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Preface

This report contains the informal workshop proceedings of the 18th International Workshop on
Functional and (Constraint) Logic Programming (WFLP’09), held at Braśılia, Brazil, during June
28, 2009. WFLP’09 is part of the Federated Conference on Rewriting, Deduction, and Programming
(RDP’09). Previous meetings are: WFLP 2008 (Siena, Italy), WFLP 2007 (Paris, France), WFLP
2006 (Madrid, Spain), WCFLP 2005 (Tallinn, Estonia), WFLP 2004 (Aachen, Germany), WFLP
2003 (Valencia, Spain), WFLP 2002 (Grado, Italy), WFLP 2001 (Kiel, Germany), WFLP 2000
(Benicassim, Spain), WFLP’99 (Grenoble, France), WFLP’98 (Bad Honnef, Germany), WFLP’97
(Schwarzenberg, Germany), WFLP’96 (Marburg, Germany), WFLP’95 (Schwarzenberg, Germany),
WFLP’94 (Schwarzenberg, Germany), WFLP’93 (Rattenberg, Germany), and WFLP’92 (Karl-
sruhe, Germany).

The aim of the WFLP workshop is to bring together researchers interested in functional pro-
gramming, (constraint) logic programming, as well as the integration of the two paradigms. It
promotes the cross-fertilizing exchange of ideas and experiences among researchers and students
from the different communities interested in the foundations, applications and combinations of
high-level, declarative programming languages and related areas.

The Program Committee of WFLP’09 collected three reviews for each paper and held an
electronic discussion during May 2009. The Program Committee selected 12 regular papers for
presentation at the workshop. In addition to the selected papers, the scientific program includes
two invited lectures by Claude Kirchner from the Centre de Recherche INRIA Bordeaux - Sud-
Ouest, France and Roberto Ierusalimschy from the Departamento de Informática, PUC-Rio, Brazil.
I would like to thank them for having accepted our invitation.

I would also like to thank all the members of the Program Committee and all the referees for
their careful work in the review and selection process. Many thanks to all authors who submitted
papers and to all conference participants. We gratefully acknowledge the Departamento de Sistemas
Informáticos y Computación of the Universidad Politécnica de Valencia, who has supported this
event. Finally, we express our gratitude to all members of the local organization of the Federated
Conference on Rewriting, Deduction, and Programming (RDP’09), whose work has made the
workshop possible.

Braśılia, Brazil, Santiago Escobar
June 2009 WFLP’09 Chair
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Strategic Deduction

Claude Kirchner, Florent Kirchner, and Hélène Kirchner

INRIA
France

Abstract. In previous works, we have introduced the notion of abstract
strategies for abstract reduction systems and de�ned adequate properties
of termination, con�uence and normalization under strategies. Thanks to
this abstract strategy concept, we draw a parallel between strategies for
computation and strategies for deduction. Then, deduction rules can be
viewed as rewrite rules, a deduction step as a rewriting step and a proof
construction step as a narrowing step for an adequate abstract reduction
system, possibly in constraint handling settings.

The fundamental complementarity between deduction and computation, as
emphasized in particular in deduction modulo [9], gives now rise to a completely
new generation of proof assistants where customized deductions are performed
modulo appropriate and user de�nable computations [5,6]. This has in partic-
ular the advantage to allow for a uniform implementation of higher-order and
�rst-order logics [8,7] making possible the safe use of existing dedicated proof
environments [16,10,4]. This generalizes classical approaches used in �rst-order
theorem proving [17], as well as higher-order ones like PVS [18], TPS [1,2],
Omega [3,19], Coq [11] or Mizar [20], to mention just a few.

Proof search in these environments goes back to the late sixties and then
throught the design of ML as the metalanguage of LCF. It requires to guide
proof discovery using so called strategies, tactics, tacticals or proof plans, terms
widely used in arti�cial intelligence, in automated or interactive reasoning, in
semantics of programming languages�as well as in every day life.

The collusion of deduction and computation in next-generation proof assis-
tants has inspired our recent attempt at providing an uniform (domain-agnostic,
if you will) de�nition for strategies, starting from a rule-based view point [13].

For term rewriting, reduction strategies study which expressions should be
selected for evaluation and which rules should be applied. These choices are usu-
aly made to increase the e�ciency of evaluation but may a�ect fundamental
properties of computations such as con�uence or (non-)termination. Program-
ming languages like TOM1, ELAN, Maude and Stratego allow for the explicit
de�nition of the evaluation strategy, whereas languages like Clean, Curry, and
Haskell allow for its modi�cation.

In theorem proving environments, including automated theorem provers,
proof checkers, and logical frameworks, strategies (also called tacticals in some

1 http://tom.loria.fr
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contexts) are used for proof search and proof planning, restriction of search
spaces, speci�cation of control components, combination of di�erent proof tech-
niques and computation paradigms, or meta-level programming in reasoning
systems.

In this talk, we will recall the theoretical foundations of strategies and the
convergence of two points of view, namely rewriting-based computations on one
hand, rule-based deduction and proof-search on the other hand.

While strategies for computation [12] essentially rely on the largely explored
and well-known domain of term reduction by rewriting or narrowing, strategies
for deduction require to introduce an original point of view: we de�ne deduction
rules as rewrite rules, a deduction step as a rewriting step, a deduction system
as an abstract reduction system. Proof construction in this context becomes nar-
rowing derivation. Computation, deduction and proof search are then captured
by the foundational concept of abstract strategy.

Time permitting, we will show how deduction and proof search under con-
straints could be investigated this way, especially using antipatterns [15,14].
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Programming with Multiple Paradigms in Lua

Roberto Ierusalimschy

PUC-Rio

1 Introduction

Lua is an embeddable scripting language used in many industrial applications
(e.g., Adobe’s Photoshop Lightroom), with an emphasis on embedded systems
and games. It is embedded in devices ranging from cameras (Canon) to keyboards
(Logitech G15) to network security appliances (Cisco ASA). In 2003 it was voted
the most popular language for scripting games by a poll by the site Gamedev1.
In 2006 it was called a “de facto standard for game scripting” [1]. Lua is also
part of the Brazilian standard middleware for digital TV [2].

Two key points in the design of the language that led to those uses are
flexibility and small size. To achieve these two conflicting goals, the design em-
phasizes the use of few but powerful mechanisms, such as first-class functions,
associative arrays, and reflexive capabilities [3, 4]. So, although Lua is primar-
ily a procedural language, it can be, and frequently is, used in several different
programming paradigms, such as functional, object-oriented, goal-oriented, and
concurrent programming, and also for data description.

In this presentation we will discuss what mechanisms Lua features to achieve
its flexibility and how programmers use them for different paradigms.

2 Functional Programming

Lua offers first-class functions with lexical scoping. For instance, the following
code is valid Lua code:

(function (a,b) print(a+b) end)(10, 20)

It creates an anonymous function that prints the sum of its two parameters and
applies that function to arguments 10 and 20.

All functions in Lua are anonymous dynamic values, created at run time.
Lua offers a quite conventional syntax for creating functions, like this:

function fact (n)
if n <= 1 then return 1
else return n * fact(n - 1)
end

end

1 http://www.gamedev.net/gdpolls/viewpoll.asp?ID=163
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However, this syntax is simply sugar for an assignment:

fact = function (n)
...

end

(This is quite similar to a define in Scheme [5].)
Lua does not offer a letrec primitive. Instead, it relies on assignment to close

a recursive reference. For instance, a (strict) recursive fixed-point operator can
be defined like this:

local Y
Y = function (f)

return function (x)
return f(Y(f))(x)

end
end

Or, using some sugar, like this:

local function Y (f)
return function (x)

return f(Y(f))(x)
end

end

This second fragment expands to the first one. In both cases, the Y in the function
body is bounded to the previously declared local variable.

Of course, we can also define a strict non-recursive fixed-point combinator in
Lua:

Y = function (le)
local a = function (f)
return le(function (x) return f(f)(x) end)

end
return a(a)

end

Despite being a procedural language, Lua frequently uses function values;
several functions in the standard Lua library are higher-order. For instance,
the sort function accepts a comparison function as argument. In its pattern-
matching functions, text substitution accepts a replacement function that re-
ceives the original text matching the pattern and returns its replacement. The
standard library also offers some traversal functions, which receive a function to
be applied to every element of a collection.

Most programming techniques for (strict) functional programming also work
without modifications in Lua. As an example, LuaSocket, the standard library for
network connection in Lua, uses functions to allow easy composition of different
functionalities when reading from and writing to sockets [6].
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Most implementations of first-class functions with lexical scoping neglect
assignment. Pure functional languages do not have assignment. In ML assignable
cells have no names, so the problem does not arise. Some Scheme compilers
(e.g., Orbit [7]) actually implement assignable variables as ML cells (assignment
conversions), on the correct ground that they are not used often.

None of those implementations fit Lua, a procedural language where assign-
ment is the norm. Lua has added requirements that its compiler must be fast,
to handle huge data-description “programs”, and small. So, Lua uses a simple,
one-pass compiler with no intermediate representations which cannot perform
even escape analysis.

Due to these technical restrictions, previous versions of Lua offered a re-
stricted form of lexical scoping where a nested function could access the value of
an outer variable, but could not assign to such variable. Lua version 5, released
in 2003, came with a novel technique for implementing closures that satisfies the
following requirements [8]:

– It does not impact the performance of code that does not use non-local
variables.

– It has an acceptable performance for imperative programs, where side effects
(assignment) are the norm.

– It correctly handles sharing, where more than one closure modifies a non-
local variable.

– It is compatible with the standard execution model for procedural languages,
where variables live in activation records allocated in an array-based stack.

– It is amenable to a one-pass compiler that generates code on the fly, without
intermediate representations.

3 Object-Oriented Programming

Lua has only one data-structure mechanism, the table. Tables are first-class,
dynamically created associative arrays.

Tables plus first-class functions already give Lua partial support for objects.
An object may be represented by a table: instance variables are regular table
fields and methods are table fields containing functions.

One missing ingredient is how to connect method calls with their respective
objects. If obj is a table with a method foo and we call obj.foo(), foo will
have no reference to obj. We could solve this problem by making foo a closure
with an internal reference to obj, but that is expensive, as each object would
need its own closure for each of its methods.

A better mechanism would be to pass the receiver as a hidden argument to
the method, as most object-oriented languages do. Lua supports this mechanism
with a new syntactic sugar, the colon operator : the syntax orb:foo() is sugar
for orb.foo(orb), so that the receiver is passed as an extra argument to the
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method. There is a similar sugar for method definitions. The syntax

function obj:foo (...) ... end

is sugar for

obj.foo = function (self, ...) ... end

That is, the colon adds an extra parameter to the function, with the fixed name
self. The function body then may access instance variables as regular fields of
table self.

To implement classes and inheritance, Lua uses delegation [9, 10]. Delega-
tion in Lua is very simple and is not directly connected with object-oriented
programming; it is a concept that applies to any table. Any table may have a
designated “parent” table. Whenever Lua fails to find a field in a table, it tries
to find that field in the parent table. In other words, Lua delegates field accesses
instead of method calls.

Let us see how this works. Let us assume an object obj and a call obj:foo().
This call actually means obj.foo(obj), so Lua first looks for the key foo in table
obj. If obj has such field, the call proceeds as before. Otherwise, Lua looks for
that key in the parent of obj. (If the parent object has a parent, this query may
trigger another query in the parent’s parent and so on.) Once it found a value
for that key, Lua calls it with the original object obj as the first argument, so
that obj becomes the value of the parameter self inside the method’s body.

For more advanced uses, a program may set a function as the “parent” of
a table. In that case, whenever Lua cannot find a key in the table it calls the
parent function to do the query. This mechanism allows several useful patterns,
such as multiple inheritance and inter-language inheritance (where a Lua object
may delegate to a C object, for instance).

4 Goal-Oriented Programming

Goal-oriented programming involves solving a goal that is either a primitive
goal or a disjunction of alternative goals. These alternative goals may be, in
turn, conjunctions of subgoals that must be satisfied in succession, each of them
giving a partial outcome to the final result. Two typical examples of goal-oriented
programming are pattern matching [11] and Prolog-like queries [12].

In pattern-matching problems, the primitive goal is the matching of string
literals, disjunctions are alternative patterns, and conjunctions represent se-
quences. In Prolog, the unification process is an example of a primitive goal,
a relation constitutes a disjunction, and rules are conjunctions. In those con-
texts, we may implement a problem solver using a backtracking mechanism that
successively tries each alternative until it finds an adequate result.

Although Lua does not offer any specific mechanism for this kind of prob-
lem solving, we can use Lua coroutines [13] for the task. A well-known model
for Prolog-style backtracking is the two-continuation model [14, 15], which needs
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-- matching any character (primitive goal)

function any (S, pos)

if pos < string.len(S) then coroutine.yield(pos + 1) end

end

-- matching a string literal (primitive goal)

function lit (str)

local len = string.len(str)

return function (S, pos)

if string.sub(S, pos, pos+len-1) == str then

coroutine.yield(pos+len)

end

end

end

-- alternative patterns (disjunction)

function alt (patt1, patt2)

return function (S, pos)

patt1(S, pos); patt2(S, pos)

end

end

-- sequence of sub-patterns (conjunction)

function seq (patt1, patt2)

return function (S, pos)

local btpoint = coroutine.wrap(function() patt1(S, pos) end)

for npos in btpoint do patt2(S, npos) end

end

end

Fig. 1. A simple pattern-matching library.

multi-shot continuations. However, it is not difficult to adapt the model to corou-
tines that are equivalent to one-shot continuations [16, 17]. The important point
is that the coroutine model keeps the principle of compositionality for the re-
sulting system, as we will see in the following example.

Figure 1 shows a simple implementation of a pattern-matching library, taken
from [17]. Each pattern is represented by a function that receives the subject
plus the current position and yields different final positions.

Function any is a primitive pattern that matches any character. Function lit
builds a primitive pattern that matches a literal string. Its resulting function only
checks whether the substring from the subject starting at the current position
is equal to the literal pattern; if so it yields the next position, otherwise it ends
without yielding any option.

Function alt builds an alternative of two patterns: it simply calls the first
one and then the second one. Each will yield its possible matchings.
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Finally, function seq builds a sequence of two patterns. It runs the first one
inside a new coroutine to collect its possible results and runs the second pattern
for each of these results.

The next fragment shows a simple use:

-- subject
s = "abaabcda"
-- pattern: (.|ab)..
p = seq(alt(any, lit("ab")), seq(any, any))
seq(p, print)(s, 1)
-- results
--> abaabcda 4
--> abaabcda 5

It “sequences” the pattern with the print function, which prints its arguments
(the subject plus the current position after matching p), and then calls the
resulting pattern with the subject and the initial position (1).

5 Concurrent Programming

Lua avoids the problems of imperative programming with multithreading by
cutting either preemption or shared memory.

Lua uses coroutines to achieve multithreading without preemption. A stackful
coroutine [17] is essentially a thread; it is easy to write a simple scheduler with a
few lines of code to complete the system [3]. This combination of coroutines with
a scheduler results in collaborative multithreading, where each thread should
explicitly yield periodically. This kind of concurrency seems particularly apt for
simulation systems and games.2

Coroutines offer a very light form of concurrency. In a regular PC, a program
may create tens of thousands of coroutines without difficulties. Resuming or
yielding a coroutine is slightly more expensive than a function call. Games, for
instance, may easily dedicate a coroutine for each relevant object in the game.

Lua may also achieve multithreading by cutting shared memory. In this case,
a program creates several independent Lua states that behave like Unix pro-
cesses. Each state has its own logical memory space with independent garbage
collection. All communication is done through message passing. Messages may
contain only primitive values, such as numbers or strings, because references (ad-
dresses) have no meaning across different states. A main advantage of multiple
states is the ability to benefit from multi-core machines and true concurrency.
Processes do not interfere with each other unless they explicitly request commu-
nication.

Lua already offers multiple states: Lua is an embedded language, designed to
be used inside other applications. Therefore, it keeps all its state in dynamically-
allocated structures, so that it does not interfere with other data from the ap-
plication. However, the creation of new states can be done only in C and the
2 Simula offered coroutines for this reason [18].
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dan = name{first = "Daniel", last = "Friedman"}

mitch = name{last = "Wand",

first = "Mitchell",

middle = "P."}

chris = name{first = "Christopher", last = "Haynes"}

book{

author = {dan, mitch, chris},

title = "Essentials of Programming Languages",

edition = 2,

year = 2001,

publisher = "The MIT Press"

}

Fig. 2. Data description with SOL/Lua.

communication between states also needs some C code. So, multi-state con-
currency cannot be implemented in pure Lua; it needs some external support
written in C. Currently there are at least two libraries with such support: Lu-
aLanes [19], which uses tuple spaces for communication, and Luaproc [20], which
uses mailboxes.

6 Data Description

Lua was born from a data-description language, called SOL [21], a language
somewhat similar to XML in intent. Lua inherited from SOL the support for
data description, but integrated that support into its procedural semantics.

SOL was somewhat inspired in BibTeX, a tool for creating and formating
lists of bibliographic references. A main difference between SOL and BibTeX
was that SOL had the ability to declare and nest declarations. Figure 2 shows a
typical fragment, slightly adapted to meet the current syntax of Lua. SOL acted
like an XML DOM reader, reading the data file and building an internal tree
representing that data; an application then could use an API to traverse that
tree.

Lua mostly kept the original SOL syntax, with small changes. The semantics,
however, was very different. In Lua, the code in Figure 2 is an imperative pro-
gram. The syntax {first = "Daniel", ...} is a constructor : it builds a table,
or associative array, with the given keys and values. The syntax name{...} is
sugar for name({...}), that is, it builds a table and calls function name with
that table as the sole argument. The syntax {dan,mitch,chris} again builds a
table, but this time with implicit integer keys 1, 2, and 3, therefore representing
a list. A program loading such a file should previously define functions name and
book with appropriate behavior. For instance, function book could add the table
to some internal list for later treatment.

Several applications use Lua for data description. Games frequently use Lua
to describe characters and scenes. HiQLab, a tool for simulating high frequency
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resonators, uses Lua to describe finite-element meshes [22]. GUPPY uses Lua to
describe sequence annotation data from genome databases [23]. Some descrip-
tions comprise thousands of elements running for a few million lines of code.
These huge “programs” pose a heavy load on the Lua precompiler. To handle
such files efficiently, and also for simplicity, Lua uses a one-pass compiler with
no intermediate representations.

7 Final Remarks

Lua is a small and simple language, but is also quite flexible. In particular, we
have seen how it supports different paradigms, such as functional programming,
object-oriented programming, goal-oriented programming, and data description.

Lua supports those paradigms not with many specific mechanisms for each
paradigm, but with few general mechanisms, such as tables (associative arrays),
first-class functions, delegation, and coroutines. Because the mechanisms are not
specific to special paradigms, other paradigms are possible too. For instance,
AspectLua [24] uses Lua for aspect-oriented programming.

All Lua mechanisms work on top of a standard procedural semantics. This
procedural basis ensures an easy integration among those mechanisms and be-
tween them and the external world; it also makes Lua a somewhat conven-
tional language. Accordingly, most Lua programs are essentially procedural, but
many incorporate useful techniques from different paradigms. In the end, each
paradigm adds important items into a programmer toolbox.
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Abstract. In this paper, we extend the declarative method for diag-
nosing wrong computed answers in first-order lazy functional logic pro-
grams to the higher-order setting of the simply typed λ-calculus, where
programs are presented by conditional pattern rewrite systems. Our ap-
proach generalizes and combines declarative debugging techniques previ-
ously developed for less expressive declarative programming paradigms
involving applicative rewrite rules instead of λ-abstractions and higher-
order unification. Debugging starts with the observation of a wrong com-
puted answer which the user regards as incorrect w.r.t. an intended model
that provides a declarative description of the program’s semantics. De-
bugging proceeds by exploring an abridged proof tree built on a higher-
order rewriting logic with λ-abstractions that provides a purely declara-
tive view of the computation. Finally, debugging ends with the detection
of a defined function rule in the program that is incorrect w.r.t. the in-
tended model. We prove the logical correctness of the debugging method
for any sound goal solving system whose computed answers are logical
consequences of the program.

1 Introduction and Motivation

According to a well-known conception, programs in a declarative programming
language can be viewed as theories in some suitable logic, while computations
can be viewed as deductions. The Constructor-based ReWriting Logic CRWL [3, 4]
provides a suitable framework for rule-based declarative (functional and logic)
programming with non-deterministic and lazy functions with call-time choice
semantics, where programs are constructor-based Conditional Term Rewrite Sys-

tems (CTRS for short). As a concrete example, the following “Prolog-like” CTRS

fragment defines a possibly non-deterministic function loves, given by first-order
conditional rewrite rules (→) where the conditional part (formed only by equa-
tions ==) is delimited by the “⇐” symbol:

? This work has been partially supported by the Spanish National Projects
TIN2008-06622-C03-01, TIN2005-09027-C03-03, S-0505/TIC/0407, and UCM-
BSCH-GR58/08-910502.



loves (john, mary) → true
loves (mary, Y ) → true ⇐ likes (Y, wine) == false
loves (X, mary) → true ⇐ loves (mary,X) == true

Since the classical notion of rewriting is not suitable in this setting, a new no-
tion of rewriting is adopted as the basis of proof calculi for joinability (==)
and reduction (→) statements. The most important result is the existence of
sound and complete lazy narrowing calculi [3, 4, 11] for solving goals in first-
order CRWL-theories presented by CTRS-programs. Moreover, a higher-order
extension of CRWL is presented in [2] but using only applicative rewrite rules
instead of λ-abstractions and higher-order unification.

In this paper, we use a higher-order rewriting logic (called GHRC) for declara-
tive programming with higher-order functions and λ-terms as data structures to
obtain more of the expressivity of higher-order functional programming. More
precisely, we adopt the framework of the simply typed λ-calculus in which terms
are in βη-normal form and theories are presented by Conditional Pattern Rewrite

Systems (CPRS for short). As a simple example of such higher-order programs,
we consider the following conditional pattern rewrite system (adapted from [5])
defining a higher-order function diff , where diff (f, x) computes the differential
of a function f at some point x:

diff (λy. y, x) → 1
diff (λy. sin(f(y)), x) → cos(f(x)) ∗ diff (λy. f(y), x) ⇐ −π/2 ≤ f(x) ≤ π/2
diff (λy. ln(f(y)), x) → diff (λy. f(y), x)/f(x) ⇐ f(x) 6= 0

We are interested in the logical characterization and the practical applica-
tion to debugging of the semantics of programs formalized by constructor-based
CPRSs, where the notion of lazy and possibly non-deterministic higher-order
functions and conditional equations involving λ-abstractions plays a central role.
In contrast to more traditional frameworks such as equational logic and alterna-
tive approaches such as needed rewriting [5] the higher-order rewriting logic on
lambda abstractions GHRC has the ability to characterize the intended computa-
tional behavior based on conditional higher-order narrowing for non-determinism
in a correct and efficient way [3, 4, 11, 13].

