Web site. This is done by means of a novel rewriting-based technique,
called partial rewriting, in which the traditional pattern matching mechanism is
replaced by a suitable technique based on the homeomorphic embedding relation
for recognizing patterns inside semistructured documents.

Web services are an emergent paradigm built upon XML as vehicle for ex-
changing messages across applications. Web services provide a standard means
of interoperating between different software architectures, running on a vari-
ety of platforms and/or frameworks. Using the WSDL infrastructure for ser-
vice description allows one to specify the properties, capabilities and behav-
ior/semantics of a Web service. The new WebVerdiService, written in Java, can
be seen as a service interface to Verdi-M, that is, an abstract boundary (indepen-
dent of transmission protocol and data format) that offers any Internet requester
entity the capabilities of Verdi-M. The new WebVerdiService relies on a strictly
more powerful Web verification engine written in Maude [14] which automati-
cally derives the error symptoms. Thanks to the AC pattern matching supported
by Maude and its metalevel features, we have significantly improved both the
performance and the usability of the original system. By using SOAP messages
and other Web-related standards, a Java Web client that interacts with the Web
verification service has also been made publicly available within the WebVerdi-M
implementation.

Although there have been other recent efforts to apply formal techniques to
Web site management [7, 10, 12, 16, 18, 20, 28], no work addressed the semantic
verification of Web sites before. The key idea behind WebVerdi-M is that rule-
based techniques can support in a natural way not only intuitive, high level Web
site specification, but also efficient Web site verification techniques. As far as
we know, rewriting-based techniques have not been explored in the context of
Web site verification to date. Previous rewriting-based approaches for Web site
processing focus on transformation rather than verification issues, e.g. [24, 8].
Our rule specification language does offer the expressiveness and computational
power of functions and is simpler than formalizations of XML schemata based

on tree automata often used in the literature such as, e.g. the regular expression
types [23].

VeriWeb [28] explores interactive, dynamic Web sites using a special browser
that systematically explores all paths up to a specified depth. The user first spec-
ifies some properties by means of SmartProfiles, and then the verifier traverses
the considered Web site to report the errors as sequences of Web operations that
lead to a page which violates a property. Navigation errors and page errors can
be signaled, but tests are performed only at the http-level. In [20], a declarative
verification algorithm is developed which checks a particular class of integrity
constraints concerning the Web site’s structure, but not the contents of a given
instance of the site. In [16], a methodology to verify some semantic constraints
concerning the Web site contents is proposed, which consists of using inference
rules and axioms of natural semantics. The framework xlinkit [18, 29] allows
one to check the consistency of distributed, heterogeneous documents as well
as to fix the (possibly) inconsistent information. The specification language is a
restricted form of first order logic combined with Xpath expressions [33] where
no functions are allowed.

The paper is organized as follows. Section 2 presents some preliminaries, and
in 3 we briefly recall the rewriting-based, Web-site verification technique of [2].
In Section 4, we discuss the efficient implementation in Maude (by means of AC
pattern matching) of one of the key ingredients of our verification engine: the
homeomorphic embedding relation, which we use to recognize patterns within
semi-structured documents. Section 5 briefly describes the service-oriented ar-
chitecture of our verification prototype WebVerdi-M. In Section 6, we present an
experimental evaluation of the system on a set of benchmarks. Finally, Section
7 presents our conclusions.

2 Preliminaries

By V we denote a countably infinite set of variables and Σ denotes a set of
function symbols (also called operators), or signature. We consider varyadic sig-
natures as in [15] (i.e., signatures in which symbols do not have a fixed arity,
that is, they may be given an arbitrary number of arguments).

τ(Σ,V) and τ(Σ) denote the non-ground term algebra and the term algebra
built on Σ ∪ V and Σ, respectively. Terms are viewed as labelled trees in the
usual way. Positions are represented by sequences of natural numbers denoting
an access path in a term. The empty sequence Λ denotes the root position. Given
S ⊆ Σ ∪ V, OS(t) denotes the set of positions of a term t that are rooted by
symbols in S. t|u is the subterm at the position u of t. t[r]u is the term t with
the subterm rooted at the position u replaced by r. Given a term t, we say that
t is ground, if no variable occurs in t. A substitution σ ≡ {X1/t1, X2/t2, . . .} is
a mapping from the set of variables V into the set of terms τ(Σ,V) satisfying
the following conditions: (i) Xi 6= Xj , whenever i 6= j, (ii) Xiσ = ti, i = 1, ..n,
and (iii) Xσ = X, for all X ∈ V \ {X1, . . . , Xn}. By ε we denote the empty
substitution. An instance of a term t is defined as tσ, where σ is a substitution.

