
Integrated Formal Approach for Qualified Critical Code
Generator

N. a (nizerrou@N7.fr), M. Pantel1, X. Thirioux1 and O. Ssi Yan
Kai2

Institut de Recherche en Informatique de Toulouse, Institut National Polythechnique de Toulouse, France

Continental Autotmotive , Toulouse, France

 Integrated Formal Approach
 for a Qualified Critical Code Generator

N. Izerrouken1,2(nizerrou@N7.fr), M. Pantel2, X. Thirioux2 and O. Ssi Yan Kai1
1Continental Automotive, Innovation Center, Toulouse, France

2 Institut de Recherche en Informatique de Toulouse, Institut National Polytechnique de Toulouse, France

Problem Statement Integration of Formal Methods

Context: GeneAuto

Development Process

Main Results

● Formal verification of:
● Input model
● Generated source code
● Compliance generated code/model

● Complex analysis of verification failures
=> Verification of the Code generator itself

● GeneAuto : Automatic code Generator for critical embedded systems dedicated to
transportation domain.
● GeneAuto is split into elementary tools

● Easier to specify, verify and validate
● Several implementations can be provided

Main goals
● Reduction of industrial unit testing costs
● Qualification of GeneAuto using DO178B/ED-12B recommendations
● Pragmatic integration of formal technologies into develpment tools for safety critical
systems

Choices
● Specification, verification and validation using the Coq proof assistant
● Integration of the formal elementary tools to the GeneAuto tool chain
● Qualification of the development process of GeneAuto containing classical Java and
formal elementary tools (Coq/OCaml)

For each elementary tool
● Translation of user/tool requirements from natural to formal language
(complex task, human proof reading)
● Formal specification of the tool requirements and design
● Formal verification of specified properties (correctness of Block Sequencer,Typer, etc.)

Definition of User Requirements

Java Development

Qualification of GeneAuto Validation of User Needs

Development of Case Study Formal Methods Research

Case studies

Requirements

Case
studies

Results

Requirements

Translated
Requirements

Modules

Soft. quality requirementsSoft. tool set

Example of translation of requirements
● From natural language

● To Coq language

Qualification process
● Qualification of the development process of Java components

● Detailed documented development process using DO178B/ED-12B
● Validation process done through testing and cross-reading

● Qualification of the formal elementary tools
● Coq proof checker partially verified
● Coq extractor generates Ocaml code structurally similar to Coq specification
● Removal of unit & integration test phase from the formally developed elemen-

tary tools in DO178B/ED-12B

● Each elementary tool
● is developed and verified in Coq;
● is verified and extracted in OCaml:

extracted code preserves the
properties proved in Coq.

● Java front-end
● reads input XML models;
● executes extracted Ocaml

Wrapper;
● writes output XML models.

● Ocaml Wrapper
● reads input models;
● executes the extracted OCaml

code (sequencer, typer, etc.);
● writes the output result (execution

order, types, etc.).

● Mixing classical and formal development
● Development of correct-by-construction components

● ~4500 lines of Coq code and more than 130 proved theorems for the Block
Sequencer

● Block Sequencer case study successfully integrated into GeneAuto
● Application to Real-size systems from transportation domains

● Runtime cost is comparable with similar tools (eg. Mathworks RTW)
● Qualification of the development process

● Classical development
● Formal components (Block Sequencer case study)

● Code generators reduce development time and
verification costs (compliance of source code
w.r.t. model-based design)

● Industry is aware that critical systems require
more rigorous verification than classical testing
=> formal specification & verifiaction

Qualification Concerns

GeneAuto workflow

Source code

Model

Model

Code
Generator

Source Code

Are they
equivalent?

Verification

 Users Library

C code

Simulink/

Stateflow

models Simulink

Stateflow

 importer

Preprocessor

Typer

C code
Printer

GA System model
GA Code ModelGA System model

Block Sequencer

Optimizer
GA Code Model

GeneAuto Default LibraryScicos

models

 Ada code
 Printer

Ada code

Code Model
Generator

 Ocaml

Code

O
cam

l W
rap

p
er

XML
Inputs

Inputs

 Outputs Logs

XML
Outputs

Java F
ro

n
t-en

d

Elementary
tool

Theorem Prover
Coq

Design
& proof

Automatic
Extraction

Formal
Specification

mailto:nizerrou@N7.fr
mailto:nizerrou@N7.fr

	Slide 1