A frequent claim about declarative programming languages is that the task of
reasoning about programs (as e.g., CTRSs or CPRSs) is easier than in other pro-
gramming paradigms because of the existence of an underlying logic providing
more or less natural logical methods for that purpose. In the case of higher-order
functional logic programming, the proof calculus offered by our GHRC approach
gives an attractive and mathematically well-founded basis for reasoning on the
semantics of programs. In particular, GHRC provides firm theoretical founda-
tions for the declarative debugging of functional logic programs with lambda
abstractions, following the classical declarative debugging approach proposed in
[10]. In order to illustrate the main features of this diagnosis technique and to
motivate the approach presented in this work we consider a simple debugging
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Fig. 1. Computation tree for declarative debugging involving lambda abstractions

example. The following higher-order functional logic program involving lambda
abstractions is an erroneous fragment of the previous conditional pattern rewrite
system to compute the differential of a function:

diff (λy. y, x) → x
diff (λy. sin(f(y)), x) → sin(f(x)) ∗ diff (λy. f(y), x) ⇐ −π/2 ≤ f(x) ≤ π/2

The debugging technique starts with the observation of a solution computed
from a goal and a CPRS by means of a suitable goal solving system (see,
e.g., [5, 13]). For instance, we consider a goal to compute appropriate functions
λx, y. F (x, y) and λx.D(x) for which the differential of λy. sin (F (x, y)) at some
point x ∈ [−π/2, π/2] satisfies λx. diff (λy. sin (F (x, y)), x) == λx.D(x). We ob-
tain a substitution to represent the solution {F 7→ λx, y. y, D 7→ λx. sin (x) ∗ x}
under the constraint −π/2 ≤ x ≤ π/2. The user regards this solution as incor-
rect (because the user really expects as solution {F 7→ λx, y. y, D 7→ λx. cos (x)})
according to their own intended model of the declarative description of the pro-
gram’s semantics.

Then, debugging proceeds by exploring a suitable computation tree, obtained
as a proof tree in the logical calculus offered by the higher-order rewriting logic
GHRC for the witness that the obtained computed answer is a solution of the ini-
tial goal. This proof tree provides a purely declarative view of the computation,
so that the user does not need to understand the complex underlying opera-
tional mechanism based on conditional higher-order narrowing described in [5,
13]. The computation tree for our current example is graphically represented in
Fig. 1 (more on its structure and construction will be explained in Section 5).
Each node of this tree represents the computation of some observable result, de-
pending on the results of its children nodes. Declarative diagnosis explores this
proof tree looking for a so-called buggy node which computes an incorrect result
from children whose results are correct; such a node must point to an incorrect
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program fragment. The search for a buggy node can be implemented with the
help of an external oracle (usually the user with some semi-automatic support)
who has a reliable declarative knowledge of the expected program semantics.
Finally, debugging ends with the detection of a function rule in the CPRS R
that is incorrect w.r.t. the intended model I.

For instance, the computation tree depicted in Fig. 1 has a buggy node
in node B because λx. x is not the differential of the function λx. diff (λy. y, x).
Therefore, the first pattern rewrite rule diff (λy. y, x) → x is incorrect w.r.t. the
user’s intended program semantics; as we have shown previously, the first rule
should be diff (λy. y, x) → 1. After this correction, there is another buggy node
in node A because the differential of λy. sin (y) at point x is cos (x) instead of
sin (x). Indeed, the second conditional pattern rewrite rule is also incorrect w.r.t.
the user’s intended model of the program as we have previously seen. After this
new correction, no more wrong computed answers will be observed for the goal
discussed above, and the right solution {F 7→ λx, y. y, D 7→ λx. cos (x)} is then
obtained.

The paper is structured as follows. In Section 2 we introduce the basic no-
tions and notations from the λ-calculus and higher-order term rewriting which
are needed to understand the theoretical framework. In Section 3 we introduce
a higher-order conditional rewriting logic characterized by the proof system
GHRC, as a generalization of the proof system which underlies the first-order
rewriting logic CRWL. Section 4 is concerned with the model-theoretic semantics
for GHRC-programs. In Section 5 we discuss the application of GHRC to the
development of a declarative debugging technique of wrong computed answers
for functional logic programming with lambda abstractions. Finally, Section 6
summarizes some conclusions and presents a brief outline of planned future work.

2 Preliminary Notions

We assume the reader is familiar with the notions and notations pertaining to
λ-calculus and higher-order term rewriting (see, e.g., [5]). The set of types for
simply typed λ-terms is generated by a set B of base types (e.g., nat, bool) and
the function type constructor “→”. Simply typed λ-terms are generated in the
usual way from a signature F of function symbols and a countably infinite set
V of variables by successive operations of abstraction and application. We also
consider the enhanced signature F⊥ = F ∪ Bot, where Bot = {⊥b | b ∈ B}
is a set of distinguished B-typed constants. The constant ⊥b is intended to
denote an undefined value of type b. We employ ⊥ as a generic notation for
a constant from Bot. In this paper, we assume the following conventions of
notation: X, Y, Z,R, H, possibly primed or with subscripts, denote free variables;
f, f ′ denote function symbols, and a a (free or bound) variable or a constant from
F ; l, r, s, t, u, possibly primed or with subscript, denote terms; π, π′, π1, π2, . . .
denote terms of base type. We also define the arity of f ∈ F as ar(f) = n ≥ 0.
A sequence of syntactic objects o1, . . . , on, where n ≥ 0, is abbreviated by on. For
instance, the simply typed λ-term λx1. . . . λxk.(· · · (a t1) · · · tn) is abbreviated
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by λxk.a(tn). Substitutions γ ∈ Subst(F⊥,V) are finite type-preserving mappings
from variables to terms, denoted by {Xn 7→ tn}, and extend homomorphically
from terms to terms. By convention, we write ε for the identity substitution, tγ
instead of γ(t), and γγ′ for the function composition γ′ ◦ γ.

The long βη-normal form of a term, denoted by tlη
β , is the η-expanded form

of the β-normal form of t. It is well-known that s =αβη t if slη
β =α tlη

β [6].
Since βη-normal forms are always defined, we will in general assume that terms
are in long βη-normal form and are identified modulo α-conversion. For brevity,
we may write variables and constants from F in η-normal form, e.g., X instead
of λxk.X(xk). We assume that the transformation into long βη-normal form is
an implicit operation, e.g., when applying a substitution to a term. With these
conventions, every term t has a unique long βη-normal form λxk.a(tn), where
a ∈ F⊥ ∪ V and a() coincides with a. The symbol a is called the root of t and
is denoted by hd(t). We distinguish between the set T (F⊥,V) of partial terms
(terms for short) and the set T (F ,V) of total terms. T (F⊥,V) is a poset with
respect to the approximation ordering v, defined as the least partial ordering
such that:

λxk.⊥ v λxk.t t v t
s1 v t1 · · · sn v tn

λxk.a(sn) v λxk.a(tn)

We adopt the convention that the free and bound variables inside a term
are kept disjoint, and assume that bound variables with different binders have
different names. The set of free variables of a term t is denoted by FV(t). To
manipulate terms, we define:

– The set of positions in t: Pos(λxk.a(tn)) = {1i | 0 ≤ i ≤ k} ∪ {1k.j.q | 1 ≤
j ≤ n, q ∈ Pos(tj)}, where “.” denotes sequence concatenation and 1k is the
sequence of 1 repeated k times. The empty sequence is denoted by ε. Note
that, with this convention, we have 10 = ε.

– The subterm t|p of t at some position p ∈ Pos(t):

(λxk.a(tn))|p =
{

λxi+1 . . . xk.a(tn) if p = 1i with 0 ≤ i ≤ k,
ti|q if p = 1k.i.q and 1 ≤ i ≤ n.

A position p is maximal in t if t|p is of base type. The set of maximal positions
in a term t is denoted by MPos(t).

– The sequence of variables abstracted on the path to position p ∈ Pos(t):

seqbv(t, p) =

 ε if p = ε,
x.seqbv(s, q) if t = λx.s and p = 1.q,
seqbv(ti, q) if t = a(tn), 0 < i ≤ n, and p = i.q.

The set of variables abstracted on the path to position p ∈ Pos(t) is BV(t, p)
= {seqbv(t, p)}, and the set of variables with bound occurrences in t is BV(t)
=

⋃
p∈Pos(t) BV(t, p). Moreover, we also define t�p = λxk.(t|p), where xk =

seqbv(t, p).
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A pattern [9] is a term t for which all subterms t|p = X(tn), with X ∈ FV(t) and
p ∈ MPos(t), satisfy the condition that t1↓η, . . . , tn↓η is a sequence of distinct
elements of BV(t, p). Moreover, if all such subterms of t satisfy the additional
condition BV(t, p) \ {t1↓η, . . . , tn↓η} = ∅, then the pattern t is fully extended. It
is well known that unification of patterns is decidable and unitary [9]. Therefore,
for every t ∈ T (F⊥,V) and pattern π, there exists at most one matcher between
t and π, which we denote by matcher(t, π). An equation is a multiset {{s, t}},
written s== t, where s, t ∈ T (F⊥,V) are terms of the same type.

In our theoretical framework, programs are considered as a special kind of
conditional rewrite systems over fully extended linear patterns, with conditional
equations between total terms.

Definition 1 (Programs). A Conditional Pattern Rewrite System (CPRS for
short) is a finite set of conditional rewrite rules of the form f(ln) → r ⇐ C,
where

• f(ln) and r are total terms of the same base type,

• f(ln) is a fully extended linear pattern, and

• C is a (possibly empty) finite sequence of equations between total terms. In
symbols, C ≡ sm == tm, with si, ti ∈ T (F ,V) for i = 1, . . . ,m.

The term f(ln) is called the left hand side (lhs), r is the right hand side (rhs),
and C is the conditional part of the pattern rewrite rule.

Each CPRS R induces a partition of F into Fd (defined function symbols)
and Fc (data constructors):

Fd = {f ∈ F | ∃(f(ln) → r ⇐ C) ∈ R}, Fc = F \ Fd.

R is a constructor-based CPRS if each conditional pattern rewrite rule f(ln) →
r ⇐ C satisfies the additional condition that l1, . . . , ln ∈ T (Fc,V).

Finally, we also find it convenient to define the xk-lifter of a term t:

Definition 2 (Lifter). Given a term t, a subset V of FV(t), and a sequence
xk of distinct variables with no occurrences in t, the xk-lifter of t with respect
to V is the term t↑xk�V, defined recursively as follows:

t↑xk�V =


λyl.(π↑(yl,xk)�V ) if t ≡ λyl.π,

a
(
t↑xk�V
n

)
if t ≡ a(tn) with a 6∈ V,

X
(
xk, t↑xk�V

n

)
if t ≡ X(tn) with X ∈ V.

The xk-lifter of a term t is the term t↑xk = t↑xk�FV(t) . We also define tlxk =
λxk.(t↑xk). If C ≡ sm == tm is a sequence of equations then we write Clxk for

the sequence s
lxk
m == t

lxk
m .
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3 The Higher-Order Rewriting Logic GHRC

In this section we extend the constructor-based Conditional ReWriting Logic
CRWL from [3, 4], in order to deal with conditional pattern rewrite rules. In
contrast to Meseguer’s rewriting logic [8], which aims at modelling change caused
by concurrent actions at a very high abstraction level, our rewriting logic intends
to model the evaluation of λ-terms in a constructor-based language involving lazy
functions. As in [3, 4], we do not impose non-ambiguity conditions. This means
that non-deterministic functions are allowed.

For all these reasons, we want to consider a (conditional) higher-order rewri-
ting logic for declarative programming with non-strict and non-deterministic
functions with call-time choice semantics, as an extension of the first-order
rewriting logic CRWL. In order to obtain this aim, we propose this logic as the
basis of a proof calculus, called GHRC, for reduction and joinability statements
to a common value, designed as a generalization of the first-order proof system
GORC which underlies the CRWL logic. First, we need to define the suitable
notion of value that is used in our setting with λ-abstractions and higher-order
unification.

Definition 3 (Values). A value is a partial term t which has the following
property:

∀ p ∈ MPos(t), ∀ (π → r ⇐ C) ∈ R : @ matcher(t�p, π
lseqbv(t,p))

In this definition, we implicitly assume that FV(t)∩FV(π) = ∅. A total value is
a value which is a total term. A value substitution is a substitution which binds
variables to values. We write Val(F⊥,V) (resp., Val(F ,V)) for the set of values
(resp., total values), and VSubst(F⊥,V) for the set of substitutions which bind
variables to values.

For a given CPRS R we want to derive statements of the following kind:

• reduction statements: s � t, where s, t ∈ T (F⊥,V) are of the same type,
whose intended meaning is that the term s can be reduced to t, so that the
possibly partial term t approximates the denotation of s, as we will argue in
Section 4.

• equality statements: s== t, which holds iff reduction statements s � u and
t � u can be derived for some total value u ∈ Val(F ,V).

The GHRC-provability relation is defined by the proof system given in Table
1. Note that GHRC-reduction is related to the idea of approximation, as shown
by rule B. In rule J, we interpret equality (==) as joinability to a common
total value u, since we wish to specify joinability as a generalization of strict
equality, where total values in our higher-order framework play the same role
as total constructor terms in the first-order framework (see [3, 4]). Moreover,
note that in rule OR for Outermost Reduction we use program rule instances
(f(ln) → r ⇐ C)θ with θ ∈ VSubst(F⊥,V) to reflect the so-called call-time
choice for non-determinism (see the “coin example” in [3], Section 3). The other
inference rules in GHRC are easier to understand.

21



B Bottom λxk.π � λxk.⊥

MN Monotonicity
λxk.s1 � λxk.t1 · · · λxk.sn � λxk.tn

λxk.a(sn) � λxk.a(tn)

RF Reflexivity s � s

OR Outermost

Reduction

Clxkθ rlxkθ � u

λxk.s1 � l
lxk
1 θ · · ·λxk.sn � l

lxk
n θ λxk.f(l

lxk
n θ) � u

λxk.f(sn) � u

if u 6= λxk.⊥, θ ∈ VSubst(F⊥,V), and (f(ln) → r ⇐ C) ∈ R.

J Join
s � u t � u

s == t
if u ∈ Val(F ,V).

Table 1. The GHRC proof calculus.

Now, the main difference with respect to other similar proof systems is that the
rule OR has been replaced by the consecutive application of two inference steps,
AR for Argument Reduction and FA for Function Application, whose separate
specification is displayed below:

AR
λxk.s1 � l

lxk

1 θ · · · λxk.sn � l
lxk
n θ λxk.f(llxk

n θ) � u

λxk.f(sn) � u

if f ∈ Fd, u 6= λxk.⊥, and θ ∈ VSubst(F⊥,V).

FA
Clxkθ rlxkθ � u

λxk.f(llxk
n θ) � u

if (f(ln) → r ⇐ C) ∈ R and θ ∈ VSubst(F⊥,V).

Taken together, these two rules say that a call to a function f is evaluated by
computing approximated values for the arguments, and then applying a defining

rule for f . The conclusion λxk.f(llxk
n θ) � u introduces a so-called basic fact,

which is only needed for debugging purposes in declarative programming, as we
will argument in Section 5.
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Detailed examples of GHRC-derivations in the form of proof trees in this kind of
rewriting logics can be found in [3, 4, 11] and Example 1 below. We write R `ϕ
if ϕ is a provable statement from a CPRS R, PT (ϕ) for the set of proof trees
for ϕ and PT L(ϕ) for the proof trees of PT (ϕ) which end with the application
of an inference rule L ∈ {B,MN,RF,OR,J}. We also write R `L ϕ if there
exists a proof of R ` ϕ which ends with the application of rule L, and R 0L ϕ
if there is no such a proof.

Finally, to complete the presentation of the higher-order rewriting logic GHRC
in a declarative programming setting, we give a definition for the class of goals
(from a given CPRS R) and the set of solutions of a goal with which we are
going to work.

Definition 4 (Goals and Solutions).

• A goal G for a given CPRS R is a multiset {{sn == tn}} of equations between
total terms of the same type. Equations are symmetric: s== t ≡ t == s.

• γ ∈ Subst(F⊥,V) is a solution of a goal G ≡ {{sn == tn}} if γ�FV(G) ∈
VSubst(F⊥,V), and for each equation si == ti in G there exists a proof tree
Pi ∈ PT (siγ == tiγ). The proof tree Pi is called a witness that γ is a solution
of si == ti.

We write Soln(G) for the set of solutions of a goal G.

Example 1. For the particular function f → λxs. pair(sum(xs), length(xs)),
where pair is a data constructor, and

sum ([ ]) → 0 length ([ ]) → 0 fst (pair (x, y)) → x
sum ([x|xs]) → x+sum(xs) length ([x|xs]) → 1+length(xs) snd (pair(x, y)) → y

we can check that γ = {E 7→ pair(0, 0), G 7→ λu, z.pair(u + fst(z), 1 + snd(z))}
is a solution of the goal {{f([ ]) == E, λx, xs. f([x|xs]) == λx, xs.G(x, f(xs))}}.
For example, we have the following logical proof in the GHRC-calculus for R `
λx, xs. f([x|xs]) == λx, xs. pair(x + fst(f(xs)), 1 + snd(f(xs))), where R is a
CPRS containing all the pattern rewrite rules mentioned in this example.

J λx, xs. f([x|xs]) == λx, xs. pair(x + fst(f(xs)), 1 + snd(f(xs)))
OR λx, xs. f([x|xs]) � λx, xs. pair(x + sum(xs), 1 + length(xs))

RF λx, xs. [x|xs] � λx, xs. [x|xs]
MN λx, xs. pair(sum([x|xs]), length([x|xs])) �

λx, xs. pair(x + sum(xs), 1 + length(xs))
OR λx, xs. sum([x|xs]) � λx, xs. (x + sum(xs))

RF λx, xs. [x|xs] � λx, xs. [x|xs]
RF λx, xs. (x + sum(xs)) � λx, xs. (x + sum(xs))

OR λx, xs. length([x|xs]) � λxs. (1 + length(xs))
RF λx, xs. [x|xs] � λx, xs. [x|xs]
RF λxs. (1 + length(xs)) � λxs. (1 + length(xs))
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MN λs, xs. pair(x + fst(f(xs)), 1 + snd(f(xs))) �
λx, xs. pair(x+sum(xs), 1+length(xs))

MN λxs. (x + fst(f(xs))) � λx, xs. (x + sum(xs))

RF λx. x � λx. x

OR λxs. fst(f(xs)) � λxs. sum(xs)

OR λxs. f(xs) � λxs. pair(sum(xs), length(xs))

RF λxs. xs � λxs. xs

RF λxs. pair(sum(xs), length(xs)) �
λxs. pair(sum(xs), length(xs))

RF λxs. sum(xs) � λxs. sum(xs)

MN λxs. (1 + snd(f(xs))) � λxs. (1 + length(xs))

RF 1 � 1

OR λxs. snd(f(xs)) � λxs. length(xs)

OR λxs. f(xs) � λxs. pair(sum(xs), length(xs))

RF λxs. xs � λxs. xs

RF λxs. pair(sum(xs), length(xs)) �
λxs. pair(sum(xs), length(xs))

RF λxs. length(xs) � λxs. length(xs)

ut

Finally, we give a result which characterizes the semantics proofs built with
GHRC and generalizes useful known properties of CRWL-deductions for the
first-order case (see [3, 4, 11] for more details). The proof is given in [14].

Lemma 1 (Basic Semantic Property of GHRC-deductions). Let s ∈
Val(F⊥,V). If R ` s � t then t ∈ Val(F⊥,V), s w t, and R 0OR s � t.
Moreover, if t ∈ Val(F ,V) then s ≡ t.

4 Intended Models of CPRS-Programs

In this section, we briefly introduce some notions and results on the declarative
semantics of CPRS-programs which are needed for the rest of the paper. The
semantic definition of interpretation is simpler than the one in the first-order set-
ting [3, 4, 14], where a more general notion of interpretation (under the name of
Algebra) is presented. In our debugging scheme we will assume that the intended
model of a CPRS is an interpretation.

Definition 5 (Interpretations and Models).

(1) A basic fact λxk. f(tlxk
n ) � u asserts that the (possibly non-linear) partial

term u ∈ Val (F⊥,V) approximates the result of f(tn), a fully extended linear
pattern with the exact number of arguments expected by f ’s arity, and with
arguments ti ∈ Val (F⊥,V), which represent the partial approximations of
f ’s actual parameters needed to compute u as result. Moreover, f(tn) and u
are partial terms of the same base type.
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(2) An interpretation I is a set of basic facts fulfilling the following require-
ments for all f ∈ Fd with ar(f) = n, and f(tn), f(sn) fully extended linear
patterns with tn, sn ∈ Val (F⊥,V) arbitrary partial terms of the same base
type that t, s ∈ Val (F⊥,V):

• (λxk. f(tlxk
n ) � λxk.⊥) ∈ I.

• If (λxk. f(tlxk
n ) � λxk. t) ∈ I, λxk. t

lxk

i v λxk. s
lxk

i , λxk. t w λxk. s,

then also (λxk. f(slxk
n ) � λxk. s) ∈ I.

• If (λxk. f(tlxk
n ) � λxk. t) ∈ I and θ ∈ VSubst(F⊥,V), then (λxk.

f(tlxk
n θ) � λxk. tθ) ∈ I.

(3) A given reduction or equality statement ϕ is valid in the interpretation I iff
ϕ is a provable statement from I in the semantic calculus GHRCI , consisting
of the GHRC rules B, MN, RF and J together with the inference rule ORI :

ORI
λxk. s1 � t

lxk

1 · · · λxk. sn � t
lxk
n u � s

λxk. f(sn) � s

if u 6= λxk.⊥ and (λxk. f(tlxk
n ) � u) ∈ I.

In general, for every basic fact λxk. f(tlxk
n ) � u, it can be proved that it is

valid in I iff (λxk. f(tlxk
n ) � u) ∈ I.

(4) The denotation of a term t ∈ T (F⊥,V) is the set:

[[ t ]]I = { s ∈ Val (F⊥,V) | t � s is valid in I }

(5) I is a model of a given CPRS R (i.e., I |= R) iff every conditional pattern
rewrite rule (f(ln) → r ⇐ C) ∈ R is valid in I (i.e., I |= f(ln) → r ⇐ C):
For any substitution θ ∈ VSubst (F⊥,V) and C ≡ sm == tm, either
• [[ siθ ]]I ∩ [[ tiθ ]]I ∩ Val (F ,V) 6= ∅ (i.e., I satisfies Cθ) and [[ f(lnθ) ]]I

⊇ [[ rθ ]]I , or else
• I does not satisfy Cθ.

Finally, from Definition 5 we can prove that the GHRC proof calculus is seman-
tically sound.

Theorem 1 (Semantic Correctness of GHRC). If G ≡ {{sn == tn}} is a
goal for a CPRS R and γ ∈ Soln (G) then γ ∈ Soln I (G) for all model I of R
(i.e., every siγ == tiγ is valid in I).

Proof. The proof is quite standard and details can be found in [14]: It is sufficient
to assume an arbitrarily given model I |= R and to prove that any GHRC
inference rule whose premises are valid in I has a conclusion that is also valid
in I. ut
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5 Declarative Debugging of Wrong Answers in GHRC

In this section, we extend the declarative method for diagnosing wrong computed
answers in first-order lazy functional logic programs [1] to the higher-order set-
ting of functional logic programs with lambda abstractions.

Definition 6 (Symptoms and Errors). Assume that I is the intended model
for a given CPRS R, and consider a substitution γ ∈ VSubst (F ,V) produced as
a computed answer for the goal G ≡ {{sn == tn}} by a goal solving system.

(1) γ is a wrong answer w.r.t. I (serving as a symptom) iff γ /∈ Soln I(G)
(i.e., there exists si == ti in G such that siγ == tiγ is not valid in I).

