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Problem Statement Integration of Formal Methods

Context: GeneAuto

Development Process

Main Results

● Formal verification of:
● Input model
● Generated source code
● Compliance generated code/model

● Complex analysis of verification failures   
=> Verification of the Code generator itself

● GeneAuto : Automatic code Generator for critical embedded systems dedicated to 
transportation domain.
● GeneAuto is split into elementary tools 

● Easier to specify, verify and validate
● Several implementations can be provided

Main goals
● Reduction of industrial unit testing costs 
● Qualification of GeneAuto using DO178B/ED-12B recommendations
● Pragmatic integration of formal technologies into  develpment tools for safety critical 
systems

Choices
● Specification, verification and validation using the Coq proof assistant
● Integration of the formal elementary tools to the GeneAuto tool chain
● Qualification of the development process of GeneAuto containing classical Java and 
formal elementary tools (Coq/OCaml)

For each elementary tool
● Translation of user/tool requirements from natural to formal language 
(complex task, human proof reading)
● Formal specification of the tool requirements and design
● Formal verification of specified properties (correctness of Block Sequencer,Typer, etc.)
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Example of translation of requirements
● From natural language

 
● To Coq language

Qualification process
● Qualification of the development process of Java components

● Detailed documented development process using DO178B/ED-12B 
● Validation process done through testing and cross-reading

● Qualification of the formal elementary tools
● Coq proof checker partially verified
● Coq extractor generates Ocaml code structurally similar to Coq specification
● Removal of unit & integration test phase from the formally developed elemen-

tary tools in DO178B/ED-12B

● Each elementary tool
● is developed  and verified in Coq;
● is verified and extracted in OCaml: 

extracted code preserves the 
properties proved in Coq.

● Java front-end 
● reads input XML models;
● executes extracted Ocaml 

Wrapper;
● writes output XML models.

● Ocaml Wrapper
● reads input models;
● executes the extracted OCaml 

code (sequencer, typer, etc.);
● writes the output result (execution 

order, types, etc.).

● Mixing classical and formal development
● Development of correct-by-construction components 

● ~4500 lines of Coq code and more than 130 proved theorems for the Block 
Sequencer

● Block Sequencer case study successfully integrated into GeneAuto 
● Application to Real-size systems from transportation domains

● Runtime cost is comparable with similar tools (eg. Mathworks RTW)
● Qualification of the development process 

● Classical development 
● Formal components (Block Sequencer case study)

● Code generators reduce development time and 
verification costs (compliance of source code 
w.r.t. model-based design)

● Industry is aware that critical systems require 
more rigorous verification than classical testing 
=> formal specification & verifiaction

Qualification Concerns
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