By Var(s) we denote the set of variables occurring in the syntactic object s.
Syntactic equality between objects is represented by ≡.

3 Rule-based Web site verification

In this section, we briefly recall the formal verification methodology proposed in
[2], which allows us to detect forbidden/erroneous information as well as missing
information in a Web site. By executing a Web specification on a given Web site,
we are able to recognize and exactly locate the source of a possible discrepancy
between the Web site and the properties required in the Web specification. An ef-
ficient and elegant implementation in Maude of such a methodology is described
in Section 4.

3.1 Denotation of Web sites

In this framework, we assume a Web page to be a well-formed XML document
[32], since there are plenty of programs and online services that are able to
validate XML syntax and perform link checking (e.g. [34],[31]). Since XML doc-
uments are provided with a tree-like structure, they can be straightforwardly
encoded as ground Herbrand terms of a given term algebra τ(Text ∪Tag), where
Text represents the set of all the finite strings over a given alphabet and Tag
is a set of tag symbols [2]. Note that XML tag attributes can be considered
as common tagged elements, and hence be translated analogously. Therefore, a
Web site can be seen as a finite set of ground terms belonging to τ(Text ∪Tag).
In the following, we will also consider terms of the non-ground term algebra
τ(Text ∪Tag ,V), which may contain variables. An element s ∈ τ(Text ∪Tag ,V)
is called XML document template. In our methodology, Web page templates are
used to specify properties of Web sites, as described in the following section.

3.2 The Web specification language

A Web specification is a triple (R, IN , IM), where R, IN , and IM are a finite
set of rules. The set R contains the definition of some auxiliary functions which
the user would like to provide, such as string processing, arithmetic, boolean
operators, etc. R is formalized as a term rewriting system, which is handled
by standard rewriting [25]. The rewriting mechanism executes function calls by
simply reducing them to their irreducible form (that is, a term that cannot be
rewritten further) The set IN describes constraints for detecting erroneous Web
pages (correctNess rules). A correctness rule has the following syntax:

l ⇀ error | C

where l is a term, error is a reserved constant, and C is a (possibly empty) finite
sequence containing

– membership tests of the form X ∈ rexp w.r.t. a given regular language rexp;4

– equations/inequalities over terms.

When C is empty, we simply write l ⇀ error.
Informally, the meaning of a correctness rule l ⇀ error | C is the following.

Whenever (i) a “piece” of a given Web page p ∈ τ(Text ∪ Tag) can be “recog-
nized” to be an instance lσ of l, and (ii) the corresponding instantiated condition
Cσ holds, then Web page p is marked as an incorrect page.

The third set of rules IM specifes some properties for discovering incom-
plete/missing Web pages (coMpleteness rules). A completeness rule is defined
as

l ⇀ r 〈q〉

where l and r are terms and q ∈ {E, A}. Completeness rules of a Web specification
formalize the requirement that some information must be included in all or some
pages of the Web site. We use attributes 〈A〉 and 〈E〉 to distinguish “universal”
from “existential” rules, as explained below. Right-hand sides r of completeness
rules can contain functions, which are defined in R. In addiction, some symbols
in the right-hand sides of the rules may be marked by means of the symbol].
Marking information of a given rule r is used to select the subset of the Web
site in order to check the condition formalized by r.

Intuitively, the interpretation of a universal rule l ⇀ r 〈A〉 (respectively, an
existential rule l ⇀ r 〈E〉) w.r.t. a Web site W is as follows: if (an instance
of) l is “recognized” in W , (an instance of) the irreducible form of r must also
be “recognized” in all (respectively, some) of the Web pages that embed (an
instance of) the marked structure of r.

Example 1. Let R be a TRS, we define X ++Y , which concatenates two strings;
we also define X + Y , which sums two natural numbers. Let (R, IN , IM) be a
Web specification where IN and IM are defined as follows:

member(name(X), surname(Y)) ⇀]hpage(fullname(X ++Y)),
status) 〈E〉

hpage(status(professor)) ⇀]hpage(]status(]professor),
teaching)) 〈A〉

project(grant1(X), grant2(Y), total(Z)) ⇀ error | X + Y 6= Z,

X in [0− 9]∗, Y in [0− 9]∗,
Z in [0− 9]∗

This Web specification models some required properties for a Web site of a
research group. The first rule formalizes the following property: if there is a Web
page containing a member list, then for each member, a home page should exist
which contains (at least) the full name and the status of this member. The full