(2) R is incorrect w.r.t. I iff there exists some conditional pattern rewrite rule
(f(ln) → r ⇐ C) ∈ R (manifesting an error) that is not valid in I (i.e.,
I 6|= f(ln) → r ⇐ C).

We say that a goal solving system is called GHRC-sound iff for any computed
answer γ obtained for a goal G using a CPRS R we have that γ ∈ Soln (G). The
goal solving calculus HOLNDT given in [13] is GHRC-sound. This claim can be
proved by a straightforward adaptation of the soundness theorem for HOLNDT.
Now we prove that the observation of an error symptom by any GHRC-sound
goal solving system implies the existence of some error in the CPRS-program.

Theorem 2. Assume that a GHRC-sound goal solving system computes γ ∈
Subst (F ,V) as an answer for the goal G using a given CPRS R. If γ is a wrong
answer w.r.t. the user’s intended model I then some conditional pattern rewrite
rule belonging to R is not valid in I.

Proof. Because of the GHRC-soundness of the goal solving system, we know
that γ ∈ Soln (G). Then, from Theorem 1 we obtain γ ∈ SolnJ (G) for all model
J of R. Since γ is a wrong answer w.r.t. the user’s intended model I, it must be
the case that γ /∈ Soln I(G) because of Definition 6. Therefore, we can conclude
that the user’s intended model I is not a model of R. Then, by Definition 5,
some conditional pattern rewrite rule belonging to R is not valid in I. ut

The debugging scheme proposed in [10] assumes that any terminated com-
putation can be represented as a finite tree, called computation tree. The root
of this tree corresponds to the result of the main computation, and each node
corresponds to the result of some intermediate subcomputation. According to
previous approaches in declarative debugging [1], our aim is to use proof trees
in the GHRC proof calculus as computation trees. To this purpose, the only
relevant nodes are those which correspond to the conclusion of FA steps. This
is because all the other inference rules in GHRC, being program independent,
cannot give rise to incorrect steps. The debugger works by navigating the com-
putation tree, looking for erroneous nodes. Following the terminology of [10], an
erroneous node with no erroneous children in called a buggy node.

The next theorem guarantees the logical correctness of declarative debugging
with GHRC-proof trees for functional logic programs with lambda abstractions:
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Fig. 2. Computation tree in GHRC for declarative debugging

Theorem 3 (Declarative Diagnosis of Wrong Answers). Assume a wrong
answer γ ∈ Subst (F ,V), computed for the goal G using a given CPRS R, such
that γ /∈ Soln I(G), and I is the user’s intended model of R. Consider any
GHRC-proof tree witnessing γ ∈ Soln (G) as a computation tree, which must
exist due to the existence of GHRC-sound goal solving systems. Then, declarative
debugging has the following two properties:

(a) Completeness: navigating the computation tree will find a buggy node.
(b) Soundness: every buggy node in the computation tree points to a conditional

pattern rewrite rule belonging to R which is not valid in I.

Proof. Item (a) follows immediately from the Weak Completeness of Declarative
Debugging proved in [10], provided that the search strategy used to navigate
the tree does not miss existing buggy nodes. To prove item (b), assume that
the intended model is I, and consider any given buggy node. This node must

contain a basic fact λxk. f(llxk
n θ) � u which is not valid in I and has been

inferred as the conclusion of a FA inference step using some conditional pattern
rewrite rule belonging to R, say (f(ln) → r ⇐ C) ∈ R and θ ∈ VSubst (F⊥,V).

Therefore, the children of λxk. f(llxk
n θ) � u in the GHRC-proof tree, Clxkθ

and rlxkθ � u are valid in I, because they are the children of a buggy node.
With this we can conclude that Clxkθ and rlxkθ � u are valid in I (i.e., I
satisfies Clxkθ and u ∈ [[ rlxkθ ]]I), while λxk. f(llxk

n θ) � u is not valid in I
(i.e., u /∈ [[ λxk. f(llxk

n θ) ]]I). Then [[ rlxkθ ]]I * [[ λxk. f(llxk
n θ) ]]I , which means

(see Definition 5) that the conditional pattern rewrite rule (f(ln) → r ⇐ C) ∈ R
is not valid in I. ut
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Fig. 3. Another computation tree in GHRC for declarative debugging

Example 2. Consider again the setting of Example 1, and the same goal {{λx, xs.
f([x|xs]) == λx, xs.G(x, f(xs))}}. Now suppose that we obtain the solution
{G 7→ λz. pair(snd(z), fst(z))}. We know that this is a wrong computed answer,
but we don’t know exactly why. For this reason, we decide to explore the cor-
responding computation tree (see Fig. 2). Looking at the leaves of this tree, we
find two buggy nodes (represented by double rectangles) concerning to the appli-
cation of the functions fst and snd , respectively. We note that we have written
erroneous pattern rewrite rules: fst (pair (x, y)) → y and snd (pair (x, y)) → x.
Moreover, we also learn that the application of the functions sum and length
is also erroneous, because we have another two buggy nodes, suggesting that we
have written again two incorrect pattern rewrite rules: sum ([x|xs]) → sum (xs)
and length ([x|xs]) → length (xs). We can correct all of them to obtain the CPRS
shown in Example 1, and the right computed answer for the previous goal if we
repeat the computation. ut

Example 3. Consider the simple property (+1) ◦ foldr (+) 0 = foldr (+) 1,
involving the classical fold-right function foldr, the composition of function ◦,
and functions (+), (+1) to sum natural numbers. We want to prove this result
by applying the following well-known theorem on lambda abstractions called
fusion law [6]: λx, y. f (g x y) = λx, y. h x (f y) ⇒ f ◦ foldr g z = foldr h (f z).
For this purpose, we try to identify correctly functions f , g, h, z in order to
compound an appropriate CPRS R and to apply this result, but we make a
mistake: f → λz. z (instead of f → λz. z + 1), g → λu, v. u + v, and z → 0.
Now, we can compute h by applying a GHRC-sound goal solving system to the
goal G = {{λx, y. f (g x y) == λx, y. H x (f y)}}. We obtain the computed answer
γ = {H 7→ λu, v. u + v} (or equivalently, as a rewrite rule, h → g). Then,
we have completed the CPRS R and we can apply the theorem, but we obtain
only a trivial identity foldr (+) 0 = foldr (+) 0 instead of our initial property. To
find the bug we examine the computation tree from the GHRC-proof tree for
γ ∈ Soln(G) (see Fig. 3). There is at least a buggy node labeled with the basic
fact λy. f y → y which is not valid in the user’s intended model, because the
user knows that f 0 → 1 instead of f 0 → 0. Therefore, f is not well defined in
the CPRS R and the user can rewrite it, putting f → λz. z + 1. ut
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6 Conclusions and Future Work

We have presented a generalization of the declarative method for diagnosing
wrong computed answers in first-order lazy functional logic programs to the
more expressive setting of the simply typed λ-calculus, where the notion of lazy
and possibly non-deterministic higher-order function plays a central role.

Planned future work will include further theoretical investigation to integrate
non-equality constraints (e.g., see −π/2 ≤ f(x) ≤ π/2 and f(x) 6= 0 in Section
1) in the conditional part of pattern rewrite rules, following the line of recent
researches on constraint rewriting logics for declarative programming [12].
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Type Checking and Inference Are Equivalent in
Lambda Calculi with Existential Types

Yuki Kato? and Koji Nakazawa??

Graduate School of Informatics, Kyoto University, Kyoto 606-8501, Japan

Abstract. This paper shows that type-checking and type-inference
problems are equivalent in domain-free lambda calculi with existen-
tial types, that is, type-checking problem is Turing reducible to type-
inference problem and vice versa. In this paper, the equivalence is proved
for two variants of domain-free lambda calculi with existential types: one
is an implication and existence fragment, and the other is a negation,
conjunction and existence fragment. This result gives another proof of
undecidability of type inference in the domain-free calculi with existence.
Keywords. undecidability, existential type, type checking, type infer-
ence, domain-free type system.

1 Introduction

Existential types correspond to second-order existence in logic by the Curry-
Howard isomorphism, and so they are a natural notion from the point of view
of logic. They have been also studied actively from the point of view of com-
puter science since Mitchell and Plotkin [10] showed that abstract data types
are existential types. Furthermore, calculi with existential types work as suit-
able target calculi of continuation-passing-style (CPS) translations. Some studies
on CPS translations for polymorphic calculi have shown that the negation (¬,
which corresponds to continuation types), conjunction (∧, which corresponds to
product types), and existence (∃) fragment of lambda calculus is an essence of a
target calculus of CPS translations for various systems, such as the polymorphic
lambda calculus [5], the lambda-mu calculus [3, 7], and delimited continuations.
Hasegawa [8] showed that a ¬∧∃-fragment is even more suitable as a target cal-
culus of a CPS translation for delimited continuations such as shift and reset
[2]. These can be seen as an extension of the study of Thielecke [17], in which he
showed that the negation and conjunction fragment of a lambda calculus suffices
for a CPS calculus as the target of various first-order calculi.

Domain-free type systems [1], which are in an intermediate style between
Church and Curry style, are useful for studying some extensions of polymorphic
typed calculi and for theoretical studies on CPS translations. In domain-free style
lambda calculi, types of parameters of functions are not explicitly annotated in
lambda abstraction terms λx.M as in the Curry style, while as in the Church
? yuki@kuis.kyoto-u.ac.jp

?? knak@kuis.kyoto-u.ac.jp



style, terms contain type information for second-order quantifiers, such as a type
abstraction λX.M for ∀-introduction rule, and a term 〈A,M〉 with a witness
A for ∃-introduction rule. In [6], it is shown that an extension of the Damas-
Milner polymorphic type assignment system, which can be seen as a Curry-
style formulation, with a control operator destroys the type soundness. Similarly,
Fujita [3] showed that the Curry-style lambda-mu calculus, which is an extension
of the polymorphic lambda calculus and introduced by Parigot [13], does not
enjoy the subject reduction property. Fujita introduced a domain-free lambda-
mu calculus to have the subject reduction. In addition, the ¬ ∧ ∃-fragment of
the domain-free typed lambda calculus works as a target calculus of a CPS
translation for the domain-free lambda-mu calculus.

Some decision problems on typability of terms in typed calculi have been
widely studied. One is type-checking problem (TC), which is a problem that
asks whether Γ ` M : A is derivable for given Γ , M , and A. Type-inference
problem (TI) is another problem that asks whether there exist Γ and A such that
Γ ` M : A is derivable for given M . In the usual notation, TC asks Γ ` M : A?
for given Γ , M , and A, and TI asks ? ` M :? for given M . In this paper, TC0

and TI0 denote type checking and inference for closed terms, respectively. These
questions are fundamentally important in typed lambda calculi.

For polymorphic types, we have already had some results on these problems.
Wells [18] showed that TC and TI in the Curry-style polymorphic lambda cal-
culus are equivalent and these problems are undecidable. Two problems are said
to be equivalent if one is Turing reducible to the other and vice versa, where a
decision problem P is said to be Turing reducible to another problem Q when
there exists computable function F such that for each instance p of P , F (p)
is an instance of Q which holds if and only if p holds. Nakazawa and Tatsuta
[12] showed that TC and TI in the domain-free polymorphic lambda calculus
are equivalent, and these are undecidable. On the other hand, despite of their
computational importance, properties of existential types have not been studied
enough yet. It is only recent that inhabitation problem, which corresponds to
provability of formulas, in the ¬∧∃-fragment was proved to be decidable in [16].
TC and TI in domain-free lambda calculi with existential types were proved to
be undecidable in [11, 12]. However any direct relation between TC and TI for
existential types has not been known yet.

This paper proves that TC and TI are equivalent in two variants of domain-
free lambda calculi with existential types: implication and existence fragment
DF-λ→∃, and negation, conjunction, and existence fragment DF-λ¬∧∃. Moreover,
this result gives another proof of undecidability of TI in DF-λ→∃ and DF-λ¬∧∃.

First, we prove that TC and TI are equivalent in DF-λ→∃. In DF-λ→∃, it is
easy to prove that TI is Turing reducible to TC. The reduction from TC to TI
is proved by adapting the idea of [12]. The key of the proof is the fact that, for
given a closed term M and a type A, we can construct another closed term JM,A

which is typable if and only if ` M : A holds.
Secondly, we prove that TC and TI are equivalent in DF-λ¬∧∃. Similarly to

DF-λ→∃, the proof of the reduction from TC to TI consists of two parts: the
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reduction from TC to TC0 and that from TC0 to TI. However, we need a non-
trivial idea to prove the reduction from TC to TC0 since DF-λ¬∧∃ does not have
implication. In this paper, using the well-known fact that the implication A → B
is (classically) equivalent to ¬(A∧¬B), we show that TC can be reduced to TC0

in DF-λ¬∧∃. The proof of the other direction from TI to TC also consists of two
parts: TI can be reduced to TI0 , and TI0 can be reduced to TC. In order to
prove the former part, the above idea can be used.

Figure 1 summarizes the related results including ours. In the diagram, P ≤
Q means that the problem P is Turing reducible to Q, and P ' Q means that
P and Q are equivalent, that is, both P ≤ Q and Q ≤ P hold. F denotes the
polymorphic lambda calculus. SUP means the semi-unification problem and 2UP
means the second-order-unification problem. Since undecidability of SUP and
2UP has been already proved by Kfoury et al. [9] and Schubert [14], respectively,
all of the problems in the diagram are undecidable. '∗ is the main result of this
paper, and it gives a new proof of undecidability of TI in DF-λ→∃ and DF-λ¬∧∃.

Curry style: SUP
[18]
≤ TC in F

[18]
' TI in F

domain-free style: 2UP
[4]
≤ TC in DF-F

[12]
' TI in DF-F

≤

[11]

≤

[11]

domain-free style: TC in DF-λ→∃/λ¬∧∃ '∗ TI in DF-λ→∃/λ¬∧∃

Fig. 1. TC and TI for polymorphic and existential types

The section 2 introduces the domain-free lambda calculi with existence:
DF-λ→∃ and DF-λ¬∧∃. We state our main theorems in the section 3, and we
prove them in the sections 4 and 5.

2 Domain-Free Lambda Calculi with Existence

In this section, we define the domain-free lambda calculi with Existential types:
DF-λ→∃ and DF-λ¬∧∃.

As pointed out in [10], the existential types can be seen as the abstract data
types in the following sense. If a term M has a type B[X := A], we can hide
the information of the type A by constructing the term 〈A,M〉, which has the
existential type ∃X.B. A term N of the existential type ∃X.B can be used with
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N [Xx.P ], which intuitively means let 〈X, x〉 = N in P . In this paper, we use
the notation M [Xx.N ] following [11, 12]. We can write the term 〈A,M〉 in the
style of modules of Standard ML as struct type X = A val x = M end.

2.1 Lambda Calculus with Implication and Existence

First, we define the domain-free lambda calculus DF-λ→∃ with implication (→)
and existence (∃).

Definition 1. The types (denoted by A, B, ... , and called →∃-types) and the
terms (denoted by M , N , ...) of DF-λ→∃ are defined by

A ::= X | A→A | ∃X.A,

M ::= x | λx.M | 〈A,M〉 | MM | M [Xx.M ].

X and x denote a type variable and a term variable, respectively. In the type
∃X.A, the variable X in A is bound. In the term λx.M , the variable x in M is
bound. In the term N [Xx.M ], the variables X and x in M are bound. A variable
is free if it is not bound. A term is closed if it contains no free term variable.
We use ≡ to denote syntactic identity modulo renaming of bound variables.

For n ≥ 3, A1→· · ·→An−1→An denotes A1→(· · ·→(An−1→An)), and
M1M2 · · ·Mn denotes ((M1M2) · · · )Mn. Γ denotes a finite set of type assign-
ments in the form of x : A.

Typing rules of DF-λ→∃ are the following.

Γ, x : A ` x : A
(Ax)

Γ, x : A ` M : B

Γ ` λx.M : A→B
(→I)

Γ1 ` M : B→A Γ2 ` N : B

Γ1, Γ2 ` MN : A
(→E)

Γ ` N : A[X := B]
Γ ` 〈B,N〉 : ∃X.A

(∃I)
Γ1 ` M : ∃X.A Γ2, x : A ` N : C

Γ1, Γ2 ` M [Xx.N ] : C
(∃E)

In the rule (∃E), Γ2 and C must not contain X as a free variable.

2.2 Lambda Calculus with Negation, Conjunction, and Existence

Then we define the domain-free lambda calculus DF-λ¬∧∃ with negation (¬),
conjunction (∧), and existence (∃). From the point of view of computation, the
negation corresponds to the type of continuations, and the conjunction to the
product type.

Definition 2. The types (denoted by A, B, ... , and called ¬∧∃-types) and the
terms (denoted by M , N , ...) of DF-λ¬∧∃ are defined by

A ::= X | ⊥ | ¬A | A ∧A | ∃X.A,

M ::= x | λx.M | 〈M,M〉 | 〈A,M〉 | MM | Mπ1 | Mπ2 | M [Xx.M ].
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Bound and free variables, and closed terms are defined similarly to DF-λ→∃. For
n ≥ 3, A1 ∧ · · · ∧An−1 ∧An denotes A1 ∧ (· · · ∧ (An−1 ∧An)).

Typing rules of DF-λ¬∧∃ are the following.

Γ, x : A ` x : A
(Ax)

Γ, x : A ` M : ⊥
Γ ` λx.M : ¬A

(¬I)
Γ1 ` M : ¬A Γ2 ` N : A

Γ1, Γ2 ` MN : ⊥ (¬E)

Γ1 ` M : A Γ2 ` N : B

Γ1, Γ2 ` 〈M,N〉 : A ∧B
(∧I)

Γ ` M : A1 ∧A2

Γ ` Mπ1 : A1
(∧E1)

Γ ` M : A1 ∧A2

Γ ` Mπ2 : A2
(∧E2)

Γ ` N : A[X := B]
Γ ` 〈B,N〉 : ∃X.A

(∃I)
Γ1 ` M : ∃X.A Γ2, x : A ` N : C

Γ1, Γ2 ` M [Xx.N ] : C
(∃E)

In the rule (∃E), Γ2 and C must not contain X as a free variable. Note that
the typing rules of DF-λ¬∧∃ for the terms λx.M and MN differ from those of
DF-λ→∃.

3 Type Checking and Type Inference

In this section, we introduce two decision problems on typability of terms, and
state our main theorem.

Type checking (TC) is a problem that asks whether Γ ` M : A is derivable
for given Γ , M , and A. Type inference (TI) is a problem that asks whether there
exist Γ and A such that Γ ` M : A is derivable for given M . In the usual
notation, TC asks Γ ` M : A? for given Γ , M , and A, and TI asks ? ` M :? for
given M .

These two problems are equivalent in the Curry-style polymorphic lambda
calculus [18], and in the domain-free polymorphic lambda calculus [12]. Two
problems are said to be equivalent if one is Turing reducible to the other and
vice versa. Hence the equivalence of TC and TI means that (i) for any instance
Γ ` M : A? of TC, we can effectively construct a term N such that the answer
of the given instance of TC is the same as that of the instance ? ` N :? of TI,
and (ii) for any instance ? ` M :? of TI, we can effectively construct an instance
Γ ` N : A? of TC whose answer is the same as the given instance of TI. TC0

and TI0 denote type checking and type inference for closed terms, respectively.
In general, if a decision problem P1 is Turing reducible to another decision

problem P2, then decidability of P2 implies decidability of P1, and equivalently
undecidability of P1 implies undecidability of P2. In [18, 12], they showed un-
decidability of TI in the polymorphic lambda calculi by the Turing reducibility
of TC to TI. On the other hand, undecidability of TC and TI in the domain-
free lambda calculi with existential types has been proved in [11, 12] by the re-
ducibility of each problems for polymorphic types to those for existential types.
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However, direct relationship between TC and TI for existential types has not
been known yet. In this paper, we will prove that TC and TI are equivalent in
DF-λ→∃ and DF-λ¬∧∃.

Theorem 1. 1. Type checking and type inference are equivalent in DF-λ→∃, that
is, type checking in DF-λ→∃ is Turing reducible to type inference in DF-λ→∃ and
vice versa.

2. Type checking and type inference are equivalent in DF-λ¬∧∃.

This result gives another proof of undecidability of TI in these calculi since TC
is undecidable in them.

For each system, the proof of the reduction from TC to TI consists of two
parts. First, we show that TC can be reduced to TC0. Secondly, we show that
TC0 can be reduced to TI.

The key of the proof of the reduction from TC0 to TI is the fact that we
can effectively construct a term JM,A from a given pair of a closed term M and
a type A such that the instance ` M : A of TC0 is equivalent to the instance
` JM,A :? of TI. By this fact, we can conclude that TC0 can be reduced to TI.
In order to show that, we borrow the idea of [12] for polymorphic types.

In DF-λ→∃, the reduction from TC to TC0 is easy, whereas the reduction is
not easy to prove for DF-λ¬∧∃ due to absence of implication. In our proof, we
show that we can construct a DF-λ¬∧∃-term λx.M for a DF-λ¬∧∃-term M and a
variable x such that Γ, x : A ` M : B holds if and only if Γ ` λx.M : ¬(A∧¬B)
holds. By this construction, we can prove that TC can be reduced to TC0 in
DF-λ¬∧∃.

Similarly, the proof of the reduction from TI to TC consists of two parts: the
reduction from TI to TI0, and the reduction from TI0 to TC. For DF-λ¬∧∃, the
proof of the reduction from TI to TI0 has the similar difficulties to the case of
the reduction from TC to TC0. We can also use the same technique by λx.M to
prove it.

We prove the equivalence in DF-λ→∃ in the section 4, where we show how
to construct JM,A from M and A. In the section 5, we show the reduction from
problems for open terms to those for closed terms, and prove the equivalence in
DF-λ¬∧∃.

4 TC and TI are Equivalent in DF-λ→∃

In this section, we prove that TC and TI are equivalent in DF-λ→∃.
At first, we show that TI is Turing reducible to TC (that is denoted by TI

≤ TC).

Proposition 1. TI in DF-λ→∃ is Turing reducible to TC in DF-λ→∃.

Proof. For a given instance ? ` M :? of TI in DF-λ→∃, we can effectively con-
struct the list (x1, · · · , xn) of all of the free variables in M . Then the TI problem
? ` M :? is equivalent to a TC problem ` λy.(λx.y)(λx1. · · ·λxn.M) : X→X?,
where x and y are fresh variables. In fact, if the term λy.(λx.y)(λx1. · · ·λxn.M)
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has the type X → X, then M has some type. Conversely, if Γ ` M : A holds for
some Γ and A, we have the following for some B,

y : X, x : B ` y : X
(Ax)

y : X ` λx.y : B→X
(→I)

Γ ` M : A....
` λx1 · · ·λxn.M : B

y : X ` (λx.y)(λx1 · · ·λxn.M) : X
(→E)

` λy.(λx.y)(λx1 · · ·λxn.M) : X→X
(→I),

where we can suppose that {x1, · · · , xn} = {z | (z : C) ∈ Γ} without loss of
generality since the left-hand side is the set of all of the free variables of M . �

As we have stated in the previous section, the proof of TC ≤ TI consists of
two steps: TC ≤ TC0 and TC0 ≤ TI. It is easy to prove TC ≤ TC0 for DF-λ→∃.
So, in the following, we show TC0 ≤ TI. More concretely, we show that, for a
given instance ` M : A? of TC0, we can effectively construct a DF-λ→∃-term
JM,A such that the instance ? ` JM,A :? of TI is equivalent to the given instance
of TC0.

