
Model Checking with mCRL2
The mCRL2 language and toolset [2] allows users to model
and automatically verify the behavior of distributed
systems. Systems can be modeled using process algebra
enriched with data types. Automated verification is
supported by checking temporal properties of all states of
the model.
Based on the source code we of the I2C bus driver we
created an mCRL2 model consisting of a translation of the
ioctl handler and the interrupt service routine and the
environment in which these functions occur. For the
verification of our model we focused on violation of mutual
exclusion of shared memory accesses. Exploration of the
complete state space revealed two types of violations:
more than 100 concurrent shared memory accesses and
one concurrent access to low level functions.

Figure 2: Structure of the mCRL2 verification model

Advanced Static Analysis with UNO
We applied UNO [3] to fins the same violations as reported
by the mCRL2 analysis. The mutual exclusion properties
needed to be encoded as property automata (Fig. 3). A
property automaton monitors the traversal of the control
flow graphs of the C functions. UNO produces an error trace
in case a violation of the property is found. UNO was able to
produce all possible defects that were discovered with
mCRL2: the errors of accessing shared memory without
previously disabling interrupts and unsafe function calls.

Conclusions
With both model checking and static analysis we found
several non-trivial possible defects that were later
confirmed by the developers. Furthermore, we provided a
verified fix for the found defects. Although in general model
checking is a more powerful technique than static analysis,
in this case study it seems that they are evenly matched.
This is probably due to the low number of parallel
components in the checked properties.

References:
[1] D. Bosnacki, A. Mathijssen, Y.S. Usenko, Behavioural analysis of an I2C
Linux Driver, CS-Report 09/09, Technische Universiteit Eindhoven. 2009
[2] J.F. Groote et al., Analysis of distributed systems in mCRL2, in Proc. Alg.
for Par. and Distr. Processing, pp. 98-128. Chapman and Hall, 2008.
[3]G.J. Holzmann, Static source code checking for user defined properties,
in Integrated Design & Proc. Tech., IDPT, 2002.

Introduction
Formal methods for the analysis of system behaviour offer
solutions to problems with concurrency, such as race
conditions and deadlocks. In this work we employ two
such methods that are presently most applied by industry:
model checking and static analysis. We use these
techniques to analyse the behaviour of a Linux driver for
an I2C (Inter-Integrated Circuit) device. We present some
experiences and results that we carried out within the
Laboratory for Quality Software (LaQuSo), at the Computer
Science Department of the Eindhoven University of
Technology. The goal of the project was to analyse the
feasibility of the techniques used within LaQuSo, like
model checking and advanced static analysis, for
industrial scale software

Figure 1: High level structure of the I2C Linux bus driver

The I2C Linux Driver
In general, the Linux 2.6 kernel contains an I2C driver stack
that is split up into three layers: chip driver, core module
and bus driver, he core module is part of the Linux kernel
as are a number of chip drivers and bus drivers. In our
case, an I2C bus driver was supplied by the client. The
code mainly performs two tasks: handle ioctl calls from
user space, offered via the core module, and handle
interrupts from the hardware. To find race conditions we
focused on the interaction between the two parallel
components of the driver: the ioctl handler and the
interrupt service routine (ISR) (see Fig. 1).

Figure 3: UNO monitor for erroneous shared memory access

Behavioral Analysis of an I2C Linux Driver

Dragan Bosnacki, Aad Mathijssen, Yaroslav S. Usenko
Eindhoven University of Technology

Hardware

Ioctl handler Shared memory

Hardware

Kernel space

ISR

Core module

void uno_check(void)
{
if (uno_state == 0){ //interrupt enabled
if (select(“shmem_var”, USE|DEF|REF0,NONE)) //shared memory access
error(“Shared memory reference with enabled interrupts””);

if (select(“int_disable”,FCALL, NONE)) //interrupts disabled
uno_sate = 1;

}
if uno_state == 1) {//interrupts disabled
if (select(ïnt_enable”, FCALL, NONE)) //interrupts enabled
uno_state = 0;

}
}

Kernel

Ioctl handler
Shared memory

Observer critical sections

ISR