4 Regular languages are represented by means of the usual Unix-like regular expression
syntax.

name is computed by applying the function ++ to the name and the surname
of the member. The marking information establishes that the property must
be checked only on home pages (i.e., pages containing the tag “hpage”). The
second rule states that, whenever a home page of a professor is recognized, that
page must also include some teaching information. The rule is universal since
it must hold for each professor home page (i.e., all the Web pages embedding
the marked structure home(status(professor)). The third rule states that, for
each research project, the total project budget must be equal to the sum of the
funds, which have been granted for the first and the second research periods.
The membership tests in the conditions ensure that the values assigned to the
variables are natural numbers.

Diagnoses are carried out by running Web specifications on Web sites. The
operational mechanism is based on a novel, flexible matching technique [2] that
is able to “recognize” the partial structure of a term (Web template) within
another and select it by computing homeomorphic embeddings (cf. [26]) of Web
patterns within Web documents.

3.3 Homeomorphic embedding

Homeomorphic embedding relations allow us to verify whether a given XML doc-
ument template is somehow “enclosed” within another one. Roughly speaking,
we consider a simple embedding relation which closely resembles the notion of
simulation [22], this relation has been widely used in a number of works about
querying, transformation, and verification of semistructured data (cf. [11, 10, 1,
21, 9]).

We give a definition of homeomorphic embedding, E, which is an adaptation
of the one proposed in [26], where (i) a simpler treatment of the variables is con-
sidered, (ii) function symbols with variable arities are allowed, (iii) the relative
positions of the arguments of terms are ignored (i.e. f(a, b) is not distinguised
from f(b, a)), and (iv) we ignore the usual diving rule5 [26].

Definition 1 (homeomorphic embedding). The homeomorphic embedding
relation

E⊆ τ(Text ∪ Tag ,V)× τ(Text ∪ Tag ,V)

on XML documents templates is the least relation satisfying the rules:

1. X E t, for all X ∈ V and t ∈ τ(Text ∪ Tag ,V).
2. f(t1, . . . , tm) E g(s1, . . . , sn) iff f ≡ g and ti E sπ(i), for i = 1, . . . ,m, and

some injective function π : {1, . . . ,m} → {1, . . . , n}.

Whenever s E t, we say that t embeds s (or s is embedded or “recognized” in t).
The intuition behind the above definition is that s E t iff s can be obtained

from t by striking out certain parts, in other words, the structure of the template
s appears within t, which likely as specific Web data terms.

Let us illustrate Definition 1 by means of a rather intuitive example.
5 The diving rule allows one to “strike out” a part of the term at the right-hand side

of the relation E. Formally, s E f(t1, . . . tn), if s E ti, for some i.

Example 2. Consider the following XML document templates (called s1 and s2,
respectively):

hpage(surname(Y), status(professor), name(X), teaching)

hpage(name(mario), surname(rossi), status(professor),
teaching(course(logic1), course(logic2))
hobbies(hobby(reading), hobby(gardening)))

Note that s1 E s2, since the structure of s1 can be recognized inside the structure
of s2, while s2 6E s1.

It is important to have an efficient implementation of homeomorphic embed-
ding because it is used repeatedly during the verification process as described in
the following.

3.4 Web verification methodology

Roughly speaking, the verification methodology works as follows. First, by using
the homeomorphic embedding relation of Definition 1, we check whether the left-
hand side l of some Web specification rule is embedded into a given page p of
the considered Web site. When the embedding test l E p succeeds, by extending
the proof, we construct the biggest substitution6 σ for the variables in V ar(l),
such that lσ E p. Then, depending on the nature of the Web specification rule
(correction or completeness rule), it is as follows:

(Correction rule) evaluating the condition of the rule (instantiated by σ); a
correctness error is signalled in the case when the error condition is fulfilled.

(Completeness rule) by a new homeomorphic embedding test, checking whether
the right-hand side of the rule (instantiated by σ) is recognized in some page
of the considered Web site. Otherwise, a completeness error is signalled.
Moreover, from the incompleteness symptom computed so far, a fixpoint
computation is started in order to discover further missing information,
which may involve the execution of other completeness rules.

4 Verifying Web sites using Maude

Maude is a high-performance reflective language supporting both equational
and rewriting logic programming, which is particularly suitable for developing
domain-specific applications [30, 17]. As a matter of fact, it has a clear and well-
understood semantics, which eases the development of complex systems. On the
other hand, it is expressive enough to implement a wide range of applications,
ranging from deterministic systems to highly concurrent ones. In addiction, the
6 The substitution σ is easily obtained by composing the bindings X/t, which can be

recursively gathered during the homeomorphic embedding test X E t, for X ∈ l and
t ∈ p.