In the rest of this section, O is supposed to be a fixed type variable, and not
to be bound by any existential quantifier. ¬OA denotes A→O.

First, we define some auxiliary functions on types to prove the key lemma.

Definition 3. 1. lvar(A) is the leftmost variable of A when it is free in A, and
otherwise lvar(A) is undefined. lvar(A) is defined by

lvar(X) ≡ X,

lvar(A→B) ≡ lvar(A),

lvar(∃X.A) ≡
{

undefined (lvar(A) = X),
lvar(A) (otherwise).

2. The left depth ldep(A) is the depth from the root to the leftmost variable in
the syntax tree of A. It does not depend on whether the variable is free or bound.
ldep(A) is defined by

ldep(X) = 0,

ldep(A→B) = ldep(A) + 1,

ldep(∃X.A) = ldep(A) + 1.

3. The left-bound-variable depth lbdep(A) is ldep(B) when A includes a subex-
pression ∃X.B and the leftmost variable of A is bound by this quantifier. When
the leftmost variable of A is free, lbdep is undefined. lbdep(A) is defined by

lbdep(X) = undefined,

lbdep(A→B) = lbdep(A),

lbdep(∃X.A) =
{

ldep(A) (lvar(A) = X),
lbdep(A) (otherwise).
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Lemma 1. 1. ldep(A[Y := B]) 6= ldep(A) implies lvar(A) ≡ Y ,
2. lvar(A) ≡ X implies lbdep(A[X := B]) = lbdep(B) and lvar(A[X := B]) ≡

lvar(B).

Proof. 1. By induction on A.
When A is X(X 6≡ Y ), ldep(X[Y := B]) = ldep(X) holds.
When A is Y , we have lvar(Y ) ≡ Y .
When A is C→D, ldep((C→D)[Y := B]) = ldep((C[Y := B])→(D[Y :=

B])) = ldep(C[Y := B]) + 1 holds. Furthermore, ldep(C→D) = ldep(C) + 1
holds. So if ldep((C→D)[Y := B]) 6= ldep(C→D) holds, we have ldep(C[Y :=
B]) 6= ldep(C). From the induction hypothesis, ldep(C[Y := B]) 6= ldep(C)
implies lvar(C) ≡ Y . So lvar(C→D) ≡ Y holds.

When A is ∃X.C, ldep((∃X.C)[Y := B]) = ldep(C[Y := B]) + 1 holds.
Furthermore, ldep(∃X.C) = ldep(C) + 1 holds. So if ldep((∃X.C)[Y := B]) 6=
ldep(∃X.C) holds, we have ldep(C[Y := B]) 6= ldep(C). From the induction
hypothesis, ldep(C[Y := B]) 6= ldep(C) implies lvar(C) ≡ Y . So lvar(∃X.C) ≡ Y
holds.

2. By induction on A.
When A is a variable, A is X since lvar(A) ≡ X holds. We have lbdep(X[X :=

B]) = lbdep(B) and lvar(X[X := B]) ≡ lvar(B).
When A is C→D, if lvar(C→D) ≡ Y holds, we have lvar(C) ≡ Y . From the

induction hypothesis, lvar(C) ≡ Y implies lbdep(C[Y := B]) = lbdep(B) and
so lbdep((C→D)[Y := B]) = lbdep(C[Y := B]→D[Y := B]) = lbdep(C[Y :=
B]) = lbdep(B) holds. Moreover, from the induction hypothesis, lvar(C) ≡ Y
implies lvar(C[Y := B]) ≡ lvar(B) and so we have lvar((C→D)[Y := B]) ≡
lvar(C[Y := B]→D[Y := B]) ≡ lvar(C[Y := B]) ≡ lvar(B).

When A is ∃X.C, if lvar(∃X.C) ≡ Y holds, we have lvar(C) ≡ Y 6≡ X. We
can suppose that X is not contained freely in B by renaming bound variable of
A. From the induction hypothesis, we have lvar(C[Y := B]) ≡ lvar(B) 6≡ X, and
then we have lbdep((∃X.C)[Y := B]) = lbdep(∃X.C[Y := B]) = lbdep(C[Y :=
B]). From the induction hypothesis, lvar(C) ≡ Y implies lbdep(C[Y := B]) =
lbdep(B). Hence we have lbdep((∃X.C)[Y := B]) = lbdep(B). Moreover from the
induction hypothesis, lvar(C) ≡ Y implies lvar(C[Y := B]) ≡ lvar(B) and so we
have lvar((∃X.C)[Y := B]) ≡ lvar(∃X.C[Y := B]) ≡ lvar(C[Y := B]) ≡ lvar(B)
since lvar(C[Y := B]) 6≡ X holds. �

By Lemma 1, the following key lemma is proved.

Lemma 2. If Γ ` x〈¬O∃X.X, x〉 : A is derivable in DF-λ→∃, then Γ contains
x : ¬O∃X.X.

Proof. Suppose that Γ ` x〈¬O∃X.X, x〉 : A is derivable, and the type assign-
ment for x in Γ be x : Cx.
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Since the term x〈¬O∃X.X, x〉 is typable, its type derivation is as follows for
some C.

Γ ` x : ∃Y.C→A
(Ax)

Γ ` x : C[X := ¬O∃X.X]
(Ax)

Γ ` 〈¬O∃X.X, x〉 : ∃Y.C
(∃I)

Γ ` x〈¬O∃X.X, x〉 : A
(→E)

From the form of (Ax) rules in the derivation, we have

∃Y.C→A ≡ Cx ≡ C[Y := ¬O∃X.X].

Then we have

ldep(Cx) = ldep(∃Y.C→A) = ldep(∃Y.C) + 1 = ldep(C) + 2,

ldep(Cx) = ldep(C[Y := ¬O∃X.X]).

Hence we have ldep(C[Y := ¬O∃X.X]) 6= ldep(C), and then lvar(C) ≡ Y holds
by Lemma 1.1. By Lemma 1.2, we have

lbdep(C[Y := ¬O∃X.X]) = lbdep(¬O∃X.X) = lbdep(∃X.X) = ldep(X) = 0.

On the other hand, we have

lbdep(∃Y.C→A) = lbdep(∃Y.C) = ldep(C)

since lvar(C) ≡ Y holds. Therefore, we have ldep(C) = 0, and then C must be a
variable. Hence C is identical to Y since lvar(C) ≡ Y holds, and so Cx must be
¬O∃X.X. �

Then we can show the following proposition, from which TC0 ≤ TI follows
directly.

Proposition 2. For a closed DF-λ→∃-term M and a →∃-type A, we can effec-
tively construct a closed DF-λ→∃-term JM,A such that ` M : A is derivable if
and only if ` JM,A : B is derivable for some type B.

Proof. Define JM,A as λx.(λy.x〈A,M〉)(x〈¬O∃X.X, x〉), where both x and y are
fresh variables. It is easy to see that ` M : A implies ` JM,A : ¬O¬O∃X.X, since
x : ¬O∃X.X ` x〈A,M〉 : O is derivable as follows.

x : ¬O∃X.X ` x : ¬O∃X.X
(Ax)

....
` M : A

` 〈A,M〉 : ∃X.X
(∃I)

x : ¬O∃X.X ` x〈A,M〉 : O
(→E)

For the converse direction, we use Lemma 2. Suppose that ` JM,A : B is
derivable for some B. Since JM,A includes x〈¬O∃X.X, x〉 as a subterm, the
derivation of ` JM,A : B includes a derivation of Γ ` x〈¬O∃X.X, x〉 : B′ for
some Γ and B′ as a subderivation. Then Γ contains x : ¬O∃X.X by Lemma
2. Because of this, the derivation of JM,A has to include a subderivation of
x : ¬O∃X.X ` x〈A,M〉 : O which is the same as the above one. Hence it
includes the derivation of ` M : A. �
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Proof (of Theorem 1.1). TI ≤ TC is proved in Proposition 1. TC ≤ TC0 is easily
proved in a similar way to Proposition 1. TC0 ≤ TI immediately follows from
Proposition 2. �

5 TC and TI are Equivalent in DF-λ¬∧∃

In this section, we prove that TC and TI are equivalent in DF-λ¬∧∃.
The proof is similar to DF-λ→∃, and consists of the following four parts: (i)

TC ≤ TC0, (ii) TC0 ≤ TI, (iii) TI ≤ TI0, and (iv) TI0 ≤ TC. In contrast to
DF-λ→∃, neither (i) nor (iii) is easy to prove for DF-λ¬∧∃ due to absence of
implication.

5.1 Translation to Closed Terms

First, we show TC≤TC0 and TI≤TI0. In DF-λ¬∧∃, we cannot type the term
λx1. · · ·λxn.M , since N has to be typed with ⊥ in order to type the lambda
abstraction λx.N . So we define a construction λx.M , which can be considered
as an interpretation of the implication introduction in DF-λ¬∧∃. It should be
noted that the construction can be defined as long as we have negation and
conjunction, and so existence is not essential for the discussion in this subsection.

Definition 4. For any ¬ ∧ ∃-types A and B, A⇒B denotes the type ¬(A ∧
¬B). Similarly to the ordinary implication →, A1⇒· · ·⇒An⇒B denotes
A1⇒(· · ·⇒(An⇒B)). For a DF-λ¬∧∃-term M and a variable x, we define λx.M
as λc.(λx.(cπ2)M)(cπ1), where c is a fresh term variable.

It is easy to see that the set of free variables of λx.M is the set obtained by
removing x from the set of free variables of M .

Lemma 3. Γ, x : A ` M : B holds if and only if Γ ` λx.M : A⇒B.

Proof. Suppose that Γ, x : A ` M : B holds, and then we have the following
type derivation for Γ ` λx.M : ¬(A ∧ ¬B).

c : A ∧ ¬B ` c : A ∧ ¬B
c : A ∧ ¬B ` cπ2 : ¬B

....
Γ, x : A ` M : B

Γ, c : A ∧ ¬B, x : A ` (cπ2)M : ⊥
Γ, c : A ∧ ¬B ` λx.(cπ2)M : ¬A

c : A ∧ ¬B ` c : A ∧ ¬B
c : A ∧ ¬B ` cπ1 : A

Γ, c : A ∧ ¬B ` (λx.(cπ2)M)(cπ1) : ⊥
Γ ` λx.M : ¬(A ∧ ¬B)

Conversely, if we have Γ ` λx.M : ¬(A∧¬B), then its derivation must be in
the above form. �

Proposition 3. 1. TC in DF-λ¬∧∃ is Turing reducible to TC0 in DF-λ¬∧∃.
2. TI in DF-λ¬∧∃ is Turing reducible to TI0 in DF-λ¬∧∃.
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Proof. 1. For a given instance x1 : A1, · · · , xn : An ` M : B of TC, we can
effectively construct an instance ` λx1. · · ·λxn.M : A1⇒· · ·⇒An⇒B of TC0,
which is equivalent to the given instance by Lemma 3.

2. For a given DF-λ¬∧∃-term M , let the list of free variables of M be
x1, · · · , xn. It should be noted that we can effectively construct the list. We
show that the instance ` λx1. · · ·λxn.M :? of TI0 is equivalent to the given
instance ? ` M :? of TI.

If Γ ` M : B is derivable for some Γ and B, then Γ ′ ` M : B is derivable,
where Γ ′ is {x1 : A1, · · · , xn : An} and each xi : Ai is contained in Γ . Then we
have ` λx1. · · ·λxn.M : A1⇒· · ·⇒An⇒B by Lemma 3, hence λx1. · · ·λxn.M
has a type.

Conversely, if λx1. · · ·λxn.M has a type, then M has some type since it is a
subterm of λx1. · · ·λxn.M . �

From the point of view of logic, the translation λx.M becomes clearer. The
judgment x : A ` M : B implicitly means the implication A→B. Since DF-λ¬∧∃

has no implication, we have to interpret the implication by means of negation
and conjunction. In order to do that, we use the well-known fact that A→B is
(classically) equivalent to ¬(A ∧ ¬B), which is denoted by A⇒B in this paper.
A⇒B is not an intuitionistic implication, since we cannot conclude B from A⇒B
and A in the intuitionistic logic. We can consider an elimination rule for ⇒ such
as

Γ1 ` M : A⇒B Γ2 ` N : A

Γ1, Γ2 ` M@N : ¬¬B ,

where M@N is defined as λk.M〈N, k〉. We can consider that the constructions
λx.M and M@N realize the interpretation of the variant of implication, which
is implicitly implemented by “`”, in DF-λ¬∧∃.

The translation which maps λx.M to λx.M and MN to M@N is also im-
portant from the point of view of computer science, since it can be considered
as a variant of continuation-passing-style translations into the lambda calculus
with continuation types and product types. Such translations have been studied
in [17, 5, 7].

In addition, note that we can construct a simpler closed term N and a type
C from a given instance x1 : A1, · · · , xn : An ` M : B of TC. N and C can be
defined as follows:

N ≡ λc.(λx1. · · · (λxn−1.(λxn.(cπn+1
n+1)M)(cπn+1

n ))(cπn+1
n−1) · · · )(cπ

n+1
1 ) : ⊥,

C ≡ ¬(A1 ∧ · · · ∧An ∧ ¬B),

where πn
m is the m-th projection for n-tuples, which can be constructed by π1

and π2. Then we can show that x1 : A1, · · · , xn : An ` M : B holds if and only
if ` N : C holds. This construction can be used to prove TI ≤ TI0 as well.

5.2 Proof of Equivalence

We complete the proof of equivalence in DF-λ¬∧∃. TC0 ≤ TI can be proved
similarly to DF-λ→∃ by replacing ¬O by ¬.
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Lemma 4. If Γ ` x〈¬∃X.X, x〉 : A is derivable in DF-λ¬∧∃, then Γ contains
x : ¬∃X.X.

Proof. The definitions of auxiliary functions for negation and conjunction are

lvar(¬A) ≡ lvar(A),
lvar(A ∧B) ≡ lvar(A),

ldep(¬A) = ldep(A) + 1,

ldep(A ∧B) = ldep(A) + 1,

lbdep(¬A) = lbdep(A),
lbdep(A ∧B) = lbdep(A),

and the same statement as Lemma 1 holds for DF-λ¬∧∃. Hence the claim is
proved similarly to Lemma 2. �

The following proposition is also proved similarly to DF-λ→∃.

Proposition 4. For a closed DF-λ¬∧∃-term M and a ¬ ∧ ∃-type A, we can
effectively construct a closed DF-λ¬∧∃-term J ′M,A such that ` M : A is derivable
if and only if ` J ′M,A : B is derivable for some type B.

Proof. Define J ′M,A as λx.(λy.x〈A,M〉)(x〈¬∃X.X, x〉), where both x and y are
fresh variables. The proof is similar to Proposition 2, using Lemma 4. Note that
the lambda abstractions and function applications in J ′M,A correspond to the
introduction and elimination rules of negation. �

The theorem for DF-λ¬∧∃ is proved as follows.

Proof (of Theorem 1.2). TC ≤ TC0 and TI ≤ TI0 are proved by Proposition 3.
TC0 ≤ TI immediately follows from Proposition 4. TI0 ≤ TC is easily proved
similarly to DF-λ→∃, that is, each instance ` M :? of TI0 can be translated to
an equivalent instance ` λy.(λx.y)M : ¬⊥ of TC. �

6 Concluding Remarks

In this paper, we show equivalence between type checking and type inference in
the domain-free lambda calculi with existential types: DF-λ→∃ and DF-λ¬∧∃.

We can consider other styles for existential types. For example, more implicit
type assignment system for existential types was introduced in [15], whose typing
rules for existential types are

Γ ` N : A[X := B]
Γ ` 〈∃, N〉 : ∃X.A

(∃I)
,

Γ1 ` M : ∃X.A Γ2, x : A ` N : C

Γ1, Γ2 ` M [x.N ] : C
(∃E)

.
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Our proof of the reduction from TC to TI cannot be adapted to this variant,
because the term JM,A explicitly contains the information of type A, whereas
terms in the variant contain no explicit type information. Moreover, undecid-
ability of TC and TI in the variant has not been known yet. So it would be
future work to study the relationship between TC and TI in the variant, and
decidability of them.
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Abstract. This paper presents a taxonomy of some exact, right-to-left,
string-matching algorithms. The taxonomy is based on results obtained
by using logic program transformation over a naive and nondeterministic
specification. A derivation of the search part and some notes about the
preprocessing part of each algorithm is presented. The derivations show
several design decisions behind each algorithm, and allow us to organize
the algorithms within a taxonomic tree, giving us a better understanding
of these algorithms and possible mechanical procedures to derive them.

1 Introduction

Taxonomies of algorithms play an important role in structuring knowledge for
computer programming [Par76,Dar78,Lau89,WZ96]. Some advantages of tax-
onomies of algorithms are: a) We place each algorithm in parent-child relation-
ships; b) we uncover the rationale behind the design of each algorithm; and, c)
we can know better how an algorithm works, increasing our comprehension of
how an algorithm can efficiently be implemented or automatically derived. A
taxonomy can also reveal certain faults in the design of an algorithm. We can
even discover minor variants as by-products of our main developments. We will
show program transformation is not only a tool to improve programs, but it also
can be a useful tool for a better understanding of existing algorithms. This paper
presents a taxonomy, based on logic program transformation and decreasing of
nondeterminism, of some exact and right-to-left string-matching algorithms.

There are two main groups of string-matching algorithms classified accord-
ing to a pair of schedules of character comparisons: either from left to right or
from right to left. The Knuth–Morris–Pratt algorithm [KMP77] belongs to the
first group. The search part of the Knuth–Morris–Pratt algorithm has been the
subject of intensive study in program derivation [CD89,Smi91,SGJ96]. However,
the Knuth–Morris–Pratt algorithm is hardly used in practice. Instead, string
searching is often implemented following the Boyer–Moore algorithm [Ste94] or
some variant; these algorithms belong to the second group. In this work we de-
rive the complete version of the search part of the Boyer–Moore algorithm and
some of its variants using logic program transformation. By using the power-
set construction, deterministic unfolding, constraint introduction via the clause
splitting rule, and extended folding, we show how to obtain Boyer–Moore-like
programs from naive and nondeterministic logic programs.



Our main interest is centered on the search part of each algorithm, so that we
want to maximize the shift values and to minimize the number of comparisons
given a mismatch between the pattern and a portion of the text. The algorithms
to discuss are: The Boyer–Moore algorithm itself (BM algorithm, for short); the
Horspool variant (BMH algorithm); the Partsch–Stomp variant (BMPS algo-
rithm); and, the Apostolico–Giancarlo variant (BMAG algorithm). Some minor
variants will be byproducts of our main developments.

These algorithms are derived for the following reasons. The BM algorithm is
one of the most valuable algorithms for string-matching in practice. The BMH
variant is highly practical for ordinary alphabets, such as the English alphabet.
Its cost of preprocessing is low, and it is a simplification of the BM algorithm.
The BMPS algorithm surpasses the BM algorithm in the search stage (the shifts
given by the BM are minor than those of the BMPS variant), although the cost
of preprocessing is high. Finally, the BMH and the BMPS variants, and the BM
itself, have the deficiency of comparing again some characters already previously
treated, but in the BMAG variant these re-comparisons are avoided because this
variant incorporates in its design a memory. The method to place an algorithm in
the taxonomic tree is: A naive logic program solving the string-matching problem
is presented, a derivation is carried out, and then the derivation is associated
with a path, from the root to the leaf, of the taxonomic tree given in Fig. 1 (where
by pre-algorithms we mean some intermediate programs within the derivation).
Leaves indicate a complete and terminal development of a derivation.

Right-to-left
naive algorithm

Pre-algorithms
RRRR

R
llll

l
Without
memory

SSSSS
uu

With
memory

BM BMPS BMH BMAG

Fig. 1: A taxonomic tree of some right-to-left string-matching algorithms.

1.1 Overview

We assume from our readers some basic familiarity with logic programming
[Llo87] and logic program transformation [PP98]. An overview of this paper is
as follows. Section 2 introduces the string-matching problem and describes the
Boyer–Moore algorithm. Section 3 gives some basic logic program transformation
techniques and the main points of our derivations. Section 4 is devoted to derive
the BM algorithm and some of its variants. Section 5 presents some related
work and in Section 6 are given some conclusions.
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2 The Boyer–Moore algorithm

The exact string-matching problem. The exact string-matching problem consists
in finding the occurrences (if any) of a string called the pattern within another
string called the text. Formally, let A be a non-empty and finite set called the
alphabet. The elements of A are called characters. The set A∗ consists of finite
sequences of characters of A and these sequences are called strings. We denote
by Set(S) the set of elements ocurring in the string S, and by #(S) its length.

Let S1 and S2 be two strings in A∗. The string S1 is a substring of S2 if S1 is
a subsequence of S2. We define a partial order relation in A as follows: S1 � S2

if S1 is a substring of S2. If S1 � S2 we say that S1 occurs in S2. Let S, T be
strings. We define the concatenation of S and T , S ++T , as the new string ST .
The set A∗ endowed with the operation ++ is a non-commutative monoid with a
unit element called the empty word, ε. Given the strings S1 and S2, in the exact
string-matching problem we want to know whether S1 � S2. This is equivalent
to know if there are two strings U and V such that S2 = U ++S1 ++V .

Let P and T be strings. A configuration between P and T is a static view of
P and T placed together to make comparisons between characters. The portion
of the text of size #(P ) where P is placed is called a window of T . A transition
is a pair of configurations. The purpose of configurations is to explain how a new
configuration is reached from a previous one, given a rule to do this transition.
A matching schedule is an order (or permutation) to make comparisons between
characters of P and those in a window of T when trying to find P in T .

Naive string-matching algorithms. A first straightforward algorithm for solv-
ing the exact string-matching problem is to begin with a configuration where
the pattern is placed leftmost in the text with a left-to-right matching schedule
within the window. If a mismatch occurs, we displace the window one character
to the right of the text and start the matching schedule again. If all characters
of the pattern and those correspondent within the window of the text match,
an occurrence has been found. This process is repeated until we do not have
any new windows to explore. This is sometimes called the naive left-to-right
string-matching algorithm. A second straightforward algorithm solving the ex-
act string-matching problem originates the naive right-to-left string-matching
algorithm: this time we align the pattern and the text again from the leftmost
part of the text, but we apply a right-to-left matching schedule in the current
window. In both algorithms, if mismatches happen every time we almost fin-
ish comparing all characters of the pattern with those of the text, we obtain a
worst-case performance, which is quadratic [CR94]. This situation, however, is
unlikely to occur in practice, and the expected performance of this algorithm is
linear. We will focus our attention on right-to-left string-matching algorithms.
The representative algorithm of this kind is named the Boyer–Moore algorithm,
which has a sublinear efficiency and is described in the next.

The Boyer–Moore algorithm. Boyer and Moore [BM77] improved the average
case of the naive right-to-left string matching algorithm in a sublinear algorithm.
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By inspecting the text character aligned with the rightmost pattern character,
we have two cases: In case such a text character does not occur in the pattern, we
can slide the pattern its whole length, to surpass the bad character of the text; as
a second case, if the text character is also in the pattern we can shift the pattern
a number of characters determined by the preprocessing phase, trying to align
these good characters. If a partial match is discovered, in the next configuration
those rightmost parts that match would be aligned again, so that transitions are
ruled by the longest partial matches.

