
An offline
approach to

narrowing driven
partial evaluation

1) Domain specific languages
2) An example of a domain specific language
3) Partial Evaluation
4) Narrowing driven partial evaluation (NPE)
5) A new offline approach to NPE
6) Conclusion and future work

J. Guadalupe Ramos

DSIC, Technical University of Valencia
guadalupe@dsic.upv.es
www.dsic.upv.es/~guadalupe
(joint work with Josep Silva and
Germán Vidal)

2

DomainDomain SpecificSpecific LanguagesLanguages

Domain Specific
Language (DSL)

e.g., latex, html,
VHDL, etc.

DomainDomain

A DSL is at higher level than a conventional
high level language

AdvantagesAdvantages::
Reduced programming effort
• Applications with fewer lines of code
• Programs easier to reason about and maintain
Can be used by non-expert programmers

They are programming languages tailored for a specific domain

DSLs are a convenient technology both for
the domain users, since they can easily learn
to programming real software applications
and for the DSL designer, in order to teach
the use of a new language

3

DomainDomain SpecificSpecific EmbeddedEmbedded LanguagesLanguages

alternative

DomainDomain

Host language with
convenient features

Domain Specific
Embedded

Language (DSEL)

þ Higher order functions
þ Syntax extension mechanisms
þ Flexible/extensible type system
þ Laziness

A DSEL is implemented as a
library in a “host” language

In this way, language
tools are reused

But creating new languages is
expensive (lexer, parser, and tools)

4

The host language: CurryThe host language: Curry

Curry built-in types (Int, Bool, Char, …)

q Curry does a strict distinction between (data) constructors and
operations or defined functions on these data

q A Curry program consists of a set of type and function declarations

data Boolean = True | False
data Tree Int = Leaf Int | Node (Tree Int) Int (Tree Int)

Data type declarations:

Type synonym declarations: type Name = [Char]
type List a = [a]

5

The host language: CurryThe host language: Curry

A function is defined by a type declaration (which can be omitted)

followed by a list of defining equations
append [] y = y
append (x:xs) y = x : app xs y

e.g.

Higher order features: map f [] = []
map f (x:xs) = f x : map f xs

functions

e.g., given inc x = x + 1

map inc [4,9]we use

And it produces [5,10]

6

An example of DSELAn example of DSEL

payload header

Data packet

Router

Extensible router

• Security

• Policies

• QoS

• Addresses
• Evolution

o A router is a special device that connects
two or more networks and forward data
packets between them

o Due to growing of networks (and Internet)
there is a trend to extend the set of functions
that routers should support (with run-time
customization capabilities), giving rise to
extensible routers

7

o Among extensible routers, Click is distinguished

o In Click, each functional aspect of a router is encapsulated
in an element (an instance of a C++ class)

o A Click router is based on composing many elements to
produce a system that implements the desired behavior

An example of DSEL An example of DSEL

FromDevice(eth0) Counter Discard

elements

connectors• Click [Kohler et al. 1999], MIT

A modular router = a graph

8

In Rose, packet streams are:

type Packet = [Int]
type Stream = [Packet]

Click elements in Rose are functions:

element :: [Conf] -> [Stream] -> [Stream]

A simple router:

simpR = seqOfe [fromDevice [Eth 0], counter [], discard []]

Rose: an example of DSEL for Rose: an example of DSEL for RoRouter uter ssppeecificationcification

We follow Click style,

i.e., router = a set of
elements joined by
connectors

Higher orderUsing the connector:

seqOfe :: [[Stream] -> [Stream]] -> [Stream] -> [Stream]

elements

connectors
FromDevice(eth0) Counter Discard

9

However, DSELs have the following problems:

¢ Host languages can not analyze DSEL data
structures, e.g.,
l They can not perform type checking
l Error messages are related to host languages,

not to DSELs
¢ The generated code is slow
l Many interpretation layers

DSEL DSEL drawbacksdrawbacks

We are focused on the reduction of interpretation layers

10

DSEL DSEL drawbacksdrawbacks

Solution: Partial evaluation of interpreters

A concrete application (a router specification)

fromDevice conf [] = newPacket conf

discard conf stream = []

. . .

seqOfe [] = id
seqOfe (elem : es) = \input -> seqOfe es (elem input)

Host language interpreter, e.g., Curry

DSELLibrary
àInterpreter

Interpretation layers

11

Partial evaluation

The specialized program with the remaining data
produces de same result as the original one with
all data

power x n = if n == 0
then 1
else (x * (power x (n - 1))) power3 x = x * x * x

power x 3
For instance xn:

p in1 in2

output of
pin1

static input
in1

partial
evaluator “mix”

subject
program p

specialized
program pin1

dynamic input
in2

= data

= program

p

in1

in2

12

Partial evaluation

Partial evaluation is a process
that iteratively

1. takes a function call,
2. performs some symbolic

evaluations (e.g., power x 3),
and

3. extracts from the partially
evaluated expression the set of
pending function calls to be
computed in the next iteration
of the process

Computemix

1

2

3

13

Termination of partial evaluation

¢ It is not easy to identify
which terms (function calls)
should be processed, because
some of them can produce
infinite computations

¢ Usually, some form of
generalization is applied to
terms in order to stop
infinite computations
(reducing precision)

¢ When should dangerous
terms be generalized?