Maude language is not only intended for system prototyping, but it has to be
considered as a real programming language with competitive performance. In the
rest of the section, we recall some of the most important features of the Maude
language which we have conveniently exploited for the optimized implementation
of our Web site verification engine.

Equational attributes. A Maude program consists of functional modules,
which define a typed signature Σ, a set of typed variables, and a set of equations
implementing the functions in the signature Σ. Equational attributes are a means
of declaring certain kinds of equational axioms for a particular binary operator
of Σ which Maude uses efficiently in a built-in way. Some of the attributes sup-
ported are: assoc (associativity), comm (commutativity), id:<identity name>.
Employing equational attributes not only avoids termination problems and leads
to much more efficient term evaluation, but it also us allows to define more “flex-
ible” data structures. As an example, let us describe how we model (part of) the
internal representation of XML documents in our system.

The chosen representation slightly modifies the data structure provided by
the Haskell HXML Library [19] by adding commutativity to the standard XML
tree-like data representation. In other words, in our setting, the order of the
children of a tree node is not relevant: e.g., f(a, b) is “equivalent” to f(b, a).

fmod TREE-XML is

sort XMLNode .

op RTNode : -> XMLNode . -- Root (doc) information item

op ELNode _ _ : String AttList -> XMLNode . -- Element information item

op TXNode _ : String -> XMLNode . -- Seq. of char information items

--- ... definitions of the other XMLNode types omitted ...

sorts XMLTreeList XMLTreeSeq XMLTree .

op Tree (_) _ : XMLNode XMLTreeList - > XMLTree .

subsort XMLTree < XMLTreeSeq .

op _,_ : XMLTreeSeq XMLTreeSeq -> XMLTreeSeq [comm assoc id:null] .

op null : -> XMLTreeSeq .

op [_] : XMLTreeSeq -> XMLTreeList .

op [] : -> XMLTreeList .

endfm

In the previous module, the XMLTreeSeq constructor _,_ is given the equa-
tional attributes comm assoc id:null, which allow us to get rid of parentheses
and disregard the ordering among XML nodes within the list. The significance of
this optimization will be clear when we consider rewriting XML trees with AC
pattern matching.

AC pattern matching. The evaluation mechanism of Maude is based on
rewriting modulo an equational theory E (i.e. a set of equational axioms), which
is accomplished by performing pattern matching modulo the equational theory
E. More precisely, given an equational theory E, a term t and a term u, we say
that t matches u modulo E (or that t E-matches u) if there is a substitution σ

such that σ(t)=E u, that is, σ(t) and u are equal modulo the equational theory
E. When E contains axioms for associativity and commutativity of operators,
we talk about AC pattern matching. AC pattern matching is a powerful match-
ing mechanism, which we employ to inspect and extract the partial structure of
a term. That is, we use it directly to implement the notion of homeomorphic
embedding of Definition 1. Let us see an example.

Example 3. Let us define an associative and commutative binary infix operator
? along with the constants a, b, c, d. Then a ? d AC-matches (a part of) the term
t ≡ a?b?c?d since t is equivalent — modulo associativity and commutativity—
to the term t′ ≡ (a?d)?(b?c), and, hence, a?d trivially matches the first subterm
of t′. Thus, we are able to recognize the structure a ? d as a substructure of the
term a ? b ? c ? d.

Metaprogramming. Maude is based on rewriting logic [27], which is reflective
in a precise mathematical way. In other words, there is a finitely presented rewrite
theory U that is universal in the sense that we can represent in U (as a data) any
finitely presented rewrite theory R (including U itself), and then mimick in U the
behavior of R. Roughly speaking, there exists a universal Maude program that is
able to “reproduce” the computations of any other Maude program (including it-
self). This leads to novel metaprogramming capabilities that can greatly increase
software reusability and adaptability, which have been exploited in our context
to implement the semantics of correctness as well as completeness rules (e.g.
implementing the homeomorphic embedding algorithm, evaluating conditions of
conditional rules, etc.). Namely, during the partial rewriting process, functional
modules are dynamically created and run by using the meta-reduction facilities
of the language.

Now we are ready to explain how we implemented the homeomorphic embed-
ding relation of Section 3.3, by exploiting the aforementioned Maude high-level
features.