In case of a mismatch this algorithm uses two precomputed functions to shift
the pattern to the right with respect to the text. These two shift functions are
called the good suffix rule or δ2 function and the bad character rule or δ1 function.
Both functions interact each other through the max function. There are several
variants of the Boyer–Moore algorithm, depending on whether we use the δ1

or the δ2 function, or both. For example, we can use only the δ2 function. By
using enhanced versions of partial deduction, this variant was derived in [HR03];
in functional programming this variant was also derived in [Bir05]. Similarly,
the variant that only uses δ1 was derived in [MACD01] and [HR01]. However,
in several variants no memory is kept of partial matchings obtained from the
previous steps, as it was noticed in [AG86] and where is devised a variant of
the Boyer–Moore algorithm that incorporates a memory, so avoiding redundant
comparisons. In every variant, the search is fast on average, because in many
cases the number of characters shifted is close to the length of the pattern.

We now give a description of the BM algorithm [BM77,Ste94]. We denote
by Rk the kth character of a string R, trying to keep k in an appropriate range
(otherwise, Rk is undefined). In addition, T denotes a text of length n and P
denotes the pattern of length m. We try to apply the index i to the text T
and the index j to the pattern P . Consider first a mismatch between Pm and
Ti. If Ti does not occur in P at all, then the pattern is shifted m characters to
the right. The next comparison is then between Pm and Ti+m. If, on the other
hand, Ti does occur in P , with rightmost occurrence in Pk, then Ti and Pk are
lined up (i.e. the pattern is shifted m− k characters) and the test is resumed by
comparing Pm with Ti+m−k.

To align a particular character of the pattern with that of the text, we use
the following δ1 function:

δ1(x)=
{

m if x 6∈ Set(P ) ,

m− k k = max{j ∈ N | Pj = x}
If such a character exists in the text but does not exist in the pattern, we shift
the pattern over the text the total length of the pattern, m.

Consider a match between Pm and Ti. Comparisons of pattern and text
characters continue from right to left until a complete match is obtained or a
mismatch at Pj and Ti′ , say, occurs. In this case, the suffix of the pattern given
by Pj+1, . . . , Pm is equal to the text substring Ti′+1, . . . , Ti′+m−j , and Pj 6= Ti′ .

If Ti′ does not occur in p at all, we can then shift the pattern m− j positions
to the right (just past Ti′), and the next comparison will be between Pm and
Ti′+m. The text index will then be incremented by m positions.
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If, on the other hand, Ti′ does occur in P , consider the rightmost such an
occurrence, Pk. There are two possibilities: Pk is placed either to the left or the
the right of Pj . In case Pk is to the left, then Pk and Ti′ and are lined up, and
the next comparison will be between Pm and Ti′+m−k. Hence, we can use δ1 to
compute the shift of the text index in both cases of a partial match we have
covered in our explanation so far. If, however, Pk is to the right of Pj , then δ1

would yield a negative value, meaning a backwards displacement of the pattern.
In this case we ignore δ1 and shift the pattern one character to the right.

initializeBM(P, δ1, δ2); {preprocessing stage to tabulate the δ1,δ2 functions}
i := m; j := m;
while (j > 0) and (i ≤ n) do

if Ti = Pj then {rightmost characters coincide}
begin {trying to extend the matching from right to left}

i := i− 1; j := j − 1
end

else {a failed comparison between characters}
begin

i := i + max(δ1(ti), δ2(j)); {shift based on precomputed functions}
j := m

end
if j < 1 then i := i + 1 {Pattern found}

else i := 0 {Pattern not found}

Fig. 2: The Boyer–Moore algorithm.

In case of partial matchings involving at least one character, we may shift
the pattern more characters than those prescribed by δ1. Instead of determining
the occurrence within the pattern of the text character Ti′ that caused the
mismatch, we can determine a reoccurrence of the pattern suffix already matched.
In this case, Pj+1, . . . , Pm = Ti−m+j+1, . . . , Ti and Pj 6= Ti−m+j . If the suffix
Pj+1, . . . , Pm also appears in P as a substring Pj+1−k, . . . , Pm−k, with Pj−k 6=
Pj , and it is the rightmost such an occurrence, then the pattern may surely be
shifted k characters to the right. It may also happen that such a reoccurrence
may “fall off” the left end of P : a suffix of Pj+1−k, . . . , Pm−k appears as a prefix
of P . In this case, k ≥ j. The definition of the δ2 function is:

δ2(j) = min{k + m− j | k ≥ 1 and (k ≥ j or Pj−k 6= Pj)
and ((k ≥ d or Pd−k = Pd) for j < d ≤ m)}

The value of δ2 always yields a positive shift. Hence, by obtaining the maximum
of both δs, we not only avoid the possibility of a negative shift prescribed by δ1,
but also move the pattern as many characters as possible, given δ1, δ2 and the
current information. Figure 2 shows the BM algorithm.
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3 Logic programming and exact string matching

Having described our main algorithm to deal with, in this section we describe
some logic program transformation tools to be used in our derivations as well as
the main guidelines of these derivations.

3.1 Logic program transformation tools

Equality theory. To use logic programming, we suppose the SLDNF-resolution
rule, and the conventional unification algorithm. Because the unification algo-
rithm of logic programming is greedy and hides some, perhaps useful, infor-
mation, we try to replace it by some explicit equation introduction, which is
basically an introduction of constraints. This equation introduction is logically
justified by using the standard equality theory of first-order logic; to deal with
inequations we suppose Clark’s equality theory [Cla78]. Both of these tools are
applied over Herbrand universes. We will use some restricted forms of equations:
An equation X = Y has normal form if X is a variable and Y is a term with-
out any occurrence of X in Y (occur-check rule). An inequation is the negation
of a normalized equation. Because equation introduction helps us to deal with
several instances of variables, this tool is strongly related to the technique of par-
tial evaluation named bounded static variation (also colloquially know as “The
Trick”), a binding-time source-program transformation [DRK06].

Deterministic unfolding. In the unfold/fold method [PP98], when we unfold a
clause C with respect to an atom q and q is defined by several clauses, we
obtain several clauses again. If we simplify these resultant clauses and get only
one clause, we say that the unfolding is deterministic. If the surviving clause is
unfolded again with respect the same atom A, and we get only one clause again,
and so on, we have a succession of deterministic unfolding steps. If after n+1 of
these unfolding steps we obtain two or more clauses, without any possibility of
eliminating some of them, we stop unfolding at step n, and we have a succession
of deterministic unfolding steps of size n; this succession is a valuable tool for
assuring termination when we apply the unfolding rule; moreover, this succession
also avoids dealing with an over-specialized program. The unfolding rule and the
“extended” folding rule (where several clauses are used for folding) are the basic
components of the disjunctive partial deduction [PPR97]. An opportunity of
simplifying clauses after unfolding is when we have in the body of the resultants
clauses an unsatisfiable set of atoms. For example, if we have:

p(X)←X = b ∧ q(X) (1)
q(X)←X = a (2)
q(X)←X = b (3)

by unfolding q(X) in (1) (underlined subgoal) we have the two clauses: p(X)←
X = b∧X = a and p(X)←X = b∧X = b. The body of the first clause has the
set of equations: {X = b, X = a}, which originates the following false fact: b = a
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(when we apply the substitution σ = {X/b}). Hence, this clause is eliminated
because it is useless in the computational process of resolution (clause removal
rule [FPP02]). The body of the other clause is {X = b, X = b} = {X = b}, and
then the only clause we obtain is: p(X)←X = b, so that the unfolding of clause
(1) with respect to q is deterministic. When we eliminate the occurrence of a
subgoal q within the body of a clause by a succession of deterministic unfolding
steps we say that we have applied total unfolding to q.

Clause splitting rule. The clause splitting rule allows us to treat complementary
cases, perhaps in an exhaustive way. Given the following clause C : p← q by
applying the clause splitting rule [FPP02] we generate a pair of clauses: p←r∧q
and q←s∧q, where r∨s is equivalent to true. The subgoal r can be an equation,
and then s is the negation of this equation (i.e., an inequation). The equations
can be introduced by the equation introduction rule.

We can also apply the clause splitting rule to sets:

p(X)←X ∈ S ∧ g(X) (4)
p(X)←X 6∈ S ∧ g(X) (5)

where S is a set. If S is a finite set, to say, S = {a, b}, the clause splitting rule
over S is extended and is expressed as:

p(X)←X = a ∧ g(X) (6)
p(X)←X = b ∧ g(X) (7)
p(X)←X 6= a ∧X 6= b ∧ g(X) (8)

which essentially means a total unfolding of member/2 and nonmember/2 :

member(E, [A|Ls])← E = A (9)
member(E, [A|Ls])←member(E,Ls) (10)
nonmember(E,Ls])←\+ member(E,Ls) (11)

It is also possible to introduce inequations expressed as inequalities as have been
shown in [FPP02].

Extended folding. In [GK94] we found a basic idea: we can use definitions con-
sisting of several clauses to fold. Applied to partial deduction, this idea gener-
ated the disjunctive partial deduction [PPR97]. Consider the following relation:
R = {(a, a), (a, b), (b, a)} defined on A × A, with A={a, b} This relation is
nondeterministic in the first argument, because (a,X) leaves us X with several
possibilities: either X = a, or X = b. A transformation over this relation al-
lows us to speak of a function instead of a relation: ΛR = {(a, {a, b}), (b, {a})}
[BdM97]. The cost is the following: R ⊂ A × A, but R ⊂ A × P(A), where
P(A) is the power set of A. This particular fact has extensively been exploited
in functional programming to simulate nondeterminism having initially relations
and finally functions (which are implemented in Haskell, for example) [BdM97].
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In logic programming an application of the same technique results more nat-
ural because we can model relations as predicates, and we would have a logic
program as the following: {r(a, a)←, r(a, b)←, r(b, a)←}. By introducing equa-
tions we have:

r(X, Y )←X = a ∧ Y = a (12)
r(X, Y )←X = a ∧ Y = b (13)
r(X, Y )←X = b ∧ Y = a (14)

We note that in the following set of clauses each clause shares with other
the subgoal X = a. We name this common subgoal a pivot. The pivot in the
following set of clauses is boxed-in:

r(X, Y )← X = a ∧ Y = a (15)

r(X, Y )← X = a ∧ Y = b (16)

For folding, we create a new definition: g(Y ) ← Y = a and g(Y ) ← Y = b.
Folding with respect to the pivot X = a and the new definition, we have the fol-
lowing program, consisting of clauses r(a, Y )← g(Y ) and r(b, Y )← h(Y ), where
h(Y )← Y = a (by unfolding g/1 and h/1 in the body of these clauses we would
obtain the original definition of r/2, which is described as in-situ folding.) This
new definition of r/2 is deterministic with respect to its first argument. So that
by using extended folding we decrease or eliminate nondeterminism to obtain
deterministic implementations. This method is rooted in the powerset construc-
tion (named in [BdM97] as Eilenberg–Wright Lemma (p. 122)) to transform
nondeterministic automata into deterministic ones.

3.2 Guidelines of our derivations

As we have seen, the pattern P occurs in a string T if there exist strings X1 and
X2 such that T = (X1 ++ P ) ++ X2. We use this specification as a guide in the
following naive logic program that solves the string-matching problem:

substring(P, T )← append(X1, P, X2) ∧ append(X2, X3, T ) (17)

where append has the usual definition. We should notice the existential variables
X1 and X2, and that we associate append/3 to the left. Adapting our notation
to logic programming, now we consider a particular pattern P = p1 . . . pn; this
pattern is represented by the list [p1, . . . , pn], or as [p1 : pn], where with the
notation Oi : Oj we abbreviate the sequence of objects Oi, Oi+1, . . . , Oj if i < j,
or the sequence Oi, Oi−1, . . . , Oj if j < i. If i = j, Oi : Oj = Oi. Moreover,
we use Ai : Aj = Bi : Bj as an abbreviation of a conjunction of equations:
Ai = Bi ∧ Ai+1 = Bi+1 ∧ . . . ∧ Aj = Bj . Indexes i and j follow the previous
convention if i < j or j > i. Again, if i = j, Ai : Aj = Bi : Bj is reduced to
Ai = Bi.

From the clause (17), and by using some standard techniques of logic program
transformation and partial deduction, we obtain the following clauses:
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Program 1

ssP ([p1 : pm |L ])← (18a)
ssP ([A |L ])← ssP (L) (18b)

This nondeterministic program can be read as a direct implementation of the
left-to-right string-matching algorithm, following the traditional unification al-
gorithm over terms. However, to explicitly control the order of matching via an
equational theory, we introduce equations in the body of clause (18a), to get:

Program 2

ssP ([A1 : Am |L ])←A1 : Am = p1 : pm (19a)
ssP ([A |L ])← ssP (L) (19b)

To deal with a matching schedule from right to left, we invert the order of the
equations of the clause (19a), and because we use a set of variables A1, . . . , Am

to access elements of the pattern, we apply a substitution to clause (19b):

Program 3

ssP ([A1 : Am |L ])←Am : A1 = pm : p1 (20a)
ssP ([A1 : Am |L ])← ssP ([A2 : Am |L ]) (20b)

This program disallows to use texts of length lesser than m. Because this match-
ing schedule, each particular mismatched character involves a suffix of the pat-
tern (included the ε string). Thus, we have that either Am = pm or Am 6= pm;
and, if Am = pm then either Am−1 = pm−1 or Am−1 6= pm−1, and so on. Finally,
if Am : A2 = pm : p2 then either A1 = p1 or A1 6= p1. We call the program incor-
porating in the body of its clauses these equations and inequations a program in
triangular form.

Program 4

ssP ([A1 : Am |L ])←Am : A1 = pm : p1 (21a)
ssP ([A1 : Am |L ])←Am 6= pm ∧ ssP ([A2 : Am |L ]) (21b)
ssP ([A1 : Am |L ])←Am = pm ∧Am−1 6= pm−1 ∧ ssP ([A2 : Am |L ]) (21c)

...
ssP ([A1 : Am |L ])←Am : A2 = pm : p2 ∧A1 6= p1 ∧ ssP ([A2 : Am |L ])(21d)
ssP ([A1 : Am |L ])←Am : A1 = pm : p1 ∧ ssP ([A2 : Am |L ]) (21e)

We note that each clause in Prog. 4 corresponds with one of the following cases:
Clauses (21a) and (21e) deal with a total match and possible reoccurrences of
the pattern, respectively. Clause (21b) treats an initial mismatching. The other
clauses find partial matchings:

ssP ([A1 : Am |L ])←Am : Ak+1 = pm : pk+1∧Ak 6= pk∧ssP ([A2 : Am |L ]) (22)
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where k is such that 1 ≤ k ≤ m−1. Each clause is unfolded enough with respect
to ssP /1 through a succession of deterministic unfolding steps.

In Prog. 4 the nondeterminism has been increased, but we can do the follow-
ing process to decrease it. We select Am = pm as pivot, because this subgoal is
common to the body of several clauses, and define a new predicate to fold some
clauses. Similarly, we select Am−1 = pm−1 as the next pivot. This process gives
us every pivot, consecutively. Without any application of some other rule, apart
from the folding rule, we would get the following cascade-like program:

Program 5

ssP ([A1 : Am |L ])←Am = pm ∧ new1([A1 : Am |L ]) (23)
ssP ([A1 : Am |L ])←Am 6= pm ∧ ssP ([A2 : Am |L ]) (24)

new1([A1 : Am |L ])←Am−1 = pm−1 ∧ new2([A1 : Am |L ]) (25)
new1([A1 : Am |L ])←Am−1 6= pm−1 ∧ ssP ([A2 : Am |L ]) (26)

. . .

newm−1([A1 : Am |L ])←A1 = p1 ∧ newm([A1 : Am |L ]) (27)
newm−1([A1 : Am |L ])←A1 6= p1 ∧ ssP ([A2 : Am |L ]) (28)

newm([A1 : Am |L ])← (29)
newm([A1 : Am |L ])← ssP ([A2 : Am |L ]) (30)

Further constraints will affect the number of new predicates, but the (definition-
folding) process will be the same for each variant. The main idea is to decrease the
length of the size of the list [A2 : Am |L ] at each recursive call of ssP /1, because
when we decrease this size we increase the shift and, therefore, we decrease the
number of comparisons. We will apply deterministic unfolding to carry out this
objective, as we will see in the next section.

4 Deriving the search part of some variants of the
Boyer–Moore algorithm

Now we derive the BM algorithm and some of its variants. First, we derive
variants restricted to use either the δ1 or the δ2 function. Next, we derive the
search phase of the BM algorithm by using the maximum of both functions. We
continue with the derivation of the BMH and the BMPS algorithms. Finally,
we derive the BMAG algorithm. This algorithm differs from the previous ones
because it incorporates a memory, so avoiding at all to access twice or more
times a character text.

We define an auxiliary predicate:

shift(1, [A |L1 ], L1)← (31a)
shift(N, [A |L1 ], L2)←N1 is N − 1 ∧ shift(N1, L1, L2) (31b)

where shift(N,L1, L2) holds when L1 is L2 without its first N elements. This
predicate will be useful in the following.
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A variant involving δ1. We begin by applying the clause splitting rule to Clause
(20b):

Program 6

ssP ([A1 : Am |L ])←Am : A1 = pm : p1 (32a)
ssP ([A1 : Am |L ])←Am = pm ∧ ssP ([A2 : Am |L ]) (32b)
ssP ([A1 : Am |L ])←Am 6= pm ∧ ssP ([A2 : Am |L ]) (32c)

We notice that the negative information of Ak 6= pk in Clause (32c) can be
reinforced with the introduction of the constraints over sets given by ∈ and 6∈.
Let Set(P ) be the set of characters of the pattern P = p1 : pm, and ρ be its
cardinality (ρ ≤ m, where m is the length of the pattern). We apply the clause
splitting rule to (32c), using Am ∈ Sp ∨ Am 6∈ Set(P ), to obtain the following
other two clauses:

ssP ([A1 : Am |L ])←Am 6= pm ∧Am ∈ Set(P ) ∧ ssP ([A2 : Am |L ]) (33a)
ssP ([A1 : Am |L ])←Am 6= pm ∧Am 6∈ Set(P ) ∧ ssP ([A2 : Am |L ]) (33b)

When we eliminate the subgoal (Am ∈ Set(P )) by unfolding, we get ρ new
clauses; a clause, in particular, contains the following equation and inequation:
Am 6= pm, Am = pm in its body, and this clause is eliminated. (Note that
unfolding Am 6∈ Set(P ) means to introduce ρ inequations.) In detail, we have
that from the clause (33a) we get the following new clauses:

ssP ([A1 : Am |L ])←Am 6= pm ∧Am = p1 ∧ ssP ([A2 : Am |L ]) (34)
...

ssP ([A1 : Am |L ])←Am 6= pm ∧Am−1 = pm−1 ∧ ssP ([A2 : Am |L ]) (35)

whereas from the clause (33b) we get the clause:

ssP ([A1 : Am |L ])←Am 6= pm ∧Am 6= p1 ∧
. . . ∧Am 6= pm ∧ ssP ([A2 : Am |L ]) (36)

where we can apply subgoal simplification (Am 6= pm, Am = pk, pk 6= pm implies
Am = pk).

After deterministic unfolding, for each value pi (except for pm, in Clause
(32b)), we have a correspondent shift value. These values are asserted as facts,
and these facts tabulate the δ1 function:

d1(p1, V1)← . . . d1(pm−1, Vm−1)← d1(pm, 1)← d1(x,m)←

where x is a meta-character indicating that x 6∈ Set(P ). Thus, we have the
following program:

Program 7

ssP ([A1 : Am |L ])←Am : A1 = pm : p1 (37a)
ssP ([A1 : Am |L ])← d1(Am, V al) ∧

shift(V al, [A2 : Am |L ], L1) ∧ ssP (L1) (37b)
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Because δ1(pm) = 0 we have to deal with this case in a special form (to force a
shift different from zero, Boyer and Moore put δ1(pm) = 1). A conservative shift
of one character is enough for this case: we refrain from unfolding Clause (32b),
according to Boyer and Moore, but deterministic unfolding could be applied
without any problem to (32b).

A variant involving only δ2. From the program in triangular form we can obtain
a variant related to the δ2 function. To decrease the length of [A2 : An |L ] in the
recursive call of ssP /1, we use deterministic unfolding. Depending on whether
pm : pk = pm+1 : pk+1 and pk−1 6= pk hold either we do not unfold or begin to
unfold with respect to the definition of ssP /1 in Prog. 3.

We can get from the BM algorithm and its δ2 function an analogous of the
next table of the KMP algorithm. Let us consider the following clause:

ssP ([A1 : Am |L ])←Am : Ak+1 = pm : pk+1∧Ak 6= pk∧ssP ([A2 : Am |L ]) (38)

Name Am : Ak+1 = pm : pk+1 ∧ Ak 6= pk a semi-suffix of size k, denoted by
ssuf(k). For each ssuf(k) we obtain a value V sk:

d2(ssuf(1), V s1)← . . . d2(ssuf(m− 1), V sm−1)← d2(ssuf(m), V sm)←

Unfolding each clause of Prog. 4 we would get the δ2 function [HR01]. By using
the shift/3 function:

ssP ([A1 : Am |L ])← d2(ssuf(k), V sk) ∧
shift(V sk, [A2 : Am |L ], L1)) ∧ ssP (L1) (39)

When we execute Prog. 5, this program would incorporate in its search phase
the δ2 function. Nondeterminism, however, has been increased. The technique to
derive a deterministic program is given by the cascade-like program of Subsec-
tion 3.2, where nondeterminism is reduced, except for Clause (21e), which finds
reoccurrences when a pattern overlaps with itself.

The max(δ1, δ2) function and the Boyer–Moore algorithm. Now we analyze the
BM algorithm itself. In the search phase, the BM algorithm uses max(δ1, δ2).
Consider the following subgoal: Am : Ak+1 = pm : pk+1 ∧Ak 6= pk. This subgoal
incorporates information about a semi-suffix of size k, and information about
Ak 6= pk. With respect to the semi-suffix of size k we have found a value associ-
ated with ssuf(k), trough the table d2. With respect to the inequation Ak 6= pk

we also have some information, stored in table d1. Each shift is correct, but our
objective is to have the major shift possible to get the following clause:

ssP ([A1 : Am |L ])← d1(c, V al1) ∧ d2(ssuf(k), V al2) ∧
max(V al1 − (m− k), V al2, V al) ∧
shift(V al, [A1 : Am |L ], L1) ∧ ssP (L1) (40)

(V al1 − (m− k) could be negative or zero, but when taking the maximum, the
0 value is discarded, because V2 is always positive.)
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The justification is as follows. From: {p← r1, p← r2, r1←, r2←} we can
derive a new program, {p←or(r1, r2), or(r1, r2)←r1, or(r1, r2)←r2, r1←, r2←}
where or(r1, r2) is a subgoal having the possibility of producing answers.

The Horspool variant. In [Hor80] it was noticed the only purpose of δ2 is to
optimize the handling of repetitive patterns and avoid the worst case. In [Hor80]
a simplified and practical variang of the BM algorithm was also presented. This
variant deals only with the δ1 function, and a particular value of the δ2 function:
δ2(x)|x=m, where δ2(x)|x=m means to find the rightmost occurrence of pm. The
text character that aligns with pm is always chosen (regardless of the position
where the mismatch occurred). From the clause

ssP ([A1 : An |L ])←Am = pm ∧ ssP ([A2 : An |L ]) (41)

by deterministic unfolding we get δ2(m). If we have δ12(pm) = δ2(m) and
δ12(pk) = δ1(pk), for pk 6= pm, we obtain the Horspool variant. If we do not
unfold clauses related to the other arguments in the δ2 function (BMH algo-
rithm saves preprocessing in this part) we get the BMH algorithm.

