

2nd Annual Conference of the ICT for EU-India Cross Cultural Dissemination

Valencia, Spain, November 14-15, 2005

Extending Decision Trees for Web Categorisation

Multiparadigm Inductive Programming group (Extensions of Logic Programming group, ELP) Universidad Politécnica de Valencia José Hernández Orallo

Outline

- The MIP group
- Project Objectives
- Data Mining and Web Mining
- Data Mining for Web Categorisation
- A General-purpose Algorithm: DBDT
- DBDT for Web Classification
- Experimental Evaluation of DBDT
- Conclusions and Future work

The MIP group

- Began its research activities in 1997 inside the ELP group.
- Composed of
 - 3 PhD + 3 PhD students + 2 research collaborators
- Research areas
 - Multiparadigm inductive programming (ILP, IFLP, ...)
 - Multi-relational learning
 - Mainstream machine learning and data mining
 - Multi-classifier systems / ensemble methods
 - Cost sensitive learning and ROC analysis
 - Mimetic models
 - Web mining and learning from complex data
 - Other: Inductive debugging, theoretical foundations of machine learning, ...

Project Objectives

- Two main objectives:
 - Effective knowledge extraction, handling and exchange, using "intelligent" software
 - Improve the accessibility of (cultural) information
- More and more inductive techniques are needed:
 - Knowledge discovery tools.
 - Knowledge transformation tools.
 - Software that learns and adapts.
 - Software that can handle non-specified situations.

Project Objectives

- Nowadays, the Web is the most important source for information
- Web information has special characteristics:
 - Heterogeneous.
 - Poorly structured.
 - Noisy.
 - Unpredictably volatile.
 - Huge.
- Specific tools are needed to help us handle such variety and quantity of information.

Data Mining and Web Mining

- Data mining (or more academically KDD) aims at discovering relevant knowledge from different sources of information.
- Web mining aims at discovering relevant knowledge from the Web.
- Web mining is classified into:
 - Content mining (text, title, keywords, ...): classification, categorisation, summarisation, ...
 - Structure mining (hyperlinks, website topology): finding hubs, authorities, ...
 - Usage mining (log files, navigation trails): navigation patterns, user profiles, preferences, recommendations, ...

Data Mining and Web Mining

- Web documents are especially difficult for classical DM techniques:
 - Non-structured.
 - Heterogeneous: textual, multimedia, hyperlinks, meta-labels, etc.
- Web mining adapts classical DM techniques or develops specific algorithms.
 - In general, lots of preprocessing is needed to convert the web data into simpler (flat and structured) data.

Data Mining for Web Categorisation

- Categorisation aims at finding one or more categories (from a set of categories) for a new document.
- When the number of possible categories is not very high, a feasible way of performing categorisation is trough several classifiers (one for each categoriy)
- Some simple approaches to Web document categorisation/classification take only the textual part into consideration.
 - Structure or usage information is not usually handled by the most common web mining tools.
 - But this information is also relevant!

Data Mining for Web Categorisation

Some techniques:

- Relational learning techniques
 - Special predicates: has_word(), has_anchor_word(), link_to()
- Bayesian techniques
 - Content information: *text+title (bags of words)*
- Support vector machines (upgraded)
 - Content information: *text* + *title*
 - Structure information: anchor words
- Decision trees (upgraded)
 - Content information: keywords + some text (a few bags of words)
 - Structure information: hyperlinks

Along with preprocessing (tags and natural language preprocessing)

- Use of structured (powerful) data types for representing each document feature (title, keywords, text, links, visits, ...) as lists, trees, sets, etc.
- Integration of web content, structure and usage in a unique framework, using a modification of decision tree learning in order to handle complex data

Distance-Based Decision Trees (DBDT)

What is a Decision Tree?

Decision Trees: partition rules?

Nominal att. $X \in \{a_1, \dots, a_n\}$ Numerical att. $X \subseteq R$ Structured att.

 $X = a_1 \vee \ldots \vee X = a_n$ $X = a_i \vee (X = a_1, \ldots, a_{i-1}, a_{i+1}, \ldots, a_n)$ $X \le h_1 \vee \ldots \vee h_i \le X \le h_{i+1} \vee \ldots \vee X \le h_n$

- Centre splitting (Thornton 1995-2000)
 - Distance-based method for numerical attributes (linear discriminant).
 - One centre is calculated for each different class.
 - The space is divided according to these centres.
 - The process is iterated and stopped when all the regions are pure.
- Problems.
 - Requires a single distance between documents.
 - A simple distance loses information and doesn't provide too much knowledge.

- Extension to convert this into a decision-tree technique
 - Apply the centre splitting technique for each attribute.
 - The centre must be a value of the dataset instead of computing the exact centre (which might not be a right element in the datatype).
- The extension:
 - Generates decision tree models (distance-based decision tree) in the form of rules.
 - Conditions are expressed in terms of distances to prototypes (proximity rules: "like {economy, politics}"), but can simplified in some cases.
 - Can handle nominal, numerical and **structured (complex)** attributes.
 - Defining a metric or a similarity function for each attribute.