Homeomorphic embedding implementation Let us consider two XML doc-
ument templates l and p. As mentioned above, the critical point of our method-
ology is to (i) discover whether l E p (i.e. l is embedded into p); (ii) find the
substitution σ such that lσ is the instance of l recognized inside p, whenever
l E p.

Given l and p, our proposed solution can be summarized as follows. By using
Maude metalevel feactures, we first dynamically build a module M that contains
a single rule of the form

eq l = sub(”X1”/X1), . . . , sub(”Xn”/Xn), Xi ∈ Var(l), i = 1, . . . n,

where sub is an associative operator used to record the substitution σ that
we want to compute. Next, we try to reduce the XML template p by using
such a rule. Since l and p are internally represented by means of the binary
constructor _,_ that is given the equational attributes comm assoc id:null (see

Section 4), the execution of module M on p essentially boils down to computing
an AC-matcher between l and p. Moreover, since AC pattern matching directly
implements the homeomorphic embedding relation as illustrated in Example 3,
the execution of M corresponds to finding all the homeomorphic embeddings of l
into p (recall that the set of AC matchers of two compatible terms is not generally
a singleton). Additionally, as a side effect of the execution of M, we obtain the
computed substitution σ for free as the sequence of bindings for the variables
Xi, i = 1, . . . , n which occur in the instantiated rhs

sub(”X1”/X1)σ, . . . , sub(”Xn”/Xn)σ, Xi ∈ Var(l), i = 1, . . . n,

of the dynamic rule after the partial rewriting step.

Example 4. Consider again the XML document templates s1 and s2 of Example
2. We build the dynamic module M containing the rule

op hpage(surname(Y), status(professor), name(X), teaching) =
sub(”Y”/Y), sub(”X”/X) .

Since s1 E s2, there exists an AC-match between s1 and s2 and, hence, the
result of executing M against the (ground) XML document template s2 is the
computed substitution: sub(”Y”/rossi), sub(”X”/mario).

5 Prototype implementation

The verification methodology presented so far has been implemented in the pro-
totype WebVerdi-M (Web Verification and Rewriting for Debugging Internet sites
with Maude). In developing and deploying the system, we fixed the following re-
quirements: 1) define a system architecture as simple as possible, 2) make the
Web verification service available to every Internet requestor, and 3) hide the
technical details from the user.

In order to fulfill the above requirements, we developed the Web verifica-
tion system WebVerdi-M as a Web service. A Web service is a software system
identified by a URI, whose public interfaces and bindings are defined and de-
scribed using XML (specifically WSDL). A Web service enhances interoperability
among software applications. A Web service is also self-describing and can be
published, located, and invoked across the Web. Hence, Web services facilitate
the development of distributed applications by adopting a loosely coupled Web
programming model. Systems developed in terms of Web services are language
independent and platform independent. Additionally, they are easily scalable
and extensible by establishing connections to new Web services when necessary.

5.1 WebVerdi-M Architecture

WebVerdi-M is a service-oriented architecture that allows one to access the core
verification engine Verdi-M as a reusable entity.

WebVerdi-M can be divided into two layers: front-end and back-end. The
back-end layer provides web services to support the front-end layer. This ar-
chitecture allow clients on the network to invoke the Web service functionality
through the available interfaces.

The tool consists of the following components: Web service WebVerdiService,
Web client WebVerdiClient, core engine Verdi-M, XML API, and database DB.

Figure 1 illustrates the overall architecture of the system. For the reader
interested in more detail, the types of messages and the specific message exchange
patterns that are involved in interacting with WebVerdi-M can be found in [3].

Fig. 1. Components of WebVerdi-M

WebVerdiService. Our web service exports six operations that are network-
accessible through standardized XML messaging. These operations are: store a
Web site, remove a Web site, retrieve a Web site, add Web page to a Web site,
check correctness, and check completeness. The Web service acts as a single ac-
cess point to the core engine Verdi-M which implements our Web verification
methodology in in Maude. Following the standards, the architecture is also plat-
form and language independent so as to be accessible via scripting environment
as well as via client applications across multiple platforms.

XML API. In order for successful communications to occur, both the Web-
VerdiService and WebVerdiClient (or any user) must agree to a common format
for the messages being delivered so that they can be properly interpreted at each
end. The WebVerdiService Web service is developed by defining an API that en-
compasses the executable library of the core engine. This is achieved by making
use of Oracle JDeveloper, including the generation of WSDL for making the
API available. The OC4J Server (the web server integrated in Oracle JDevel-
oper) handles all procedures common to Web service development. Synthesized
error symptoms are also encoded as XML documents in order to be transferred
from the WebVerdiService Web service to client applications as an XML response
by means of the SOAP protocol.

