“ CO-FINANCED by EUROPEAN COMMISSION

ICT for EU-India Cross Cultural Dissemination

An offline
approach to
narrowing driven
partial evaluation

J. Guadalupe Ramos

DSIC, Technical University of Valencia
guadalupe@dsic.upv.es
www.dsic.upv.es/~guadalupe

(joint work with Josep Silva and
German Vidal)

2) An example of a domain specific language

4) Narrowing driven partial evaluation (NPE)
5) A new offline approach to NPE
6) Conclusion and future work

\

Domain Specific

Language (DSL) >

e.g., latex, html,
VHDL, efc.

Domain =41
J" E“ [y j%?g

2

Domain Specific Languages

They are programming languages tailored for a specific domain

A DSL is at higher level than a conventional
high level language

Advantages:

Reduced programming effort

» Applications with fewer lines of code

* Programs easier to reason about and maintain

Can be used by

DSLs are a convenient technology both for
the domain users, since they can easily learn

to programming real software applications
and for the DSL designer, in order to teach

the use of a new language

O Domain Specific Embedded Languages

But creating new languages is
expensive (lexer, parser, and tools)

A DSEL is implemented as a
library in a "host" language

alternative Embedded
Language (DSEL)

Domain Specific {

(@ Higher order functions
Host language with M Syntax extension mechanisms
convenient features | @ Flexible/extensible type system
|4 Laziness

In this way, language
tools are reused

O The host language: Curry

Q Curry does a strict distinction between (data) constructors and
operations or defined functions on these data

[A Curry program consists of a set of type and function declarations

Curry built-in types (Int, Bool, Char, ..)

Data type declarations:

. T]_'nl | et I Ck Tkl . .
data Boolean = True | False

data Tree Int Leaf Int | Node (Tree Int) Int (Tree Int)

data T a7 ... a, = C] ™1 o Thkny,

type 1" a1 ... ap =T
Type synonym declarations: type Name = [Char]
type List a = [a]

O The host language: Curry

A function is defined by a type declaration (which can be omitted)
fiim =>1 > D> T > T

followed by a list of defining equations [f1... t, = ¢ edg.

append [] y =y
append (X:Xxs) vy X . app xs vy

_____ . ———— _ functions
Higher order features: napéf E[] =[] /

e.g., given inc x = x + 1

we use map i nc [4, 9]

And it produces [5, 10]

O An example of DSEL

Data packet
payload header

o A router is a special device that connects
two or more networks and forward data Extensible rout
packets between them e ;%u “
= 0 S
o Due to growing of networks (and Internet) o=
there is a trend to extend the set of functions = Uc’

o

that routers should support (with run-time ® Security
customization capabilities), giving rise to * Policies
extensible routers * QoS

- Addresses

« Evolution

An example of DSEL

o Among extensible routers, Click is distinguished

o In Click, each functional aspect of a router is encapsulated
in an element (an instance of a C++ class)

o A Click router is based on composing many elements to
produce a system that implements the desired behavior

A modular router = a graph elements

FromDevice(eth0) 'T'}Counter H, Discard

* Click [Kohler et al. 1999], MIT ‘connectors’

Rose: an example of DSEL for Router specification

In Rose, packet streams are: We follow Click style,

type Packet = [Int] ie. rou‘reu." =a set of

type Stream = [Packet] elements joined by
connectors

Click elements in Rose are functions:

element :: [Conf] -> [Strean] -> [Strean

________ ___elements
4---TTT T - IERREEN
FromDevice(eth0) "—k» Counter %—'} Discard
A simple router: " connectors ’

sinpR = seqC e [fronDevice [Eth 0], counter [], discard []]

Using the connector: / Higher order
seqCe :: [[Strean] -> [Strean]] -> [Strean] -> [Strean]

DSEL drawbacks

However, DSELs have the following problems:

o Host languages can not analyze DSEL data
structures, e.q.,

They can not perform type checking

Error messages are related to host languages,
not to DSELs

o The generated code is slow
Many interpretation layers

We are focused on the reduction of interpretation layers

O DSEL drawbacks

Interpretation layers

Host language interpreter, e.g., Curry

fronmDevi ce conf [] = newPacke

di scard conf stream = []

seqOe [] =1i1d
seqOe (elem: es) = \input -> seqOe es (el eminput)

=1

A concrete application (a router specification)

Solution: Partial evaluation of interpreters

10

Partial evaluation

p inl in2 <:iﬁ3§ii>

y

partial

[subject
program p

evaluator “m x”

AA 4

dynamicinput
in2

specialized
program p; ,

= program

C) = data
[]

