
Connecting declarative software tools
 Declarative tools [for] connecting software

Salvador Lucas
Dep. de Sistemas Informáticos y Computación

Universidad Politécnica de Valencia
slucas@dsic.upv.es

Summary
 Connecting declarative software tools:

 The verifying compiler project
 Concrete problems
 Interoperability for declarative tools and languages

 Declarative tools for connecting software:
 Models and logics for Web analysis and development
 Declarative models for security protocols

 Conclusions and future work

Connecting declarative
software tools

Connecting declarative tools

 As part of the 50th anniversary of the Journal of
the ACM, an special issue of the journal by highly
renowned researchers was published (Journal of
the ACM vol 50, issue 1, January 2003)

 The aim was to establish the most important
challenges in Informatics and Computer
Science for the XXI century

Connecting declarative tools

 The verifying compiler: a grand (although
classic!) challenge revisited by T. Hoare

 Program verification, program debugging,
and program analysis will be essential
components of such a tool

 Its effective development will require an
incremental and cooperative effort from
different work teams all around the world

Motivation: declarative languages

Maude
Interpreter

MU-TERM

CiME

 User’s program

 Constraints

Report of proof

Solution (coeff)

Motivation: declarative languages

How to connect these tools for
automatically

proving termination of such programs?

Connecting software tools:
concrete problems

Connecting tools: concrete problems

Maude
Interpreter

MU-TERM

CiME

 No connection

 Exchange file

Connecting tools: concrete problems

Maude
Interpreter

MU-TERM

CiME

Haskell

C++

OCaml

Data structures:
Although they could
be linked as object
modules, the data
representations should be
(made) compatible for
exchanging data through
primary memory

Connecting tools: concrete problems

Maude
Interpreter

MU-TERM

CiME

CS restrictions

Concrete syntax

Constraint solving

Distributed:
Proofs of termination of
Programs involve different
kinds of knowledge and
expertise. Combining
different tools
to prove termination
is often necessary

Connecting tools: concrete problems

Maude
Interpreter

MU-TERM

CiME

Laptop

Laptop

Server
(Intra/Inter Net)

Efficiency:
Proofs of termination
involve search problems
which are costly. Having
specialized servers devoted
to prove termination
can be useful

Connecting tools: concrete problems

Maude
Interpreter

MU-TERM

CiME

International:
Maude is developed and
maintained (mainly) by the
UIUC and SRI at USA;
MU-TERM has been made
at the UPV (Spain)
CiME is being developed at
the U. Paris VII (France)

Spain

France

USA

Connecting applications:
interoperability

Connecting applications
 Interoperability: making possible for a

program on one system to get access to
programs and data on another system

 Solutions: Middleware systems, e.g.,
 COM
 .NET
 XML WWW Services

Connecting applications
 Example: .NET:
A core language (CLR) provides an

abstract machine to implement more
sophisticated languages:
 C++ (or C#),
 Java (or Java#)
 ML,
 Haskell (Mondrian), etc.

The implementations can use a number of
libraries (for GUIs, remote access,…)

Connecting applications
 .NET Remoting:

Client

Stub ProxyStubProxy

Frontier of
AppDomain

Frontier of
AppDomain

Server

AppDomains represent local or remote applications

Connecting applications
 Joining .NET through COM:

Haskell COM Component

EXAMPLE.hs

ExampleProxy.hs

Com.lhs (lib)

RTS

Example.idl

HDirect

RCW

Connecting applications
WWW services:

Client

XML XMLSOAPSOAP

UDDI / WSDL

UDDI / WSDL

Server

Connecting applications
 Common problems
Exchanging data
Defining remote services
Finding external applications / servers
 Implementing remote calls
Receiving results of remote calls

Connecting software tools:
concrete actions

Connecting applications: actions
 TPDB
Recent common format for TRSs and

termination problems:
Conditional equations / rules
Strategies
Type of problem (TRS, SRS, LP, …)

Connecting applications: actions
 Add information for specifying proofs

 Simple / Cε / DP-Simple termination
 Constraint solving
 Modular structure
 Heuristics (and its combinations)
 Ad-hoc partial / external proofs

 Use of XML for producing input / output
information on proofs (e.g., for certification
purposes)