Verdi-M. Verdi-M is the most important part of the tool. Here is where the
verification methodology is implemented (see Section 4). This component is im-
plemented in Maude language and is independent of the other system compo-
nents.

WebVerdiClient. WebVerdiClient is a Web client that interacts with the Web
service to use the capabilities of Verdi-M. Our main goal was to provide an

intuitive and friendly interface for the user. WebVerdiClient is provided with a
versatile, new graphical interface that offers three complementary views for both
the specification rules and the pages of the considered Web site: the first one
is based on the typical idea of accessing contents by using folders trees and is
particularly useful for beginners; the second one is based on XML, and the third
one is based on term algebra syntax. The tool provides all translations among
the three views. A snapshot of WebVerdiClient is shown in Figure 2.

Fig. 2. WebVerdiClient Snapshot

DB. The WebVerdiService Web service needs to transmit abundant XML data
over the Web to and from client applications. The common behavior of a user
when using the tool is to modify the default rules provided for the Web specifica-
tion and then verify a particular Web site. After modifying the Web specification,
it would be necessary to send back to the service the considered specification as
well as the whole Web site to verify. After the application invokes the WebVerdiS-
ervice Web service with these two elements, synthesized errors are progressively
generated and transferred to the client application. The standard Web service
architecture requires client applications to wait until all data are received and
then errors are sent, which could cause significant time lags in the application. In
order to avoid this overhead and to provide better performance to the user, we
use a local MySql data base where the Web site and Web errors are temporarily
stored at the server side.

6 Experimental evaluation

In order to evaluate the usefulness of our approach in a realistic scenario (that
is, for sites whose data volume exceeds toy sizes), we have benchmarked our
system by using several correctness as well as completeness rules of different
complexity for a number of XML documents randomly generated by using the
XML documents generator xmlgen available within the XMark project [13]. The
tool xmlgen is able to produce a set of XML data, each of which is intended to

challenge a particular primitive of XML processors or storage engines by using
different scale factors.

Table 1 shows some of the results we obtained for the simulation of three
different Web specifications WS1, WS2 and WS3 in five different, randomly
generated XML documents. Specifically, we tuned the generator for scaling fac-
tors from 0.01 to 0.1 to match an XML document whose size ranges from 1Mb –
corresponding to an XML tree of about 31000 nodes– to 10Mb –corresponding to
an XML tree of about 302000 nodes– (for an exhaustive evaluation, please refer to
http://www.dsic.upv.es/users/elp/WebVerdi).

Both Web specifications WS1 and WS2 aim at checking the verification
power of our tool regarding data correctness, and thus include only correctness
rules. The specification rules of WS2 contain more complex and more demand-
ing constraints than the ones fomalized in WS1, with involved error patterns to
match, and conditional rules with a number of membership tests and functions
evaluation. The Web specification WS3 aims at checking the completeness of
the randomly generated XML documents. In this case, some critical complete-
ness rules have been formalized which recognize a significant amount of missing
information.

The figures shown in Table 1 were obtained on a personal computer equipped
with 1Gb of RAM memory, 40Gb hard disk and a Pentium Centrino CPU clocked
at 1.75 GHz running Ubuntu Linux 5.10.

Let us briefly comment our results. Regarding the verification of correct-
ness, the implementation is extremely time efficient, with elapsed times scaling
lineary. Table 1 shows that the execution times are small even for very large
documents (e.g. running the correctness rules of Web specification WS1 over a
10Mb XML document with 302000 nodes takes less than 13 seconds). Concerning
the completeness verification, the fixpoint computation which is involved in the
evaluation of the completeness rules typically burdens the expected performance
(see [2]), and we are currently able to process efficiently XML documents whose
size is not bigger than 1Mb (running the completeness rules of Web specification
WS3 over a 1Mb XML document with 31000 nodes takes less than 3 minutes).

Scale factor Size Nodes
Time

WS1 WS2 WS3

0.01 1 Mb 30, 985 0.930 s 0.969 s 165.578 s

0.03 3 Mb 90, 528 12.604 s 2.842 s 1768.747 s

0.05 5 Mb 150, 528 5.975 s 5.949 s 4712.157 s

0.08 8 Mb 241, 824 8.608 s 9.422 s 12503.454 s

0.10 10 Mb 301, 656 12.458 s 12.642 s 21208.494 s
Table 1. Verdi-M Benchmarks

Finally, we want to point out that the current Maude implementation of
the verification system supersedes and greatly improves our preliminary system,

called GVerdi[2, 6], which was not even able to manage correctness for XML doc-
ument repositories larger than 1Mb within a reasonable time. We are currently
working on further improving the performance of our system.

