
Formal Development for Railway Signaling
Using Commercial Tools

Formal Verification Problem
The languages used by Simulink and Stateflow are not formally specified
and their semantics is essentially given by the simulation engine itself. This
lack of formal semantics increases the difficulty of defining an effective
formal verification strategy: how to formally verify a model whose langua-
ge is not formally defined?

Formal Verification SolutionCertification Solution

A set of modeling guidelines have been introduced by GETS in order to re-
strain the semantics of the tools and guarantee generation of readable,
structured and traceable code. The semantics restrictions are also deemed
to allow effective model analysis and formal verification.

Formal verification is provided at unit level, using a
tool developed by the Mathworks called Simulink
Design Verifier (SDV), a property proving engine based
on Prover technology, currently in its preliminary
phase for adoption within industries.
Model units are defined in the form of Stateflow state-
charts and unit specifications are expressed using the
Simulink formalism, that allows to specify assertions
using block diagrams. The tool allows the verification
of the Stateflow model against the Simulink formula.

Our solution for the certification problem consists in
two steps, namely model based testing and abstract
interpretation.
Unit testing based on requirements coverage is per-
formed on the models through the Simulink environ-
ment, and during test execution a test observer is
used to register the test-suite input data and the test
results. The registered test-suite is executed on the
auto-coded unit and results are automatically com-
pared.
Finally, the unit is analyzed through the Polyspace
tool, based on abstract interpretation, in order to in-
crease the confidence on the correctness (in particu-
lar, absence of runtime errors) of the generated code.

Given a set of system-level functional requirements, these can
be partitioned into separate sets of unit requirements and then formalized
into Stateflow models according to the GETS guidelines. Each model repre-
sents an independently verifiable system component.

Modeling Guidelines

Property ProvingModel Based Testing and
Abstract Interpretation

NOT RECOMMENDED
[a && b]

[a && c]

state B

state A

state C

RECOMMENDED

Code generators provided for the tool-suite are not certified for railway sof-
tware development, this complicating their adoption in this domain. In this
case a question has to be raised concerning the reliability of the auto-
coding tools: how to ensure that the behavior of the generated code is con-
sistent with the corresponding model behavior?

Certification Problem
The rapid and wide-spread diffusion of model based development practices
in the safety-critical industry have seen the clear establishment of the
Simulink/Stateflow platform as a de-facto standard for modeling and code
generation. This success is mainly due to the several capabilities of the
tool-suite and to the effective and engineering-friendly modeling langua-
ges. The large number of built-in blocks provided by Simulink, together with
the notable capabilities of Stateflow statecharts, allows fast development of
prototype applications which can be simulated and directly analyzed with
the support of the Matlab environment.
The General Electric Transportation Systems (GETS) railway signaling divi-
sion of Florence, inside a long-term effort of introducing formal methods to
enforce product safety, decided to adopt the Simulink/Stateflow tool-suite
to exploit model based development and code generation within its own de-
velopment process.

Background e

Case Study
The approach has been experimented during the development of the software for an Automatic Train
Protection system called SSC/SCMT Baseline 3. The original natural language specification have been
formally represented through a Stateflow specification of 21 Stateflow charts.

The generated code consisted of 150K LOC, and both the model based testing (327 test scenario cove-
ring 100% of the functional requirements) and abstract interpretation steps have been performed
during the verification process. Though the effort of manually defining the test scenarios for the
models can be compared with the one of defining tests for hand-crafted code, the abstract interpre-
tation step, basically automatic, ensures a confidence on the absence of runtime errors that can not
be achieved with traditional testing techniques.

Property proving is still at its experimental phase and it has been provided for three core charts of the
system. The major effort in this case was the proper definition of the Simulink formulas, that took
about the same time required for defining the Stateflow charts to be verified. Nevertheless these for-
mulas normally have a reusable structure, and we are currently investigating which are the unde-
lying patterns that can be used for their definition.

[a]

[b]

[c]

state B

state A

state C

state A

sub-state
A1

sub-state
A2 state B

NOT RECOMMENDED

state B
sub-state

A1
sub-state

A2

RECOMMENDED

state A

Stateflow

Stateflow
Model

Simulink
Test Suite

Test
Observer

Simulink Stateflow
Coder

Test
Integrator

Generated
Test Suite

Generated
Code

PolyspaceSelf-Testing
Unit

Alessio Ferrari, Alessandro Fantechi
Stefano Bacherini and Niccolò Zingoni

General Electric Transportation Systems, Firenze, Italy
Università di Firenze (DSI), Firenze, Italy

Stateflow

Stateflow
Model

Simulink
Formula

SDV