For instance xn:

power x n =if n==20
then 1
(

el se (x *

output of
1 pi nl

in2

The specialized program with the remaining data
produces de same result as the original one with

all data

(power x (n -

1))

power x 3

=

power ; X

X * X * X

11

O Partial evaluation

Partial evaluation is a process (1
that iteratively ,

1. takes a function call, [mix Compute
2. performs some symbolic AN “
evaluations (e.g., power x 3), —_
and 3

3. extracts from the partially
evaluated expression the set of
pending function calls to be
computed in the next iteration
of the process

Termination of partial evaluation

It is not easy to identify which
terms (function calls) should be

processed. P
e 7 \\
/ \
Some terms can produce infinite ?,' \
computations mix Compute ?7?77?

Usually, some form of generalization ——
is applied to terms in order to stop
infinite computations (reducing
precision)

When should dangerous terms be
generalized?

13

Partial evaluators

The decision on which terms should be generalized can be taken
online or offline

partial evaluators are

o more precise since they have more information available
at partial evaluation time

o usually more expensive

partial evaluators proceed in two stages

o The first stage returns an annotated program to guide
the partial computations

The partial evaluation stage only obeys the annotations

o Offline partial evaluators are faster but less precise than
online partial evaluators

(o)

14

O Narrowing driven partial evaluation

o Inorder to perform symbolic computations in a functional
context, an extension of the standard semantics is required:
narrowing (basis of the functional logic languages, as Curry)

o NPE (narrowing-driven partial evaluation) is a powerful
specializing scheme for first-order functional (logic) programs.

program ‘ o
Specialized program
(typically a function call)

An online NPE tool is already integrated into the PAKCS

environment for the declarative multi-paradigm language Curry

Narrowing driven partial evaluation

o InNPE, if a term embeds some previous one in the same
computation (w.r.t. homeomorphic embedding), a form of
generalization is applied and partial evaluation continues with

the generalized terms

o Homeomorphic embedding tests together with the associated

generalizations make NPE very expensive

o Although online NPE gives good results on
small programs, it does not scale up well to
realistic problems

Online NPE

v

Offline NPE

16

An offline approach to NPE

o Is well known that, if the partial computations are quasi-

terminating, i.e., they contain only a finite number of different
function calls (modulo variable renaming)

then, the partial evaluation process terminates (using a sort
of memoization)

Recently, at the International Conference on
Functional Programming ‘05, we have introduced a
syntactic characterization for programs restrictive
(nonincreasing programs) that
of computations

very

17

An offline approach to NPE

Pre-processing

oo .

o Inorder to accept more Arbu'rr'.a A J
programs, we defined an i \ 4
algorithm that annotates those Annotating
terms that cause non quasi- algorithm
termination | 5

E \

o We presented an extension Annotated p |
of narrowing which T T T |
performs computations

annotated Partial evaluator (it
terms performs an extension
. of narrowing)
Our offline approach <

- Specialized pPJ 18

A simple interpreter of arithmetic expressions

dat a Nat
dat a Token

Z| SNat | E
Cst Nat | Var Nat | Plus Token Token | M nus Token Token | Miult Token Token

int :: Token -> [Nat] -> [Nat] -> Nat
I nt (Cst X) _ _ = X
i nt (Var x) vars vals = lookup x wvars wvals
X (int x vars vals) (int y vars vals)

Int (Mnus x y) vars vals = mnus Int x vars vals Int y vars vals
int (Milt xvy) vars vals = nmnult (int x vars vals) (int y vars vals)

- auxiliar functions

i érithnetic engi ne
add Z y =y . . .
add (S x) y = S(add x y) DSEL for arithmetic expressions
m nus X Z = X

Programs are written indicating

] operations as Plus, Multiplication,

add y (mult x y) Minus of constants (Cst) or variables
(Var) of natural numbers

mnus (S x) (Sy)=mnus x vy

mult zZ
mult (S x) vy

An application program to be specialized

Plus (Cst (S (S 2))) (Cst y)

‘emacs-x@cmmZ.dsic.upv.es

File Edit Options Buffers Tools IndCut Signals Help

CPXDPRIGP? In the first stage we apply
[I 0ffPeval> annotate "ictced/simpleInt2" the anno‘fqﬂng algori‘]‘hm

Offline Narrowing-Driven Partial Evaluator
(Version 0.1 of July 2005)
(Technical University of Valencia)

(Pre-processing stage ...)
Writing annotated program in <<ictcced/simpleInt2 ann.fey>>

OffPeval> :1 icteed/simpleInt2 ann
Compiling 'icteced/simpleInt2 ann. fey' into Prolog program '/tmp/pakcsprog38hl.pl'. ..

ictecd/simpleInt2 _ann(module: simpleInt2)> :showl]
No source program file available, generating source from FlatCurry. ..