7 Conclusion

In the literature on Web management, Web sites verification has mainly a syntac-
tic focus with a particular concern for the accessibility and usability perspective
[4, 5]. This paper can be seen as a step forward towards the formal, semantic
verification of Web sites using rule-based technology. First we present an ef-
ficient and innovative implementation in Maude –a high-performance reflective
functional language– of the rewriting-based, Web verification methodology of [2].
This methodology deals with semantic flaws that are not addressed by classical
tools. The framework comes with a language for defining correctness and com-
pleteness conditions on Web sites. Then, our rewriting-based verification tech-
nique is able to recognize forbidden/incorrect patterns and incomplete/missing
Web pages by means of a novel rewriting-based technique, called partial rewrit-
ing.

In this work, first we exploit Maude’s capabilities which are particularly suit-
able for our implementation, such as associative commutative pattern matching
and metaprogramming. We can thus provide WebVerdi-M with a powerful Web
verification engine. We have done a comparison of run times of Verdi-M core
engine and shown the resulting impressive performance (e.g. less than a second
for evaluating a tree of some 30,000 nodes).

Then, we have proposed a service-oriented architecture which makes the Web
verification capabilities of the system easily accessible to internet requestors.
The resulting prototype WebVerdi-M is publicly available together with a set of
examples and its XML API.

In order to make possible technological transfer to industry it is necessary
to have tools that are able to give prompt answers on real size examples, as we
have shown by our scalable benchmarks. Another important factor, is to reduce
the cost of learning to the user. For this reason we have developed a friendly
innovative interface for our system.

References

1. S. Abiteboul, P. Buneman, and D. Suciu. Data on the Web. From Relations to
Semistructured Data and XML. Morgan Kaufmann, 2000.

2. M. Alpuente, D. Ballis, and M. Falaschi. Automated Verification of Web Sites
Using Partial Rewriting. Software Tools for Technology Transfer, 8:565–585, 2006.

3. M. Alpuente, D. Ballis, M. Falaschi, P. Ojeda, and D. Romero. The Web Verifica-
tion Service WebVerdi-M. Technical report, DSIC-UPV, 2007.

4. M. Alpuente, S. Escobar, and M. Falaschi (Eds.). Automated Specification and
Verification of Web Sites, 1st Int’l Workshop WWV’05, volume 157(2). Elsevier,
2006.

5. M. Alpuente, S. Escobar, and M. Falaschi (Eds.). Automated Specification and Ver-
ification of Web Systems, 2nd Int’l Workshop WWV’06. IEEE Computer Society
Press, 2007.

6. D. Ballis and J. Garćıa Vivó. A Rule-based System for Web Site Verification. In
Proc. of 1st Int’l Workshop on Automated Specification and Verification of Web
Sites (WWV’05), volume 157(2). ENTCS, Elsevier, 2005.

7. L. Baresi, P. Fraternali, M. Tisi, and S. Morasca. Towards model-driven testing
of a web application generator. In Proc. of Web Engineering, 5th Int’lernational
Conference, ICWE 2005, volume 3579 of Lecture Notes in Computer Science, pages
75–86, 2005.

8. I. D. Baxter, F. Ricca, and P. Tonella. Web Application Transformations based
on Rewrite Rules. Information and Software Technology, 44(13), 2002.

9. E. Bertino, M. Mesiti, and G. Guerrin. A Matching Algorithm for Measuring the
Structural Similarity between an XML Document and a DTD and its Applications.
Information Systems, 29(1):23–46, 2004.

10. F. Bry and S. Schaffert. Towards a Declarative Query and Transformation Lan-
guage for XML and Semistructured Data: Simulation Unification. In Proc. of the
Int’l Conference on Logic Programming (ICLP’02), volume 2401 of Lecture Notes
in Computer Science. Springer-Verlag, 2002.

11. F. Bry and S. Schaffert. The XML Query Language Xcerpt: Design Prin-
ciples, Examples, and Semantics. Technical report, 2002. Available at:
http://www.xcerpt.org.

12. J. Cavalcanti and W. Vasconcelos. A logic-based approach for automatic synthesis
and maintenance of web sites. In Proc. of the 14th Int’l Conference on Software
Engineering and Knowledge Engineering, pages 619–626. ACM press, 2002.