DBDT(input L_Nodes) For each atribute x: L_Proto ← Compute_Prototypes(x) If size(L_Proto)>1 L_Splits ← Splitting(L_Proto,Data) // proximity, density EndIf EndFor

Best ← Select_Best_Split(L_Splits) // IG, GR, Accuracy, GINI L_Nodes ← ApplyBestSplit(Best) DBDT(L_Nodes) // recursively explore the new nodes

DBDT for Web classification

ld.	Daily conn.	Structure	Content	Sport news site?
1	10	{(Math,Topo,Analysis,Logic)↔(invariant,surfaces), (Math,Topo,Analysis,Logic)↔(Lie ope,tangent), (Math,Topo,Analysis,Logic)↔(Gödel,Fuzzy)}	{(Topo,3), (Analysis,5),(Logic,5)}	No
2	25	{(Linux,networking) ↔(shell,learners), (Linux,networking) ↔(TCP/IP,telnet,ftp)}	{(Linux,3),(php,6), (networking,8)}	No
3	30	{(economy,politics) ↔(Dow Jones,Yen), (economy,politics) ↔(interview,elections)}	{(economy,3),(politics,4), (law,10)}	No
4	38	{(soccer,championships, leagues) ↔(scorers,classif.), (scorers,classif.) ↔(best players,best referees)}	{(soccer,9),(league,8)}	No
5	41	{(soccer,champions league) ↔(scorers,classif.), (soccer,champions league) ↔(matches,semi-final)}	{(soccer,7), (league,5)}	Yes
6	32	{(soccer,champions league) ↔(scorers,classif.), (soccer,champions league) ↔(matches,referees)}	{(soccer,5), (league,5)}	Yes

DBDT for Web classification

ld.	Daily con	n. Structure		<meta Invariant,surfaces</meta 	Sport news site?
1	10	{(Math,Topo,Analysis,Logic)↔ (Math,Topo,Analysis,Logic) (Math,Topo,Analysis,Logic)	 →(invariant,surfaces), →(Lie ope,tangent), ↔(Gödel,Fuzzy)} 	Name=keywords> <body> <\BODY></body>	No
2	25	{(Linux,networking ↔(shell,learners), P/IP,telnet,ftp)}	(networking,8)}	No
3	30 N	/laths,Topo,Analysis,Logic Name=keywords> <body></body>	ow Jones,Yen), view,elections)}	Lie operator, tangent Name=keywords>	No
4	38	Topo Logic) ↔(scorers,classif.), ers,best referees)}	<body> <\BODY></body>	No
5	41	<\BODY>	→(scorers,classif.), natches,semi-final)}	{(soccer,7), (league,5)}	Yes
6	32	{(soccer,champions league) ↔ (soccer,champions league) ↔	↔(seorers,classif.), (matches, referees)}	Name=keywords> <body></body>	Yes
Valen	cia. Nov. 14	-15. 2005 2nd Annual Conference	of the ICT for EU–India (18

DBDT for Web classification

• After the 1st step... (heuristic: accuracy)

 \rightarrow Daily conn. 40 br Web classification eraung the proces over non pure nodes... : Barcelona won. Using <u>dayly conn</u>. as \leftarrow {(economy,3),(po Data splitting attribute. litics,4), (law,10)} Conn=32 3 (4) 1 2 5 6 Using <u>content</u> as ← splitting attribute. **Class No** Conn=25 4 (5) 6 3 Using structure as \leftarrow splitting attribute. {(soccer, championships, Class No leagues) 5 \leftrightarrow (scorers,classif.), 6 4 (scorers,classif.) ↔(best players, best referees)} Class No Class Yes 20 Valencia, Nov. 14-15, 2005 2nd Annual Conference of the ICT for EU-India Cross Cultural Dissemination

Experimental Evaluation of DBDT

- DBDT has been implemented in WEKA
- It includes several distance and (pseudo-)distance functions for nominal data, numerical data, lists and sets.
- In the experiments, lists and sets have been the structured data employed.
- Document representation
 - finite set of words (summary) from the title and the body selected according to its importance for classification.
 - the class label.

Experimental Evaluation of DBDT

- First experiment: classifying web sites by topic
 - 83 html documents downloaded from Internet
 - mathematics (biographies, technical pages, personal web sites, ...)
 - sports (biographies, news, events, championships, ...)

Num. of	List	Set
words	(Acc. %)	(Acc. %)
50	100.0	93.6
75	98.1	91.5
100	95.9	91.4
125	98.4	94.8
150	97.6	92.5

Experimental Evaluation of DBDT

- Second experiment: Learning user profiles
 - Syskill & Webert data set (UCI repository)
 - several topics (clinical information, music events...)
 - documents ranked according to user preferences (hot, medium, cold)

Num. of	Bands	Biomedical
words	(Acc. %)	(Acc. %)
50	74.5	71.5
75	79.7	81.3
100	77.9	83.0
125	82.0	84.0
150	81.7	79.6

Conclusions and Future Work

• *DBDT* is ...

- A general-purpose algorithm
 - Like ID3, c4.5, CART, etc.
- Able to handle structured attributes
 - Just necessary to define a similarity function for each attribute
- Applicable for web mining
 - Web classification/categorisation problems
- Future work: How to transform the proximity rules into more "comprehensible" ones?
 - Instead of "close to {(economy,3),(politics,4), (law,10)}" we would prefer something like "having the words economy and politics".
 - Defining a generalisation operator in metric spaces.

Conclusions and Future Work

- We plan to use the system for other web mining applications.
 - Recommender systems.
 - Personalisation.
 - Ontology categorisation (using metrics between ontologies).
 - ...
- Other more general knowledge discovery areas (nonrelated to the project):
 - Extracting rules from incomprehensible models (black-box models).
 - Combination of data mining and simulation.
 - Applications in bioinformatics (complex data).
 - Ranking predictions and evaluating their quality.