The PS variant. After unfolding clause (33a), we get some clauses of the form:

ssP ([A1 : Am |L ])←Am 6= pm ∧Am = pk ∧ ssP ([A2 : Am |L ])

where Am is the rightmost character within the pattern. But the clause splitting
rule can be applied to other rules having an inequation:

ssP ([A1 : Am |L ])←Am : Ak+1 = pm : pk+1 ∧Ak 6= pk ∧ ssP ([A2 : Am |L ])

and then we have a clause of the following form:

ssP ([A1 : Am |L ])←Am : Ak+1 = pm : pk+1 ∧Ak 6= pk

∧Ak = ps ∧ ssP ([A2 : Am |L ])

where ps ∈ Set(P ). If we align with respect to ps we have either some or none de-
terministic unfolding steps. In every case, we have to shift at least one character.
On the other hand, if we do some deterministic unfolding steps in ssP /1 and try
to satisfy the conjunction of equations Am : Ak+1 = pm : pk+1 ∧Ak 6= pk we get
an advance related with δ2. In fact in xpk+1 : pm, according to Boyer and Moore,
we move the pattern over the text a shift given by δ2 or by the value associated
with x (x is a meta-symbol, representing a variable). And, due to pspk+1 : pm

implies xpk+1 : pm, shifts based on pspk+1 : pm are larger than those based on
the max of δ1 and δ2. In a certain way, this variant is most natural than the
BM algorithm because we want exact reoccurrences of substrings. However, the
preprocessing of this variant is very high (we need to consider at least ρ ∗ m
distinct clauses). This variant was given in [PS90]. In the next paragraph we
will see an algorithm endowed with a memory, the BMAG algorithm.
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The BMAG variant. As pointed out in [AG86], when the BM algorithm shifts the
pattern to the right, it does not retain any information about characters already
matched. Thus, each previous variant (and the BM algorithm itself) makes some
unnecessary comparisons. In the following variant of the BM algorithm, we keep
track substrings already matched during previous alignments, and exploit such
recordings later in the matching process. With this method, no character of the
text needs to be accessed more than twice. Moreover, we will see how clause (21e)
helps to resume efficiently the pattern matching process following the detection
of an occurrence of the pattern. At the moment of processing the recursive
call of this clause we obtain the procedure devised by Galil and presented in
[AG86] for detecting consecutive overlapping occurrences at once. Let us suppose

P1 P2 P3 P4 P5

P : a b c a b

T : a b d a b c a b . . .

T1 T2 T3 T4 T5 T6 T7 T8 . . .| {z }
window

(a)

P1 P2 P3 P4 P5

P : a b c a b

T : a b d a b c a b . . .

T1 T2 T3 T4 T5 T6 T7 T8 . . .| {z }
new window

(b)

Fig. 3: Configurations and a transition in the BMAG algorithm.

the configuration given in (a), Fig. 3, where a mismatch occurs between c and
d (T3 6= P3), but the substring ab(= P4P5) of the pattern matches with the
substring ab(= T4T5) of the text. The BM algorithm shifts the pattern from
left to right, and gives us the configuration shown in (b), Fig. 3, where a total
match occurs (underlined characters in the same column indicates a comparison
already made). However, to find this match the BM algorithm has to make five
comparisons: T8 : T4 = P5 : P1, whereas the BMAG algorithm only makes
three comparisons: T8 = P5, T7 = P4 and T6 = P3. This is because the BMAG
algorithm records the previous matching between the substrings P4P5(= ab) and
T4T5(= ab), and does not need to make some comparisons again.

Following our approach to get a δ2 value, we would have the following process.
From clause

ssP ([A1 : A5 |L ])←A5 = b ∧A4 = a ∧A3 6= c ∧ ssP ([A2 : A5 |L ])

we get, by deterministic unfolding, the following one:

ssP ([A1 : A5 |L ])←A5 = b ∧A4 = a ∧A3 6= c ∧ ssP ([A4 : A5 |L ])

I.e., at the recursive call, character inspection begins with A4 instead of A2. At
the recursive call, we have that

ssP ([A
√

1 , A
√

2 , A3, A4, A5 |L])←A5 = b ∧A4 = a ∧A3 = c ∧A
√

2 = a ∧A
√

1 = b
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where the
√

in A
√

1 , and A
√

2 indicates that A1 and A2 are already known.
To avoid unnecessary comparisons, we treat separately each case of overlap-

ping. In our example we continue as follows. We define a predicate ssbac
P :

ssbac
P ([A1, A2, A3, A4, A5 ])←A5 = b ∧A4 = a ∧A3 = c

for avoiding to compare again the substring ab:

ssP ([A1 : A5 |L ])←A5 = b ∧A4 = a ∧A3 6= c ∧ ssbac
P ([A4 : A5 |L ])

Variables A1 and A2 are only used as places to be omitted in a re-scanning.
Further optimizations can be achieved by applying our previous technology to
ssbac

P (clause splitting, deterministic unfolding, and folding, but now only to
A5 = b ∧A4 = a ∧A3 = c).

Because there exist at most m suffixes of a pattern of length m, we deal with
at most m special cases. Even more, some suffixes (implicit in the recursive call)
of the same length can be analyzed as a particular case.

Formally, to derive the BMAG algorithm, we need some means to keep track
of which segments of the text matched some suffix of the pattern. In our deriva-
tion, we detect such suffixes in the recursive call of each clause after applying
deterministic unfolding to such a clause:

ssP ([A1 : Am|L ])←Am : Ak+1 = pm : pk+1 ∧Ak 6= pk ∧ (42)
shift(d(k), [A2 : Am|L ], L1) ∧ ssP (L1) (43)

where d(k) is a displacement value (d(k) is always at least 1). With a displace-
ment of d(k) we detect d(k)− 1 coinciding characters. The complementary part
in the pattern has m− d(k) characters.

sspm:pm−d(k)

P p([A1 : Am|L ])←Am : Am−d(k) = pm : pm−d(k) (44)

Hence, d(k) characters are not more revisited. The new formulation of (43) is:

ssP ([A1 : Am|L ])←Am : Ak+1 = pm : pk+1 ∧Ak 6= pk ∧ (45)
shift(d(k), [A2 : Am|L ], L1) ∧ sspm:pm−d(k)

P (L1) (46)

This is called prefix memorization in [CR02, p.30]. Applying the clause split-
ting rule to the new defined predicates, we create new (sub)-triangular forms,
to deal with every case of mismatching. If there exists a mismatching we call
to ssP /1 (upper level) to deal with a possible total occurrence of the pattern.
Furthermore, it is possible to do some extra deterministic unfolding steps and,
finally, we can apply a systematic folding to the sub-triangular form to reduce
nondeterminism.

Let us detail the procedure. First, we create new definitions:

new([B1 : Bm |L ])←Bm : Bm−k = pm : pm−k (47)
new([B1 : Bm |L ])← ssP ([B1 : Bm|L ]) (48)

We only need to analyze cases from Bm−k to Bm at the next call of ssP /1.
The next task is to define new predicates to separately treat each clause. Now
we apply the clause splitting rule, but only to Bm−k : Bm; next, we apply
deterministic unfolding; finally, we fold for eliminating nondeterminism.
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5 Related work

In [CD78,Dar78,RS83] the authors obtain families of several kind of algorithms
by using formal languages, but the mechanization of their derivations is left as
an open problem. In our case, when dealing with string-matching algorithms,
some parts of our derivations are mechanizable (mainly those parts supported
by partial deduction), but to obtain specific algorithms some human assistance
is necessary. In [PS90] and [Pep91] there are derivations of the search part of
the BMPS variant. In [MACD01] there is a derivation of a simplified version
(which includes the shifts given by the δ1 function) of the search part of the
Boyer–Moore algorithm using a naive specification equipped with a database to
record comparisons. The complete search phase of the Boyer–Moore algorithm
was derived in [DRK06]. In [Bir05] there is a derivation of another variant of
the Boyer–Moore algorithm, relying on the definition of δ2. In contrast to these
works, we have begun with nondeterministic programs, and instead of explicit
backtracking, we have taken benefit from nondeterminism of logic programming.

6 Conclusions

This paper has shown several relationships among variants of an algorithm via
logic program transformation. The selection of design decisions has been guided
by known algorithms. The final programs have some inefficiency related with the
access in linear time of lists. However, it can be asserted that all our machinery
performs well over specifications based on indexing; this has been showed at least
for the BM variant restricted to use only the δ2 function in [HR03].

As future work, a proposal is to add some other string-matching algorithms
to the taxonomy presented here. In fact, at least two left-to-right algorithms
can also be obtained from our techniques by altering the matching schedule:
the Morris–Pratt and the Knuth–Morris–Pratt algorithms. In a similar vein, the
Simon algorithm, as described in [CR94], is another candidate to be derived and
added to the taxonomy. Depending on some more liberal matching schedules,
some other algorithms could be included, for example, those described in [Sun90],
and that hybrid algorithm described in [CP91], based on a complex preprocessing
by factoring of the pattern.

Other possible taxonomies related to text processing would be based on tak-
ing the text as static, instead of the pattern. McCreight and Ukkonen algorithms
would be good candidates to be derived. Approximate string-matching is also
another area to be explored.
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Abstract. Safe is a first-order eager language with facilities for pro-
grammer controlled destruction and copying of data structures. It pro-
vides also regions, i.e. disjoint parts of the heap, where the program allo-
cates data structures. The runtime system does not need a garbage collec-
tor and all allocation/deallocation actions are done in constant time. The
language is aimed at inferring and certifying upper bounds for memory
consumption in a Proof Carrying Code environment. Some of its analyses
have been presented elsewhere [8, 7]. In this paper we present an inference
algorithm for annotating programs with regions which is both simpler to
understand and more efficient than other related algorithms. Program-
mers are assumed to write programs and to declare datatypes without
any reference to regions. The algorithm decides the regions needed by
every function. It also allows polymorphic recursion with respect to re-
gions. We show convincing examples of programs before and after region
annotation, prove the correctness and optimality of the algorithm, and
give its asymptotic cost.

1 Introduction

Safe1 [7] was introduced as a research platform for investigating the suitability of
functional languages for programming small devices and embedded systems with
strict memory requirements. The final aim is to be able to infer —at compile
time— safe upper bounds on memory consumption for most Safe programs. The
compiler produces Java bytecode as a target language, so that Safe programs
can be executed in most mobile devices and web navigators.

In most functional languages memory management is delegated to the run-
time system. Fresh heap memory is allocated during program evaluation as long
as there is enough free memory available. Garbage collection interrupts program
execution in order to copy or mark the live part of the heap so that the rest is
considered as free. This does not avoid memory exhaustion if not enough free
memory is recovered to continue execution. In that case the program simply
? Work supported by the Ministry of Science grants AP2006-02154, TIN2008-

06622-C03-01/TIN (STAMP), and the Madrid Government grant S-0505/TIC/0407
(PROMESAS).

1 http://dalila.sip.ucm.es/safe



aborts. The main advantage of this approach is that programmers do not have
to bother about low level details concerning memory management. Its main
disadvantages are:

1. The time delay introduced by garbage collection may prevent the program
from providing an answer in a required reaction time.

2. Memory exhaustion may provoke unacceptable personal or economic damage
to program users.

3. The programmer cannot easily reason about memory consumption.

These reasons make garbage collectors not very convenient for programming
small devices. A possibility is to use heap regions, which are disjoint parts of the
heap that are dynamically allocated and deallocated. Much work has been done
in order to incorporate regions in functional languages. They were introduced
by Tofte and Talpin [13, 14] in MLKit by means of a nested letregion construct
inferred by the compiler. The drawbacks of nested regions are well-known and
they have been discussed in many papers (see e.g. [4]). The main problem is that
in practice data structures do not always have the nested lifetimes required by
the stack-based region discipline.

In order to overcome this limitation several mechanisms have been proposed.
An extension of Tofte and Talpin’s work [2, 11] allows to reset all the data struc-
tures in a region, without deallocating the whole region. The AFL system [1]
inserts (as a result of an analysis) allocation and deallocation commands sep-
arated from the letregion construct, which now only brings new regions into
scope. In both cases, a deep knowledge about the hidden mechanism is needed
in order to optimize the memory usage. In particular, it is required to write
copy functions in the program which are difficult to justify without knowing the
annotations inferred later by the compiler.

Another more explicit approach is to introduce a language construct to free
heap memory. Hofmann and Jost [5] introduce a pattern matching construct
which destroys individual constructor cells than can be reused by the memory
management system. This allows the programmer to control the memory con-
sumed by the program and to reason about it. However, this approach gives
the programmer the whole responsibility for reusing memory, unless garbage
collection is used.

In order to overcome the problems related to nested regions, our functional
language Safe has a semi-explicit approach to memory control: it combines im-
plicit regions with explicit destructive pattern matching, which deallocates in-
dividual cells of a data structure. In Safe, regions are allocated/deallocated by
following a stack discipline associated to function calls and returns. Each func-
tion call allocates a local working region, which is deallocated when the function
returns. Region management does not add a significant runtime overhead be-
cause all its related operations run in constant time [9]. Notice that regions and
explicit destruction are orthogonal mechanisms: we could have destruction with-
out regions and the other way around. This combination of explicit destruction
and implicit regions is novel in the functional programming field.
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prog → datai
n
; decj

m
; e

data → data T αi
n @ ρj

m = Ck tks
nk @ ρm

l
{recursive, polymorphic data type}

dec → f xi
n @ rj

l = e {recursive, polymorphic function}
e → a {atom: literal c or variable x}

| f ai
n @ rj

l {function application}
| C ai

n @ r {constructor application}
| . . . let, case . . .

Fig. 1. Simplified Safe

Due to the aim of inferring memory consumption upper bounds, at this
moment Safe is first-order. Its syntax is a (first-order) subset of Haskell extended
with destructive pattern matching. Due to this limitation, region inference can
be expected to be simpler and more efficient than that of MLKit. Their algorithm
runs in time O(n4) in the worst case, where n is the size of the term, including
in it the Hindley-Milner type annotations. The explanation of the algorithm and
of its correctness arguments [10] needed around 40 pages of dense writing. So, it
is not an easy task to incorporate the MLKit ideas into a new language.

The contribution of this paper is a simple region inference algorithm for Safe.
If polymorphic recursion is not inferred, it runs in time O(n) in the worst case,
being n as above, while if polymorphic recursion appears, it needs time O(n2) in
the worst case. Moreover, the first phase of the algorithm can be directly inte-
grated in the usual Hindley-Milner type inference algorithm, just by considering
regions as ordinary polymorphic type variables. The second phase involves very
simple set operations and the computation of a fixpoint. Unlike [10], termination
is always guaranteed without special provisions. There, they had to sacrifice prin-
cipal types in order to ensure termination. Due to its simplicity, we believe that
the algorithm can be easily reused in a different first-order functional language
featuring Hindley-Milner types.

The plan of the paper is as follows: In Sec. 2 we summarize the language
concepts and part of its big-step operational semantics. In Sec. 3 the region
inference algorithm is presented in detail, including its correctness and cost.
Section 4 shows some examples of region inference with region polymorphic
recursion. Finally, Sec. 5 compares this work with other functional languages
with memory management facilities.

2 Language Concepts and Inference Examples

2.1 Operational semantics

In Fig. 1 we show a simplified version of the Safe language without the destruc-
tion facilities but with region annotations. A program is a sequence of possibly
recursive polymorphic data and function definitions followed by a main expres-
sion e, using them, whose value is the program result. The abbreviation xi

n

stands for x1 · · ·xn. We use a, ai, . . . to denote atoms, i.e. either program vari-
ables or basic constants. The former are denoted by x, xi, . . . and the latter by
c, ci . . . etc. In general we allow pattern matching in function definitions and also
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(f xi
n@ rj

m = e) ∈ Σ [xi 7→ E(ai)
n
, rj 7→ E(r′

j)
m

, self 7→ k + 1] ` h, k + 1, e ⇓ h′, k + 1, v

E ` h, k, f ai
n@ r′

j

m ⇓ h′ |k, k, v
[App]

j ≤ k fresh(p)

E[r 7→ j, ai 7→ vi
n] ` h, k, C ai

n@r ⇓ h ] [p 7→ (j, C vi
n)], k, p

[Cons]

Fig. 2. Operational semantics of Safe expressions

expressions in function applications, and we use them in the examples of this pa-
per. However, in order to simplify the presentation of the operational semantics
and the typing rules we will omit them there.

Region annotations are region type variables ρ, ρi . . . in datatype definitions
and types, and region variables r, ri . . . in function definitions and applications,
and in constructor applications.

Safe was designed in such a way that the compiler has a complete control on
where and when memory allocation and deallocation actions will take place at
runtime. The smallest memory unit is the cell, a contiguous memory space big
enough to hold any data construction. A cell contains the mark of the constructor
and a representation of the free variables to which the constructor is applied.
These may consist either of basic values or of pointers to other constructions. It is
allocated at constructor application time and can be deallocated by destructive
pattern matching. A region is a collection of cells, not necessarily contiguous
in memory. Regions are allocated/deallocated by following a stack discipline
associated with function calls and returns. Each function call allocates a local
working region, which is deallocated when the function returns.

In Fig. 2 we show those rules of the big-step operational semantics which
are relevant with respect to regions. We use v, vi, . . . to denote values, i.e. either
heap pointers or basic constants, and p, pi, q, . . . to denote heap pointers.

A judgement of the form E ` h, k, e ⇓ h′, k, v means that expression e is
successfully reduced to normal form v under runtime environment E and heap h
with k+1 regions, ranging from 0 to k, and that a final heap h′ with k+1 regions
is produced as a side effect. Runtime environments E map program variables to
values and region variables to actual region identifiers. We adopt the convention
that for all E, if c is a constant, E(c) = c.

A heap h is a finite mapping from fresh variables p to construction cells w
of the form (j, C vi

n), meaning that the cell resides in region j. Actual region
identifiers j are just natural numbers denoting the offset of the region from
the bottom of the region stack. Formal regions appearing in a function body are
either region variables r corresponding to formal arguments or the constant self ,
which represents the local working region. By h] [p 7→ w] we denote the disjoint
union of heap h with the binding [p 7→ w]. By h |k we denote the heap obtained
by deleting from h those bindings living in regions greater than k.

The semantics of a program is the semantics of the main expression e in an
environment Σ, which is the set containing all the function and data declarations.
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Rule App shows when a new region is allocated. Notice that the body of
the function is executed in a heap with k + 2 regions. The formal identifier
self is bound to the newly created region k + 1 so that the function body may
create data structures in this region or pass this region as a parameter to other
function calls. Before returning from the function, all cells created in region k+1
are deleted. In rule Cons a fresh construction cell is allocated in the heap.

2.2 Region annotations

The aim of the region inference algorithm is to annotate both the program
and the types of the functions with region variables and region type variables
respectively. Before explaining the inference algorithm we show some illustrative
examples.

Regions are essentially the parts of the heap where the data structures live.
We will consider as a data structure (DS) the set of cells obtained by starting
at one cell considered as the root, and taking the transitive closure of the relation
C1 → C2, where C1 and C2 are cells of the same type T , and in C1 there is a
pointer to C2. That means that, for instance in a list of type [[a]], we consider
as a DS all the cells belonging to the outermost list, but not those belonging to
the individual innermost lists. Each one of the latter constitute a separate DS.
A DS completely resides in one region. A DS can be part of another DS, or two
DSs can share a third one. The basic values —integers, booleans, etc.— do not
allocate cells in regions. They live inside the cells of DSs, or in the stack.

These decisions are reflected in the way the type system deals with datatype
definitions. Polymorphic algebraic data types are defined through data declara-
tions as the following one:

data Tree a = Empty | Node (Tree a) a (Tree a)

The types assigned by the compiler to constructors include an additional argu-
ment indicating the region where the constructed values of that type are allo-
cated. In the example, the compiler infers:

data Tree a @ ρ = Empty@ ρ | Node (Tree a @ ρ) a (Tree a @ ρ)@ ρ

where ρ is the type of the region argument given to the constructors. After
region inference, constructions appear in the annotated text with an additional
argument r that will be bound at runtime to an actual region, as in Node lt x

rt @ r. Constructors are polymorphic in region arguments, meaning that they
can be applied to any actual region. But, due to the above type restrictions, and
in the case of Node, this region must be the same where both the left tree lt and
the right tree rt live.

Several regions can be inferred when nested types are used, as different com-
ponents of the data structure may live in different regions. For instance, in the
declaration

data Table a b = TBL [(a,b)]
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the following three region types will be inferred for the Table datatype:

data Table a b @ ρ1 ρ2 ρ3 = TBL ([(a, b)@ ρ1]@ ρ2)@ ρ3

In that case we adopt the convention that the last region type in the list is the
outermost one where the constructed values of the datatype are to be allocated.

After region inference, function applications are annotated with the addi-
tional region arguments which the function uses to construct DSs. For instance,
in the definition

concat [] ys = ys

concat (x:xs) ys = x : concat xs ys

the compiler infers the type concat :: ∀aρ1ρ2.[a]@ρ1 → [a]@ρ2 → ρ2 → [a]@ρ2

and annotates the text as follows:

concat [] ys @ r = ys

concat (x:xs) ys @ r = (x : concat xs ys @ r) @ r

The region of the output list and that of the second input list must be the same
due to the sharing between both lists introduced by the first equation. Functions
are also polymorphic in region types, i.e. they can accept as arguments any actual
regions provided that they satisfy the type restrictions (for instance, in the case
of concat, that the second and the output lists must live in the same region).
Sometimes, several region arguments are needed as in:

partition y [] = ([],[])

partition y (x:xs) | x <= y = (x:ls,gs)

| x > y = (ls ,x:gs)

where (ls,gs) = partition y xs

The inferred type is partition :: ∀ρ1ρ2ρ3ρ4.Int → [Int ]@ρ1 → ρ2 → ρ3 → ρ4 →
([Int ]@ρ2, [Int ]@ρ3)@ρ4. The algorithm splits the output in as many regions as
possible. This gives more general types and allows the garbage to be deallocated
sooner.

When a function body is executing, the live regions are the working regions of
all the active function calls leading to this one. The live regions in scope are those
where the argument DSs live (for reading), those received as additional argu-
ments (for reading and writing) and the own self region. The following example
builds an intermediate tree not needed in the output:

treesort xs = inorder (makeTree xs)

where the inferred types are as follows:

makeTree :: ∀aρ1ρ2.[a]@ρ1 → ρ2 → Tree a@ρ2

inorder :: ∀aρ1ρ2.Tree a@ρ1 → ρ2 → [a]@ρ2

treesort :: ∀aρ1ρ2.[a]@ρ1 → ρ2 → [a]@ρ2

After region inference, the definition is annotated as follows:
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fresh(ρself ), ρself 6∈ regions(s) R = regions(ti
n
) ∪ {ρj

l} ∪ regions(s)

Γ + [xi : ti]
n

+ [rj : ρj ]
l
+ [self : ρself ] + [f : ∀ρ ∈ R . ti

n → ρj
l → s] ` e : s

{Γ} f xi
n @ rj

l = e {Γ + [f : gen(∀ρ ∈ R . ti
n → ρj

l → s, Γ )]}
[FUNB]

Σ(C) = σ si
n → ρ → T @ρm � σ Γ = ([ai : si]

n

i=1) + [r : ρ]

Γ ` C ai
n@r : T @ρm [CONS]

Fig. 3. Rule for function definitions

treesort xs @ r = inorder (makeTree xs @ self) @ r

i.e. the intermediate tree is created in the self region and it is deallocated upon
termination of treesort.