13. Centrum voor Wiskunde en Informatica. XMark – an XML Benchmark Project,
2001. Available at: http://monetdb.cwi.nl/xml/.

14. Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Narciso Mart́ı-
Oliet, José Meseguer, and Carolyn Talcott. The maude 2.0 system. In Robert
Nieuwenhuis, editor, Rewriting Techniques and Applications (RTA 2003), number
2706 in Lecture Notes in Computer Science, pages 76–87. Springer-Verlag, 2003.

15. N. Dershowitz and D. Plaisted. Rewriting. Handbook of Automated Reasoning,
1:535–610, 2001.

16. T. Despeyroux and B. Trousse. Semantic Verification of Web Sites Using Natural
Semantics. In Proc. of 6th Conference on Content-Based Multimedia Information
Access (RIAO’00), 2000.

17. S. Eker, J. Meseguer, and A. Sridharanarayanan. The Maude LTL model checker
and its implementation. In Model Checking Software: Proc. 10 th Intl. SPIN Work-
shop, volume 2648 of LNCS, pages 230–234. Springer, 2003.

18. E. Ellmer, W. Emmerich, A. Finkelstein, and C. Nentwich. Flexible Consistency
Checking. ACM Transaction on Software Engineering, 12(1):28–63, 2003.

19. Joe English. The HXML Haskell Library, 2002. Available at:
http://www.flightlab.com/ joe/hxml/.

20. M. Fernandez, D. Florescu, A. Levy, and D. Suciu. Verifying Integrity Constraints
on Web Sites. In Proc. of Sixteenth International Joint Conference on Artificial
Intelligence (IJCAI’99), volume 2, pages 614–619. Morgan Kaufmann, 1999.

21. M. F. Fernandez and D. Suciu. Optimizing Regular Path Expressions Using Graph
Schemas. In Proc. of Int’l Conference on Data Engineering (ICDE’98), pages 14–
23, 1998.

22. M. R. Henzinger, T. A. Henzinger, and P. W. Kopke. Computing Simulations
on Finite and Infinite Graphs. In IEEE Symposium on Foundations of Computer
Science, pages 453–462, 1995.

23. H. Hosoya and B. Pierce. Regular Expressions Pattern Matching for XML. In
Proc. of 25th ACM SIGPLAN-SIGACT Int’l Symp. POPL, pages 67–80. ACM,
2001.

24. C. Kirchner, Z. Qian, P. K. Singh, and J. Stuber. Xemantics: a Rewriting Calculus-
Based Semantics of XSLT. Rapport de recherche A01-R-386, LORIA, 2001.

25. J.W. Klop. Term Rewriting Systems. In S. Abramsky, D. Gabbay, and
T. Maibaum, editors, Handbook of Logic in Computer Science, volume I, pages
1–112. Oxford University Press, 1992.

26. M. Leuschel. Homeomorphic Embedding for Online Termination of Symbolic Meth-
ods. In T. Æ. Mogensen, D. A. Schmidt, and I. H. Sudborough, editors, The Essence
of Computation, volume 2566 of Lecture Notes in Computer Science, pages 379–
403. Springer, 2002.

27. N. Mart́ı-Oliet and J. Meseguer. Rewriting Logic: Roadmap and Bibliography.
Theoretical Computer Science, 285(2):121–154, 2002.

28. B. Michael, F. Juliana, and G. Patrice. Veriweb: automatically testing dynamic
web sites. In Proc. of 11th Int’l WWW Conference. ENTCS, Elsevier, 2002.

29. C. Nentwich, W. Emmerich, and A. Finkelstein. Consistency Management with
Repair Actions. In Proc. of the 25th International Conference on Software Engi-
neering (ICSE’03). IEEE Computer Society, 2003.

30. J. Meseguer S. Escobar, C. Meadows. A Rewriting-Based Inference System for the
NRL Protocol Analyzer and its Meta-Logical Properties. Theoretical Computer
Science, 367(1-2):162–202, 2006.

31. Typke und Wicke GbR. Validate/Check XML. Available at:
http://www.xmlvalidation.com/.

32. World Wide Web Consortium (W3C). Extensible Markup Language (XML) 1.0,
second edition, 1999. Available at: http://www.w3.org.

33. World Wide Web Consortium (W3C). XML Path Language (XPath), 1999. Avail-
able at: http://www.w3.org.

34. World Wide Web Consortium (W3C). Markup Validation Service, 2005. Available
at: http://validator.w3.org/.