Connecting applications: actions

This is an ambitious project which should
eventually be agreed / addressed by the

interested community.
Coordination with some technical groups

(e.g., IFIP WG 1.6 or 1.3,…)
would be interesting / desirable

Declarative tools for
connecting software

Declarative tools for connectivity
Web site: a collection of connected

Web pages

 Dynamic modeling: focus on the transitions
between Web pages

Rewriting model p2

p3

p4

p5

p1

href=
href=

href=

Rewriting model p2

p3

p4

p5

p1(U)→ p2(U)
p1(U)→ p3(U)
p1(U)→ p5(U)

Rewriting model

p3

p4

p5

p1(U)→ p2(U)
p1(U)→ p3(U)
p1(U)→ p5(U)

Rewriting model
p4

p5

p1(U)→ p2(U)
p1(U)→ p3(U)
p1(U)→ p5(U)

p3(u)→ p4(u)
p3(u’)→ p5(u’)

 Term Rewriting System (TRS):

 Rewriting theories: first order logic (with variables
ranging on terms) together with a binary predicate
R(x,y) associated to a TRS R:
 R(x,y) = x→ y : one-step rewriting theory
 R(x,y) = x→∗ y : rewriting theory

Rewriting model

p1(U)→ p2(U)
p1(U)→ p3(U)
p1(U)→ p5(U)

p3(u)→ p4(u)
p3(u’)→ p5(u’)

Rewriting model and logics
 Example: there is no ‘disconnected’ page:

™y ∃x ((x ≠ y) ∧ ((x → y) ∨ (y → x)))

where ‘=‘ is the predicate R(x,y) associated to the
empty TRS

 Example: there is no unreachable page (from the ‘main’
page):

™x (main →∗ x)
™x ∃u (main(u) →∗ x)

Rewriting model and logics
 Example: “there is no ‘disconnected’ page”:

™y ∃x ((x ≠ y) ∧ ((x → y) ∨ (y → x)))

where ‘=‘ is the predicate R(x,y) associated to the
empty TRS

 Example: “there is no unreachable page (from the ‘main’
page)”:

™x (main →∗ x)
™x ∃u (main(u) →∗ x)

™x (main(u1) →∗ x)∨…∨ (main(un) →∗ x))

Rewriting model: improvements
 Example: “no ‘unsafe’ access is possible”:

™p ™q ™u ™v ((p(u) → ∗ q(v)) ⇒ (u=v))

 This is a higher-order sentence which does not
belong to any rewriting theory!

Rewriting model: improvements
 This can be solved by introducing a new binary

symbol to put together web pages and users as
constant symbols: e.g., browse(p,u)

 Problem: no decidability results are available!!

™p ™q ™u ™v ((browse(p,u) → ∗ browse(q,v)) ⇒ (u=v))

Rewriting model: in practice
 Rewriting-based specification languages like Maude are

well-suited to express dynamic models of Web sites

 In Maude a small query language is available (see the
proceedings for some examples)

 Some existential queries are even possible on the basis of
traversing the (finite) state space by using a breadth-first
search strategy

Rewriting model: network protocols
 The NRL Protocol Analyzer (NPA) is a well-known tool

for the formal specification and analysis of cryptographic
protocols

 For the first time a precise formal specification of its
grammar-based techniques for invariant generation, one
of the main features of the NPA inference system, has been
given

 This formal specification is given within the well-known
framework of the rewriting logic

 Conclusions / future work

Conclusions

 We are approaching the use of software
tools with more complex systems (e.g.,
interpreters of programming languages)

 The combination of different tools with
different expertise domain is required here

Conclusions

 Interoperability issues should be
systematically considered when developing
termination tools

 Rewriting-based logics are useful to model
and analyze network systems and Web sites

Future work

 Which are the appropriate (fragments of)
logics which are useful to specify (and reason
about) the dynamic behavior of Web sites?

 How types, strategies, conditions, etc. can
help to get a more expressive model or to
improve its power from a logic point of view
(e.g., recovering decidability of the theories)

Salvador Lucas
Dep. de Sistemas Informáticos y Computación

Universidad Politécnica de Valencia
slucas@dsic.upv.es

Connecting declarative software tools