The region inference mechanism will not lead to rejecting programs. It always
succeeds although, of course, it will not be able to detect all garbage. Section 3
explains how the algorithm works and shows that it is optimal in the sense that
it assigns as many DS as possible to the self region of the function at hand.

3 The Region Inference Algorithm

The main correctness requirement to the region inference algorithm is that the
annotated type of each function can be assigned to the corresponding annotated
function in the type system defined in [7]. The main constraints posed by that
system with respect to regions are reflected in the function and constructor
typing rules, shown in Fig. 3.

In rule [FUNB] the fresh (local) program region variable self is assigned
a fresh type variable ρself that cannot appear in the function result type. This
prevents dangling pointers arising by region deallocation at the end of a function
call. The only regions in scope for writing are self and the argument regions.

Notice that region polymorphic recursion is allowed: inside the body e, dif-
ferent applications of f may use different regions. We use gen(σ′, Γ ) and tf � σ
to respectively denote (standard) generalization of a type with respect to type
variables excluding region types, and instantiation of a polymorphic type.

The types of the constructors are given in an initial environment Σ built
from the datatype declarations. These types reflect the fact that the recursive
substructures live in the same region. For example, in the case of lists and trees:

[ ] : ∀a, ρ.ρ → [a]@ρ
(:) : ∀a, ρ.a → [a]@ρ → ρ → [a]@ρ
Empty : ∀a, ρ.ρ → Tree a@ρ
Node : ∀a, ρ.Tree a@ρ → a → Tree a@ρ → ρ → Tree a@ρ

As a consequence, rule [CONS] may force some of the actual arguments to live
in the same regions.
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decorProg :: Assumps -> Prog a -> (Assumps, Prog ExpTipo)
decorProg asInit (datas, defs, exp) = (as’,(datas’, concat defs’, exp’))

where (as,datas’) = decorDecsData asInit datas
groups = groupBy sameName defs
(as’, defs’) = mapAccumL decorAndGenOuterDefs as groups
exp’ = decorAndGenMainExp as’ exp

Fig. 4. A high-level view of the Hindley-Milner inference algorithm

3.1 A high-level view of the algorithm

Figure 4 shows a high-level view of the Hindley-Milner (abbreviated HM in the
following) type inference algorithm of the Safe compiler, written in Haskell, in
which some parts have to do with region inference.

The first phase, decorDecsData, annotates the data declarations with region
variables and infers the types of the data constructors. These are saved in the
assumption environment as. A fresh region variable is generated for each non-
recursive nested data type and one more for the type being defined, which is
placed as an additional argument of each constructor. Only the recursive occur-
rences are forced to have the same region arguments. All the region variables are
reflected in the type so that all the regions in which the structure has a portion
are known. In Sec. 2.2 we have shown some examples of the result produced by
this phase.

After this, the equations defs defining functions are grouped by function
name, traversed, and their HM-types and regions inferred for each function (al-
gorithm decorAndGenOuterDefs, see below), accumulating the inferred type in
the assumption environment as in order to infer subsequent function definitions.
Finally, the main expression exp of the program is inferred, and decorated by
decorAndGenMainExp (not shown).

3.2 Region inference of function definitions

Figure 5 shows in Haskell-like pseudocode the HM-inference process for a single
function consisting of a list Defs of equations. Let us call such function f .

We have a decoration phase decorAndGenEqs which generates fresh type
and region type variables, and equations relating types that have to be unified,
but delays all the unifications to a subsequent phase. Some of these equations
correspond to the usual HM type inference, e.g. a = [b] → b, but some other
unify region type variables, e.g. ρ1 = ρ2. The decoration phase generates a
set Freshexpl of fresh region type variables assigned to the region arguments of
constructor applications and (already inferred) function applications. This set
will be needed in the second phase of region inference.

Unification equations are solved by solveEqs and handleRecCalls. The former
solves all the equations in the usual HM style except those related to the recursive
applications of f , which are solved in a special way by the latter. This is due to
the fact that the type trecj of every application of f should be a fresh instance
of the HM type t of the function with respect to the region types. Each region
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decorAndGenOuterDefs Γ Defs = (Γ ∪ [f 7→ t+],Defs ′′)
where f = extractFunctionName Defs

(Defs ′,Eqs,Freshexpl , trecj
p
) = decorAndGenEqs Γ Defs

θ1 = solveEqs Eqs
t = θ1(type Defs ′)
(θ2, ϕj

p) = handleRecCalls t (θ1(trecj
p
))

θ = θ2 ◦ θ1

Rexpl = θ(Freshexpl)
(θself , t

+,RegMap) = inferRegions t Rexpl ϕj
p

Defs ′′ = annotateDef (θself ◦ θ) RegMap

Fig. 5. HM-type and region inference for a single function

inferRegions t Rexpl ϕj
p = ([ρ 7→ ρself | ρ ∈ Rself ], ti

n → ρk
m → t′, [ρk 7→ rj

m])
where ti

n → t′ = t
Rout = regions t′

Rin = regions ti
n

Rarg = Rexpl ∩ (Rin ∪Rout)
(R′

arg , R
′
expl) = computeRargFP Rin Rout Rarg Rexpl ϕj

p

Rself = R′
expl − (Rout ∪Rin)

ρk
m = R′

arg

computeRargFP Rin Rout Rarg Rexpl ϕj
p

| Rarg == R′
arg = (R′

arg , R
′
expl)

| otherwise = computeRargFP Rin Rout R′
arg R′

expl ϕj
p

where R′
expl = Rexpl ∪

Sp
j=1 {ϕj(ρ) | ρ ∈ Rarg}

R′
arg = R′

expl ∩ (Rin ∪Rout)

Fig. 6. Second phase of the region inference algorithm

substitution ϕj reflects this fact by mapping the region type variables in t to
those in trecj .

The next step is the application of the final substitution θ to the set Freshexpl

of explicit region types obtained above, obtaining the smaller set Rexpl . Then, the
second and final phase, inferRegions, of region inference is done. Its purpose is
to detect how many explicit region arguments the (possibly recursive) function
f must have, and to infer which region types must be assigned to the local
working region self . This algorithm is depicted in Fig. 6 and explained in the
next section. It delivers a substitution θself mapping some region type variables
to the reserved type variable ρself assigned to the local region self , a map RegMap
mapping some other region type variables to region arguments, and the extended
function type t+. The last step adds these region arguments to the definition of f .
The function’s body is traversed again and the above substitutions and mappings
are used to incorporate the appropriate region arguments to all the expressions,
including the recursive applications of f . Additionally, the final substitution
θself ◦ θ is applied to all the types.

3.3 Second phase of region inference

Algorithm inferRegions of Fig. 6 receives the type t obtained for the function f
by the HM inference, the set Rexpl of initial explicit region types, and the list of
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substitutions ϕj
p associated to the recursive applications of f . First, it computes

the sets Rin and Rout of region type variables of respectively the argument and
the result parts of t. Let ρself be an additional fresh type variable for self .

Given these three sets, the region inference problem can be specified as finding
three sets R′

expl , R′
arg and Rself , respectively standing for the sets of final explicit

region types, of region types needed as additional arguments of f , and of region
types that must be unified with ρself , subject to the following restrictions:

1. R′
expl ⊆ Rself ∪R′

arg 3. Rself ∩ (Rin ∪Rout) = ∅
2. Rself ∩R′

arg = ∅ 4. Every recursive application of f is typeable

The first one expresses that everything built by f ’s body must be in regions in
scope. The second and third ones state that region self is fresh and hence differ-
ent from any other region received as an argument or where an input argument
lives. These restrictions and the extension of (3) to Rout are enforced by the
typing rule [FUNB]. The last one can be further formalised by requiring that f ’s
type, extended with the region arguments in R′

arg , can produce type instances
for typing all the recursive applications of f , each one extended with as many
region arguments as the cardinal of R′

arg . So, in order to satisfy restriction (4)
one must provide a decoration of each recursive application of f with appropri-
ate region arguments, of region types belonging either to Rself or to R′

arg , as
restriction (1) requires.

In Appendix ?? we show that any sets R′
expl , R′

arg and Rself satisfying these
restrictions produce a version of f which admits a type in the type system. The
correctness of the type system with respect to the semantics was established in
[7]. There, we proved that dangling pointers arising from region deallocation or
destructive pattern matching are never accessed by a well-typed program.

Notice that an algorithm choosing any R′
arg ⊇ R′

expl and Rself = ∅ would be
correct according to this specification. But this solution would be very poor as,
on the one hand no construction would ever be done in the self region and, on
the other, there might be region arguments never used. We look for an optimal
solution in two senses. On the one hand, we want R′

arg to be as small as possible,
so that only those regions where data are built are given as arguments. On the
other hand, we want Rself to be as big as possible, so that the maximum amount
of memory is deallocated at function termination.

3.4 The kernel of the algorithm

Our algorithm initially computes Rarg = Rexpl ∩ (Rin ∪ Rout), by using the
set Rexpl of initial explicit region types. Then, it starts a fixpoint algorithm
computeRargFP (see Fig. 6) trying to get the type of f ’s recursive applications
as instances of the type of f extended with the current set Rarg of arguments.
It may happen that the set of explicit regions R′

expl may grow while considering
different applications (see the examples in Sec. 4). Adding more explicit variables
to one application will influence the type of the applications already inferred.
As R′

arg depends on R′
expl , it may also grow. So, a fixpoint is used in order

to obtain the final R′
arg and R′

expl from the initial ones. Due to our solution
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above, R′
arg cannot grow greater than Rin ∪Rout , so termination of the fixpoint

is guaranteed. Once obtained the final R′
arg and R′

expl , the set Rself is computed
as Rself = R′

expl − (Rin ∪ Rout). Notice that R′
arg = R′

expl ∩ (Rin ∪ Rout) is an
invariant of the algorithm.

We show below that these choices maximise the data allocated to the self
region, i.e. maximises garbage destruction.

3.5 Correctness, optimality and efficiency

First we prove that the proposed solution satisfies the above specification:

1. R′
expl ⊆ (R′

expl − (Rin ∪Rout)) ∪ (R′
expl ∩ (Rin ∪Rout))

2. (R′
expl − (Rin ∪Rout)) ∩ (R′

expl ∩ (Rin ∪Rout)) = ∅
3. (R′

expl − (Rin ∪Rout)) ∩ (Rin ∪Rout) = ∅

The three immediately follow by set algebra. We will show now that it is optimal:
let us assume a different solution R̂self , R̂expl , R̂arg satisfying the above restric-
tions. Notice that Rexpl ⊆ R′

expl by construction. Without loss of generality we
can rename those variables in R̂expl which decorate copy expressions, constructor
applications and function calls differerent from f , so that such decorations coin-
cide with those in R′

expl . After such renaming Rexpl ⊆ R̂expl . We can also rename
the argument regions in recursive calls to f that also appear in R′

expl . For exam-
ple, assume there is a recursive call decorated by R′

expl as f :: ti
n → ρ′1 → ρ′2 → t.

If that recursive call was decorated by R̂expl as f :: t′i
n
→ ρ̂1 → ρ̂2 → ρ̂3 → t′,

then ρ̂1 would be renamed as ρ′1 and ρ̂2 as ρ′2.
We must show that R̂self ⊆ Rself and R′

arg ⊆ R̂arg . Let us assume ρ ∈ R′
arg .

By definition of R′
arg , ρ ∈ R′

expl and ρ ∈ Rin ∪ Rout . By (3), ρ ∈ Rin ∪ Rout

implies that ρ /∈ R̂self . Now we distinguish two cases:

ρ ∈ Rexpl As Rexpl ⊆ R̂expl , then ρ ∈ R̂expl . By (1) ρ ∈ R̂arg .
ρ ∈ R′

expl −Rexpl If ρ ∈ R̂expl , then by ρ ∈ R̂arg . Otherwise, R′
expl contains more

explicit variables which are also arguments of f than R̂expl . This case is not
possible because R′

expl is the least fixpoint of function computeRargFP by
construction. By (4), R̂expl is also a fixpoint of computeRargFP ; otherwise,
the recursive calls would not be typeable.

Consequently, ρ ∈ R′
arg . So, Rarg is as small as possible. By constraints (2)

and (1), then Rself is as big as possible.
Our sets are implemented as balanced trees, and operations such as ∪, ∩,

and ‘−’ are done in a time in Θ(n + m), being n and m the cardinalities of
the respective sets, so each iteration of the fixpoint algorithm is linear with the
number of region type variables occurring in a function body. As it is done in
[10], considering as the term size n the sum of the sizes of the abstract syntax
tree and of the HM type annotations, each iteration needs time linear with this
size. If several iterations are needed, these cannot be more than the number of
region type variables in Rin ∪Rout . This gives us O(n2) cost in the worst case.
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4 Examples

As a first example, consider the previously defined function partition. A region
variable ρ1 is created for the input list, so that it has type [Int ]@ρ1. In addi-
tion seven fresh type region variables are generated, one for each constructor
application, let say ρ2 to ρ8, and so Freshexpl = {ρ2, . . . , ρ8}. We show them as
annotations in the program just in order to better explain the example:

partition y [ ] = ([ ] :: ρ2, [ ] :: ρ3) :: ρ4

partition y (x : xs) | x ≤ y = (x : ls :: ρ5, gs) :: ρ6

| x > y = (ls, x : gs :: ρ7) :: ρ8

where(ls, gs) = partition y xs

The type inference rules generate the following equations relative to these type
region variables: ρ2 = ρ5, ρ3 = ρ7, and ρ4 = ρ6 = ρ8, so the initial Rexpl in this
case is {ρ2, ρ3, ρ4}. After unification, the type of partition is Int → [Int ]@ρ1 →
([Int ]@ρ2, [Int ]@ρ3)@ρ4, so Rin = {ρ1} and Rout = {ρ2, ρ3, ρ4}. Then, Rarg =
{ρ2, ρ3, ρ4}. Now we shall compare the type of the definition (augmented with
the variables of Rarg) and the type used in the recursive call, where the tuple
(ls, gs) is assumed to live in the region ρ9.

Definition: Int → [Int ]@ρ1 → ρ2 → ρ3 → ρ4 → ([Int ]@ρ2, [Int ]@ρ3)@ρ4

Rec. call: Int → [Int ]@ρ1 → ρ2 → ρ3 → ρ9 → ([Int ]@ρ2, [Int ]@ρ3)@ρ9

We obtain the region substitution ϕ = [ρ1 7→ ρ1, ρ2 7→ ρ2, ρ3 7→ ρ3, ρ4 7→ ρ9].
As a consequence, the variable ρ9 is made explicit, so Rexpl = {ρ2, ρ3, ρ4, ρ9}.
The set Rarg does not change and hence the fixpoint has been computed. We
get Rself = {ρ9} and the program is annotated as follows:

partition :: Int → [Int ]@ρ1 → ρ2 → ρ3 → ρ4 → ([Int ]@ρ2, [Int ]@ρ3)@ρ4

partition y [ ] @ r2 r3 r4 = ([ ]@r2, [ ]@r3)@r4

partition y (x : xs) @ r2 r3 r4 | x ≤ y = ((x : ls)@r2, gs)@r4

| x > y = (ls, (x : gs)@r3)@r4

where (ls, gs) = partition y xs @ r2 r3 self

Notice that the tuple resulting from the recursive call to partition is located in
the working region. Without polymorphic recursion this tuple would have to be
stored in the output region r4, requiring O(n) space in a caller region.

Another example is the dynamic programming approach to computing bi-
nomial coefficients by using the Pascal’s triangle. We start from the unit list
[1], which corresponds to the 0-th row of the triangle. If [x0, x1, . . . , xi−1, xi] are
the elements located on the i-th row, then the elements of the i + 1-th row are
given by the list [x0 +x1, x1 +x2, . . . , xi−1 +xi, xi]. The binomial coefficient

(
n
m

)
can be obtained from the m-th element in the n-th row of the Pascal’s triangle.
Function sumList , computes the i + 1-th row of the triangle from its i-th row:

sumList (x : [ ]) = (x : [ ] :: ρ2) :: ρ3

sumList (x : xs) = (x + y : sumList xs) :: ρ4 where (y : ) = xs
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In the definition above we just show those region variables belonging to
Freshexpl . Let us assume that after unification the input list has type [Int ]@ρ1. In
addition, the variables ρ2, ρ3 and ρ4 are unified, so Rexpl = {ρ2} and the inferred
type (without region parameters) for sumList is [Int ]@ρ1 → [Int ]@ρ2. Hence we
get Rin = {ρ1}, Rout = {ρ2} and Rarg = {ρ2}. We extend the signature of
sumList to [Int ]@ρ1 → ρ2 → [Int ]@ρ2.

Next we analyse the recursive call. Since the inferred type for xs is [Int ]@ρ1

and the type of the recursive call’s result is [Int ]@ρ2, the type for sumList in
this call is [Int ]@ρ1 → [Int ]@ρ2. By pairing with the type of sumList in the
definition, we get that the additional argument needed in the recursive call also
has type ρ2. Therefore, ρ2 is added to the set of explicit variables Rexpl . Since
it was already in this set, Rexpl stays the same as the one calculated previously
and hence Rarg also does, so the fixpoint has been reached. Finally we obtain
Rself = ∅ and the function is annotated as follows:

sumList :: [Int ]@ρ1 → ρ2 → [Int ]@ρ2

sumList (x : [ ]) @ r = (x : ([ ] @ r))@ r
sumList (x : xs) @ r = (x + y : sumList xs @ r) @ r where (y : ) = xs

Function pascal iterates over the initial list in order to get the desired row.
Below we show the region variables generated in constructor applications and in
non-recursive function applications, just after type unification:

pascal 0 = (1 : [ ] :: ρ1) :: ρ1

pascal n = (1 : sumList (pascal (n− 1))) :: ρ1

The type inferred for pascal is Int → [Int ]@ρ1. Hence Rin = ∅, Rout = {ρ1}
and Rexpl = {ρ1}, which gives us an initial Rarg = {ρ1}. The type signature
for pascal changes accordingly to Int → ρ1 → [Int ]@ρ1. Let us assume that the
result of the recursive call to pascal has type [Int ]@ρ2. Therefore, the type of
this function in the recursive call is Int → ρ2 → [Int ]@ρ2. Since ρ2 is now made
explicit, it is added to Rexpl , which now contains the region variables {ρ1, ρ2}.
However, Rarg stays the same and hence the fixpoint has been reached. Finally,
we get Rself = {ρ2} and the program is annotated as follows:

pascal :: Int → ρ1 → [Int ]@ρ1

pascal 0 @ r = (1 : [ ] @ r)@ r
pascal n @ r = (1 : sumList (pascal (n− 1) @ self ) @ r) @ r

The resulting list from the recursive call to pascal will be destroyed once the
calling function finishes. Hence a function call pascal n has a cost of O(n) in
space. Without polymorphic recursion the result of every recursive call would be
built in the output region r, which would imply a cost of O(n2) in space.

5 Related Work and Conclusions

The pioneer work on region inference is that of M. Tofte, J.-P. Talpin and their
colleagues on the MLKit compiler [14, 10] (in what follows, TT). Their language
is higher-order and they also support polymorphic recursion in region arguments.
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The TT algorithm has two phases, respectively called S and R. The S-algorithm
just generates fresh region variables for values and introduces the lexical scope of
the regions by using a letregion construct. The R-algorithm is responsible for
assigning types to recursive functions. It deals with polymorphic recursion and
also computes a fixpoint. The total cost is in O(n4). The meaning of a typed
expression letregion ρ in e : µ is that region ρ does not occur free in type
µ, so it can be deallocated upon the evaluation of e. Our algorithm has some
resemblances with this part of the inference, in the sense that we decide to unify
with ρself all the region variables not occurring in the result type of a function.
They do not claim their algorithm to be optimal but in fact they create as many
regions as possible, trying to make local all the regions not needed in the final
value. One problem reported in [12] is that most of the regions inferred in the first
versions of the algorithm contained a single value so that region management
produced a big overhead at runtime. Later, they added a new analysis to collapse
all these regions into a single one local to the invocation (allocated in the stack).
So, having a single local region self per function invocation does not seem to
us to be a big drawback if function bodies are small enough. We believe that
polymorphic recursion has a much bigger impact in avoiding memory leaks than
multiplicity of local regions. So, we claim that the results of our algorithm are
comparable to those of TT for first-order programs.

A radical deviation from these approaches is [4] which introduces a type sys-
tem in which region life-times are not necessarily nested. The compiler annotates
the program with region variables and supports operations for allocation, releas-
ing, aliasing and renaming. A reference-counting analysis is used in order to
decide when a released region should be deallocated. The language is first-order.
The inference algorithm [6] can be defined as a global abstract interpretation
of the program by following the control flow of the functions in a backwards
direction. Although the authors do not give either asymptotic costs or actual
benchmarks, it can be deduced that this cost could grow more than quadrati-
cally with the program text size in the worst case, as a global fixpoint must be
computed and a region variable may disappear at each iteration. This lack of
modularity could make the approach unpractical for large programs.

Another approach is [3] in which type-safe primitives are defined for creat-
ing, accessing and destroying regions. These are not restricted to have nested
lifetimes. Programs are written and manually typed in a C-like language called
Cyclone, then translated to a variant of λ-calculus, and then type-checked. So,
the price of this flexibility is having explicit region control in the language.

The main virtue of our design is its simplicity. The previous works have no
restrictions on the placement of cells belonging to the same data structure. Also,
in the case of TT and its derivatives, they support higher-order functions. As a
consequence, the inference algorithms are more complex and costly. In our lan-
guage, regions also suffer from the nested lifetimes constraint, since both region
allocation and deallocation are bound to function calls. However, the destructive
pattern matching facility compensates for this, since it is possible to dispose of
a data structure without deallocating the whole region where it lives. Alloca-
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tion and destruction are not necessarily nested, and our type system protects
the programmer against misuses of this feature. Since allocation is implicit, the
price of this flexibility is the explicit deallocation of cells.
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Abstract. In this paper we present the design and implementation of
pFun, a semi-explicit parallel purely functional language. Parallelism is
introduced in pFun through annotations. These annotations indicate ex-
pressions that can be evaluated in parallel with the rest of the pro-
gram. Task creation, synchronization and scheduling of computations
on processors are managed automatically by pFun’s runtime system.
pFun’s programming model and runtime system are described, and pre-
liminary measurements of the current prototype implementation on an
SMP-machine, a Beowulf Cluster and an small heterogeneous GRID are
presented.

1 Introduction

With the arrival of multi-core chips for domestic computers, parallel program-
ming is becoming a mandatory feature in programming languages. Furthermore,
networks are increasingly pervasive, and big companies are using clusters or grids
to solve large-scale computation problems. Parallel programming is hard, and
it is difficult to find programmers that fully understand concurrency [23], even
more considering the diversity of parallel architectures.

To address these challenges, we advocate the need of a programming platform
that hides most aspects of the architecture being used and limits the program-
mer’s task to annotate expressions in the program that may be evaluated in
parallel. Such a programming platform must be supported by an advanced run-
time system that provides automatic creation, synchronization and scheduling
of computations on processors.