¢ It is not easy to identify which
terms (function calls) should be
processed.

¢ Some terms can produce infinite
computations

¢ Usually, some form of generalization
is applied to terms in order to stop
infinite computations (reducing
precision)

¢ When should dangerous terms be
generalized?

Compute ???mix

14

Online partial evaluators are
¢ more precise since they have more information available

at partial evaluation time
¢ usually more expensive

Partial evaluators

Offline partial evaluators proceed in two stages
¢ The first stage returns an annotated program to guide

the partial computations
¢ The partial evaluation stage only obeys the annotations
¢ Offline partial evaluators are faster but less precise than

online partial evaluators

The decision on which terms should be generalized can be taken
online or offline

15

Narrowing driven partial evaluation

program

an initial term t
(typically a function call)

NPE
SpecializedSpecialized programprogram

forfor thethe termterm tt

An online NPE tool is already integrated into the PAKCS
environment for the declarative multi-paradigm language Curry

¢ In order to perform symbolic computations in a functional
context, an extension of the standard semantics is required:
narrowing (basis of the functional logic languages, as Curry)

¢ NPE (narrowing-driven partial evaluation) is a powerful
specializing scheme for first-order functional (logic) programs.

16

Narrowing driven partial evaluation

o In NPE, if a term embeds some previous one in the same
computation (w.r.t. homeomorphic embedding), a form of
generalization is applied and partial evaluation continues with
the generalized terms

o Homeomorphic embedding tests together with the associated
generalizations make NPE very expensive

Online NPEOnline NPE

Offline NPEOffline NPE

o Although online NPE gives good results on
small programs, it does not scale up well to
realistic problems

17

An offline approach to NPE

o then, the partial evaluation process terminates (using a sort
of memoization)

very
restrictive

o Recently, at the International Conference on
Functional Programming ’05, we have introduced a
syntactic characterization for programs
(nonincreasing programs) that guarantees the quasi-
termination of computations

o Is well known that, if the partial computations are quasi-
terminating, i.e., they contain only a finite number of different
function calls (modulo variable renaming)

18

An offline approach to NPE

o In order to accept more
programs, we defined an
algorithm that annotates those
terms that cause non quasi-
termination

o We presented an extension
of narrowing which
performs computations
generalizing annotated
terms

Partial evaluator (it
performs an extension

of narrowing)

AnnotatingAnnotating
algorithmalgorithm

Arbitrary Arbitrary pp

Annotated Annotated pp

Specialized Specialized pp

Our offline approach

Pre-processing

main y = int (Plus (Cst (S (S Z))) (Cst y)) [] []

data Nat = Z | S Nat | E
data Token = Cst Nat | Var Nat | Plus Token Token | Minus Token Token | Mult Token Token

int :: Token -> [Nat] -> [Nat] -> Nat
int (Cst x) _ _ = x
int (Var x) vars vals = lookup x vars vals
int ((Plus x y)) vars vals = = add (int x vars vals) (int y vars vals)
int (Minus x y) vars vals = minus (int x vars vals) (int y vars vals)
int (Mult x y) vars vals = mult (int x vars vals) (int y vars vals)

--- auxiliar functions
. . .
--- arithmetic engine
. . .

add Z y = y
add (S x) y = S(add x y)

minus x Z = x
minus (S x) (S y)= minus x y

mult Z _ = Z
mult (S x) y = add y (mult x y)

DSEL for arithmetic expressions

Programs are written indicating
operations as Plus, Multiplication,
Minus of constants (Cst) or variables
(Var) of natural numbers

A simple interpreter of arithmetic expressions

An application program to be specialized

20

In the first stage we apply
the annotating algorithm

annotations for
generalization

21

testing

The specialized program is
shorter than the original

interpreter and application

The partial evaluation stage

Here we specialize the
annotated program

22

Benchmarks

Advantages
• The offline partial evaluation time is a 25% of the online partial evaluation time
• The tool is able to process bigger programs than online approach

Disadvantages
• Less precision, runtimes of the offline specialized programs are a 10% slower than
online

speedup = orig/spec

23

o DSLs are an appropriate tool for teaching an introducing the non
expert programmers in domain specific solutions of software by
means of programming languages

oThe offline approach to narrowing driven partial evaluation scale up
better to realistic programs

o Preliminary experiments (for specialization of DSELs) have been
performed with a partial evaluation prototype which follows the
offline scheme and the results are promising

Conclusion & future work

Future work

o Include support for a broad set of Curry features
o Introduce a binding-time analysis