—— Program file: ictced/simpleInt2_ann

S Nat | E

data Nat = Z2 |
= Cst Nat| Var Hat| Plus Token Token| Minus Token Token| Mult Token Token

data Token

main :: Hat -> Hat
main v0 = int (Plus (Cst (8 (8 (% Z)))) (Cst v0)) [] I[] :
, annotations for r
int :: Token -> [Hat] -> [Hat] -> Hat
int eval fle:x
int (Cst v3] vl w2
int (Var vd] vl w2
int (Plus w5 vb) vl w2
)
)

generalization

v3
lockup vd4 vl w2
add (GEN (int +5 vl v2)) (GEN (int v6 vl v2))

int (Minus v7 v8 vl v2 minus (GEN (int 7 vl v2)) (GEN (int v8 vl v2))

int (Mult w9 v10) vl w2 malt (GEN (int 9 vl v2)) (GEN (int w10 vl v2))
|
/; add :: Nat -» Nat -> Hat
-u:* % *kghellk (8hell:run)--L1650--98%—————————————— -
X

[emacsx... | 0 emacsx... | (@ guadalu... @ mié 26 de oct, 18:29 §)

& Aplicaciones Lugares Escritorio %@@& !-Im_:, i guadalu. ..

emacs-xTemmz.dsic.upv.es

File Edit Options Buffers Tools InfCut Signals Help

CexPReE? The partial evaluation stage
[offPeval> mix "ictced/simpleInt2" -
Offline Narrowing-Driven Partial Evaluator Her‘e we SpCCIG'IZC The
(Version 0.1 of July 2005)
(Technical University of Valencia) annotated program
(Partial evaluation stage ...)

Writing original program into "icteed/simpleInt2 pe.foy". ..

L L e LN LRy e TEET EL LR RE ™ Tk B R E N Rt N NN NI RN N RS N AN RN NN AR EEEIEREEAEEEEEEEIEEEED

—— Program file: ictced/simpleInt2 pe
data Nat = Z | 8 Hat | E
data Token = Cst Nat | Var Hat | Plus Token Token | Minus Token Token| Mult Token Token

Tain :: b -> a
main v0 = add_pel int_pe2 (int_pe3 v0)

add pel :: ¢ -> b -> a

add_pel eval flex

add_pel Z vb = vb

add_pel (8 v304) vb = 8 (add_pel v304 v5)

The specialized program is

shorter than the original
interpreter and application

int_pe2 :: a
int pe2 = 8 (8 (S 2))

int_ pe3 :: b -> a
int_pe3 v0 = v0
—— end of module icteced/simpleInt2 pe

| ictced/simpleInt2_pe(module: simpleInt2)> main (8 (8 Z)) Tesﬁng
/ Result: (8 (8 (8 (8 (8 2))))) ?
—u: %% *ghellx) T B B o ot B e et e 4

X
& Aplicaciones Lugares Escritorio %@@g @% !Jgu l B guadalupe@c... ll: emacs-x&@cm...] @ dom 30 de oct, 17:35 §)

O Benchmarks
benchmark codesize onlineNPE speedupl offlineNPE speedup?2

(bytes) (ms.) (online), [ann (ms.) | mix (ms.) (offline)
ackermann 1496 20290 T.006 100 590 4750
allones 1191 180 1.065 50 200 1.050
fliptree 1861 1940 0.985 100 240 0.977
foldr.allones 2910 3633 1.024 120 430 2.034
foldr.sum 3734 6797 1.311 170 3340 1.293
fun_inter 4266 28955 — 160 5190 S
gauss 241 11090 1.040 100 757 1.013
kmp.matcher 3222 11670 5.346 157 9410 1.219
power 1693 160 3.087 110 280 1.012
Average 2402 9413 1.858 \ 119 2271 1.668

| W .
speedup = orig/spec
Advantages

* The offline partial evaluation time is a 25% of the online partial evaluation time
* The tool is able to process bigger programs than online approach

Disadvantages
- Less precision, runtimes of the offline specialized programs are a 10% slower than

online

22

O Conclusion & future work

o DSLs are an appropriate tool for teaching an introducing the non
expert programmers in domain specific solutions of software by
means of programming languages

oThe offline approach to narrowing driven partial evaluation scale up
better to realistic programs

o Preliminary experiments (for specialization of DSELs) have been
performed with a partial evaluation prototype which follows the
offline scheme and the results are promising

Future work

o Include support for abroad set of Curry features
o Introduce abinding-time analysis

23