Purely functional languages have an interesting property, called referential

transparency, that allows subexpressions of a purely functional program to be
evaluated in parallel in any order, always delivering the same final result. Subex-
pressions of a program will never have implicit control dependencies between
them, as the ones introduced by assignment [11]. Although referential trans-
parency allows the evaluation of any sub-expression of a program in parallel, in
practice that would generate tasks that are too small in comparison with the
overhead of creating concurrent tasks to evaluate them [13]. Semi-explicit paral-
lel functional languages [11] are languages that provide a mechanism to annotate



potentially parallel tasks and to control the granularity of these tasks but hide
from the programmer aspects as task creation, synchronization and scheduling.

In this paper, we present pFun, a strict, strongly typed, semi-explicit parallel
functional language. Parallelism is introduced in pFun through two constructs:
par and sync, that provide an abstraction similar to Multilisp’s futures [20]
(Section 2.1). Creation, distribution and synchronization of tasks are left to the
implementation of the language, i.e., its runtime system. The par and sync

primitives are low level constructs to express parallelism and they can be used
to implement higher-level coordination primitives, such as algorithmic skeletons,
i.e., higher-order functions that encapsulate common patterns of parallel com-
puting [6].

The execution of programs on heterogeneous environments is provided by
compiling programs into architecture-independent byte-code, and pFun’s run-
time system provides ways for serializing and communicating computations be-
tween different processes or hosts. pFun’s runtime system is implemented using
standard C and TCP/IP sockets for communication, maintaining a high degree
of portability. Distribution and scheduling of tasks is provided automatically by
the runtime system that is based on the GUM [25] virtual machine (Section 3.1).

This paper describes the design and implementation of pFun. The paper is
organized as follows: In the next section, we explain the pFun language and
its primitives for parallel programming through examples. In section 3, pFun’s
runtime system is described. Section 4 gives preliminary performance measure-
ments of six different parallel programs. Finally, conclusions and future work are
discussed in Section 6.

2 The pFun Language

pFun is a strict parallel purely functional language with a syntax similar to the
Haskell language [17]. The reader should be aware that pFun is not Haskell. Its
syntax is similar to Haskell only for convenience.

pFun’s syntax, semantics and parallel primitives will be presented through
examples in the following Sections.

2.1 The pFun primitives for expressing parallelism

The pFun language provides two basic primitives for expressing parallelism: par
and sync. The par primitive is used to express potential parallelism. It takes
as an argument a pFun expression of any type and returns a reference to a Par
value that represents an expression that could be evaluated in parallel:

par :: a -> Par a

The par primitive only indicates potential parallelism in the program and it
does not guarantee that the expression will be evaluated in parallel with the rest
of the program. Task creation, scheduling, distribution and synchronization are
left to the implementation of the language described in Section 3.
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The sync primitive receives as an argument a Par value and returns the
result of the evaluation of that expression:

sync :: Par a -> a

The operational behavior of the sync primitive is to block in its argument
if it is being evaluated (by a different processor or remote location) or to create
a local thread to evaluate it. The sync primitive will only proceed once its
argument is evaluated to normal form.

The par and sync primitives provide the same abstraction as futures in
Multilisp. The support for futures in Multilisp is given by two primitives, that
would have the following types in Haskell:

future :: a -> a

touch :: a -> a

The future primitive creates a task to evaluate its argument and returns a
placeholder for the value that will be computed by the task. When an expression
needs the value of a future, it can touch the future. If the future is unresolved,
touch will block until the future is completely evaluated. In Multilisp, a future
can also be implicitly touched by strict operations, i.e., if a strict operation needs
the value of a future, it will block until the result is computed. The future and
touch functions have similar expressiveness to par and sync. In pFun, the only
way to get the result of a task is by using sync. This resembles the way the
future abstraction is provided in modern object oriented languages like Java [9]
and PLinQ [7]. Implicit touching of futures in Multilisp adds a high overhead
in the implementation as every strict function must check if its argument is a
value or a future [20, 21]. As pFun is a strongly typed language checking tags
at runtime is not necessary for all operations. The only operation that needs to
check tags is sync, as described in section 3.4. By wrapping a task in an ADT,
pFun’s static type system can guarantee that sync will always be applied to Par

objects before they are used.
We plan in the future to investigate how to, based on type information,

provide implicit touching of tasks by automatically inserting the sync operation
in expressions.

2.2 Properties of par and sync

Semi-explicit parallel functional languages like Multilisp, GpH [24] and pFun
break the abstraction offered by functional languages as programmers now have
to express fork/join parallelism in the code. Although primitives to express
fork/join parallelism were introduced, pFun is still a purely functional language.
The primitives are well integrated in the language in the sense that the pro-
grammer can reason about programs as if they were sequential. For any purely
functional expression exp written in pFun, the following expression will always
evaluate to true:

sync (par exp) == exp

81



It does not matter if a Par value is evaluated locally or on a remote processor,
it will always return the same result. Hence, the following function

idps :: a -> a

idps x = sync (par x)

is equal to the identity function (id):

id x == idps x

for any expression x written in pFun.
If someone wants to reason about par and sync, the Par data type should

be seen as an ADT:

data Par a = Par a

par :: a -> Par a

par x = Par x

sync :: Par a -> a

sync (Par x) = x

We are currently developing an operational semantics of pFun so that we can
reason not only about the parallel algorithms but also about coordination, i.e.,
how tasks are created, synchronized and distributed. The semantics of pFun is
work in progress and a draft version is available [19].

2.3 Example 1: Parallel Fibonacci

In this section we present a naive implementation of a parallel fibonacci function,
just to demonstrate the use of the par and sync. A first parallel version of the
fibonacci function can be implemented as:

parFib n = if (n<=1) then 1

else let

fib2 = par (parFib (n-2));

fib1 = par (parFib (n-1))

in (sync fib2) + (sync fib1);

In the definition of parFib, the two recursive calls are marked with the par

primitive to be computed in parallel. It can be very inefficient to create parallel
tasks to evaluate every recursive call to parFib, since calculating fibonacci of
small numbers is a fine grained task. To solve this problem, we can write a more
efficient version of parFib that only creates parallel tasks when the argument
supplied to parFib is larger than a threshold:

parFib n t = if (n<=t) then (seqFib n)

else let

fib2 = par (parFib (n-2) t);

fib1 = par (parFib (n-1) t)

in (sync fib2) + (sync fib1);
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This new version of parFib takes an extra argument that controls the amount
of parallel tasks created: if the argument supplied to parFib is smaller than the
threshold t, then seqFib is used instead of parFib.

2.4 Example 2: The parMap Skeleton

The par and sync primitives can be seen as low level constructs for parallel
programming. Using these primitives it is possible to write more powerful ab-
stractions for the pFun language, such as Algorithmic Skeletons [6]. Algorithmic
skeletons are higher-order functions that encapsulate common patterns of par-
allel computation.

For example, the function map, common in widely-used functional languages,
is a higher-order function that takes two arguments, a function and a list, and
applies the function to every element of the list generating a new list. A parallel
map is a function that has the same type as the sequential map but applies the
function argument to every element of the list in parallel.

To implement a parallel map in pFun, we first need a function to create parallel
tasks:

parList:: (a->b) -> [a] -> [Par b]

parList f l = case l of

[] -> [];

(x:xs) -> (par (f x)) : (parList f xs);

The function parList creates a list of possible parallel tasks, and we need a
way of accessing the values computed by these tasks:

syncList :: [Par a] -> [a]

syncList list = map sync list;

Finally, the parMap skeleton is implemented using the functions parList and
syncList:

parMap :: (a->b) -> [a] -> [b]

parMap f l = syncList (parList f l);

Parallelism arises because parMap first uses parList to create the Par ob-
jects, before syncList is used. If there are processors available they will start
executing these Pars. Once all Pars are created, syncList is used to collect the
results. When syncList tries to consume the list produced by parList, it will
either block waiting for the result of a Par that is already being computed (in
that case the processor executing syncList will get another task to execute), or
will start executing one of the Par objects in the list.

3 The pFun Compiler and Runtime System

3.1 Distributed Scheduling

The pFun runtime runs a dynamic scheduler implementing a work stealing strat-
egy. This scheduling is particularly interesting to exploit the inherent nested
fork-join program structure obtained by the par/sync parallel constructors.
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Work stealing is a general denomination of a receiver-initiated class of dis-
tributed load balancing schedulers. The basic algorithm assumes that the re-
sponsibility for managing and executing the set of tasks generated by a running
application is shared among processors of a parallel machine. The number of
tasks executing simultaneously on each processor is limited in order to allow
each processor to maintain a reserve of work represented by a ready tasks queue.
The scheduler uses the length of ready queues as the load information. Also dis-
tributed among the processors is the control for scheduling decisions. Depending
on the size of such queues a processor can start a scheduling operation. A proces-
sor sends a request for new ready tasks (a work steal) to another randomly chosen
processor when its local ready queue reaches a value below of a certain limit.
When a processor receives a steal message it will answer with a task taken from
its local queue if the amount of work in reserve is above a certain limit; otherwise
the message is forwarded to another randomly chosen processor. pFun’s runtime
system was mainly inspired by GUM (Graph reduction for a Unified Machine
model) [25], a distributed virtual machine that implements GpH [24], a Haskell
extension for parallel programming. Local thread scheduling and synchroniza-
tion are implemented in a similar way to GUM. The main differences are on
the way work is distributed between nodes and on the portability of the system.
The pFun runtime system was designed to be more adaptable to heterogeneous
environments. Programs are compiled into byte-code, and the runtime system is
implemented using standard C and TCP/IP sockets for communication, main-
taining a high degree of portability. The current prototype implementation of
pFun uses a simpler distributed model than GUM, based on work servers and
slaves. The slave nodes are dedicated to execute tasks while work servers can
also answer steal requests. The par primitive adds a task to the ready queue of
a work server. Slaves are hosts that connect to a work server asking for compu-
tations to execute. A slave receives work, executes it, and sends the result back
to its server. Slaves keep no state: a message containing work carries all the code
and data needed to execute it. That is interesting for large scale networks since
the code for the application does not need to be pre-loaded on all hosts. Having
the pFun system installed on all locations, we can start a pFun program on one
host and it will spread to all locations. GUM is implemented on top of PVM
and is designed to run on Beowulf clusters, hence all PEs (Processing Elements)
know each other and they all function as work servers. GUM is also a closed
system: all PEs must have the machine code for the application and once the
system is running, no other PE can join the computation, while in pFun’s model,
slaves and work-servers can join the computation at anytime. These differences
also allow a higher degree of fault-tolerance in pFun: In GUM, if one of the PEs
dies the whole computation has to stop as the state of the computation is shared
by all PEs. If a work server detects that a slave died it could send the task that
was being evaluated by the dead slave to another one (although in the current
system, if a work server dies, it can not be recovered). The fact messages con-
tain the code and data needed to execute tasks allows slaves to be executed in
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Bag-Of-Tasks GRID middlewares like OurGrid [5], something that we want to
explore in the future.

pFun’s simpler distributed model and the compilation into byte-codes allow
the system to be used on heterogeneous environments with the cost of a poor per-
formance on divide-conquerer parallel applications (as can be seen in Section 4).
As future work, we plan to modify the current prototype to better exploit the
characteristics of different parallel architectures (Section 6).

3.2 The compiler

The current prototype implementation of pFun supports a subset of Haskell’s
syntax with lets, algebraic data types and pattern matching (as in the exam-
ples given in section 2). Programs are compiled into a set of supercombinators
(functions with no free variables) in the way described in [18]. These supercom-
binators are compiled into architecture independent byte-code (each supercom-
binator generates a byte-code file). Having no free variables makes it easier to
implement the serialization algorithms as there are no environments to be com-
municated. As the subset of Haskell implemented is accepted by any Haskell
compiler, type checking of parallel programs is done using GHCi [10] using the
sequential definitions of par and sync given in section 2. We plan in the future
to have our own implementation of type checking, specially to investigate the
automatically insertion of the sync primitive described in section 2.

3.3 The Byte-Code Interpreter

The byte-code interpreter is an implementation of the SECD machine [15] using
only one stack, and stack frames to separate nested function calls. The inter-
preter, at run time, allocates its internal structures in a garbage collected heap
(section 3.6).

3.4 Distributed Execution

Even though pFun is a strict functional language, in which the arguments of
functions are evaluated before function application, the par primitive has a dif-
ferent semantics. The par primitive creates a suspension of its argument in the
heap. A suspension represents an unevaluated expression. Suspensions are also
used to implement partial applications of curried functions. For example, the
following expression:

par (f arg1 arg2 ... argn)

will create in the heap the suspension in Figure 1. It contains a header that
describes its type and layout, i.e., how many pointers to other heap objects it has.
A suspension always contains a pointer to a function and an array of pointers to
the arguments to be consumed by the function when the computation is started.
Once created, the suspension is attached to a Par object and added to a ready
queue. The Par object (Figure 2) is the value returned from a call to par.

A Par object can be in three states:
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– Not Evaluated: In this case it can be sent to a slave to be evaluated remotely
or it can be evaluated locally when the scheduler of the byte-code interpreter
runs out of runnable threads

– Being Evaluated: It is being evaluated either locally or by a remote pro-
cessor

– Evaluated: It does not point to a suspension anymore, but to the result of
the evaluation of a suspension

A call to sync always receives a Par object as its argument and it takes an
action based on the state of Par. If the Par object is in the Not Evaluated state,
sync will create a local thread to evaluate the Suspension pointed by the Par.
The current thread will be blocked and added to a list of blocked threads on that
Par object. Once the evaluation of the suspension is finished, the Par object is
updated to point to the result of the computation, and all threads blocked on
it will be added to the pool of runnable threads. When sync finds a Par that is
Being Evaluated, it blocks the current thread and adds it to the list of blocked
threads on that object. If sync finds a Par that is Evaluated, it simply returns
the result of the computation pointed by it.

The Scheduler of the byte-code interpreter executes the following loop:

1. If there are runnable threads, execute one of them
2. If there are no runnable threads, create a new thread to evaluate a Par object

from the ready queue
3. If the ready queue is empty, look for work on a work server

As in GUM, threads are never preempted and are executed until they com-
plete or until they block waiting for a value being computed by another thread.
This has the advantage of tending to decrease space usage and overall run-
time [25].

When looking for work, the scheduler uses a simple protocol with the follow-
ing messages:

– NeedWork: Message sent to a work server asking for work
– Work: This message contains a serialized task to be executed by a slave or

work server. This message is sent by a work server to a slave or another work
server as an answer to a NeedWork message. A Work message contains all the
code and data needed to execute the task on a remote host
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– NoWork: This message is the answer to a NeedWork message when the work
server has no work to give. In that case, the Scheduler will wait for some
time and reissue another NeedWork message later or send it to another work
server

– Result: A result message contains the result of the evaluation of a task. It
is the answer to a Work message. When a Result message is received, the
original Par object must be updated with the result of the evaluation and
all threads blocked on that Par are added to the runnable pool.

When a work server receives a NeedWork message, it checks if there are avail-
able tasks in its ready queue. If so, it sends the task (a suspension) back to the
slave, using a Work message, where it will be evaluated.

To evaluate a suspension, a new thread is created: A thread object is allocated
in the heap, and the arguments of the expression are pushed onto the thread’s
stack. The byte-code evaluator then jumps into the code for the function. Once
the thread finishes evaluation, the result of the evaluation will be on top of the
stack.

3.5 Serializing expressions

The graph representing the computation being communicated is packed at the
source and unpacked at the destination. Packing, or serializing, arbitrary graph
structures is not a trivial task and care must be taken to preserve sharing and
cycles. Packing in pFun is done exactly in the same way as in GUM [25].

3.6 Garbage Collection

The current prototype implementation of the pFun runtime system has a gener-

ational garbage collector [12] for local GC. Garbage collection occurs locally at
each site and the roots for garbage collection are the stacks for all threads and
the ready queues. pFun’s garbage collector is parallel in the sense that garbage
collection occurs locally and independently at each site.

The main difference between a traditional garbage collector and the one used
in pFun is in the way it deals with Par objects: if during the evaluation of a task
by a slave GC occurs in the work server, when the result is back, the heap
address of the original task is not valid anymore. Therefore, the Par object to
be updated with the result of the computation can not be found.

To solve this problem, when a Par object is created in the heap, it is given
a stable address and we keep a table that maps stable addresses to actual heap
addresses. When garbage collection occurs, this table must be updated so that
stable addresses always point to the new heap addresses of Pars.

When a thread is sent to be evaluated on a remote location, its stable address
is sent together with it. When a client sends a Result message back to the server
it also contains the stable address of the original Par. The work server then finds
the original Par through the table of stable addresses, and updates it with the
result of the remote evaluation.
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4 Preliminary results

The first set of experiments in this section were performed on 8 computers, each
with an AMD Athlon(tm) XP 2400+ processor and 192MB of RAM, using one
as a work server and the other 7 as slaves. Table 1 shows the run times for 5
different programs. The speedups reported here and throughout this section are
relative, i.e., improvement over the single-processor parallel execution. parFib is
the program given in section 2.3. pTak [14] is a parallel version of the Takeuchi
function. It is similar to parFib: parallelism is introduced at each recursive call
and we use a threshold to control the amount of parallelism. The third program
is parMapFib35 calculates 8 times the seqFib of 35. As parMap is used, this
program generates 8 threads that can be evaluated in parallel, one for each
element of the list. The pMaze program searches for an exit in a maze. The maze
is represented as a tree and we use depth first search to find the exit. Parallelism
is introduced with parMap. pCoins is a more realistic program: given a collection
of coins and an amount to be paid, it computes the number of possible ways to
pay it. It uses a divide-and-conquer algorithm and parallelism is again introduced
with the parMap skeleton.

Table 1. pFun on 8 nodes (1 work server and 7 slaves)

1 Proc 2 Proc 4 Proc 6 Proc 8 Proc
(sec) (sec) (sec) (sec) (sec)

parFib 58.7 27.7 31.8 15.9 21.0
pTak 44.2 25.6 26.2 28.5 31.5
parMapFib35 103.1 51.3 31.2 26.8 15.6
pMaze 46.7 23.2 13.9 9.3 9.3
pCoins 48.5 35.9 36.1 36.2 37.5

Table 1 shows that, for the set-up used in the experiments, the distributed
scheduling performed by pFun’s runtime system works better for data paral-
lel programs (parMapFib35 and pMaze) than for divide-and-conquer programs
(parFib, pTak and pCoins). parMapFib35 creates only 8 tasks, one for each com-
puter, hence it improves run time for all number of processors measured. The
same happens with pMaze that creates 10 threads of equal size, one to evaluate
each branch of the tree. In parFib there is an improvement of performance up
to 6 processors, after that there is an increase of communication in the system
affecting performance: there are many idle slaves sending messages asking for
work, and the work server’s ready queue is empty. pTak generates lots of threads
but most of the threads are created not in the work server but in the slaves,
hence most of the time there are some heavy-loaded slaves while other slaves are
idle and the work server’s ready queue is empty. The performance of a divide
and conquer algorithm could be improved if some of the slaves were substituted
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by work servers connected to slaves. In that case the work generated by sub
threads could be redistributed. Of course, there is a limit to that, and it de-
pends on the structure of the application. The pCoins program creates 1 large
grained thread, and many fine grained threads, therefore the runtime on more
than one processor is always the time needed to evaluate the larger thread.

Table 2. Speedup on a Centrino Dual Core

Speedup

parfib 1.75
pmapFib35 1.93
pTak 1.2
pMaze 1.96
pCoins 1.33

Another interesting result came from a different set-up: we used only one
laptop computer with a Centrino Duo 1.60GHz processor, an Intel dual core
processor for laptops, and only one work server and one slave, each allocated
to a different core of the processor. For all parallel programs some speedup was
achieved as can be seen in Table 2.

Table 3. Comparing Sequential Programs

pFun pFun (1Proc) pFun (Seq) GHCi GHC Caml
(Fastest
Parallel)

(sec) (sec) (sec) (sec) (sec) (sec)

seqFib 15.9 58.7 53.9 177.9 18.6 14.6
mapFib35 15.6 103.1 105.0 335.3 34.1 27.3
Tak 25.6 44.2 45.0 112.8 12.7 17.4
Maze 9.3 46.7 46.5 151.5 16.0 11.9
coins 35.9 48.5 48.3 66.4 6.9 16.8

Table 3 compares pFun’s performance with two other compilers for functional
languages. GHC [10] is an optimizing machine-code compiler for the Haskell lazy

functional language. GHC also comes with an interpreter called GHCi that com-
piles Haskell programs into byte-code. pFun is faster than GHCi for all programs
measured. Haskell is a lazy functional language and its evaluation model is very
different than the one of a strict language like pFun (the different evaluation
models for functional languages are explained in [8]). Caml-Light [3] is a fast
optimizing byte-code compiler for the Standard ML strict functional language.
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pFun’s sequential run times are 2.7 up to 3.9 times slower than Caml-Light.
Caml-Light is a very fast implementation of Standard ML, and several opti-
mizations are applied to the programs at compile time and runtime. pFun is still
a prototype, and almost no optimizations are applied to the generated byte-code.
It is interesting to notice that pFun’s fastest parallel execution is always faster
than GHC and Caml-Light for the data parallel programs, and it is also faster
than GHC for the fibonacci program.

Fig. 3. The GRID used in the experiments

Finally, the next experiment was executed using a small GRID composed of
three work servers connecting two Beowulf clusters as in Figure 3. The applica-
tion used was a calculation of π using the Monte Carlo method. The application
creates tasks in two levels using parMap: First it creates 30 parallel tasks, each
calculating π using 300,000,000 points. Each of these tasks divides its work cre-
ating 15 tasks, again using parMap. The run time of the application on one
machine of the cluster on the left of Figure 3 (a Pentium 4 1.6 Ghz) was 4 hours,
58 minutes and 13 seconds. Its run time on one machine of the cluster on the
right (a Athlon XP 2400+) was 2 hours, 49 minutes and 20 seconds. Using the
GRID of Figure 3 the run time was 27 minutes and 18 seconds which is a speed
up of 11 compared to the slow machines and of 6.2 compared to fast ones.

The tasks created using the first parMap are all added to the ready queue of
the Main work server, and the two other work servers compete for these tasks.
Each of these tasks will generate tasks to be evaluated by its local slaves. One
important thing to notice is that during most of the time all computers of both
clusters were busy executing computations, which is the main objective of a
GRID scheduler. Obviously, towards the end of the execution the ready queue
of the main work server is empty and the fast cluster has no work, while the
main work server waits for the slower cluster to finish a computation, therefore
reducing speed up. To avoid this problem, a work server, towards the end of the
execution, could replicate computations on clusters that are recognized to be
fast if they are idle, instead of waiting for slow clusters. pFun computations can
be replicated at any time as they are free of side effects.
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5 Related Work

The potential of functional programming languages to support parallelism has
been recognized for a long time and several extensions for parallel programming
in functional languages have been implemented (for a survey on the field, the
reader should refer to [11]). Here we discuss the ones that are more closely related
to pFun.

The par and sync primitives provide the same abstraction as futures in
Multilisp [20]. The idea of futures is old but it is nowadays being adopted in many
modern languages, e.g., [9, 22, 7]. pFun’s par only indicates potential parallelism.
In Alice [22], when a future is created a new thread is started automatically to
evaluate the computation. In Multilisp, after the call to future X, the new task
created to evaluate X is maintained active while the parent task is moved to
a pending queue [20]. The creation of a future in Multilisp is a very expensive
operation [20, 21], while par is only a mark saying that a expression could be
evaluated in parallel with the current expression either locally or on a remote
computer. In pFun the creation of a Par object is cheap: its like creating a
suspension and adding a pointer to the ready queue. Creating a suspension is a
cheap operation: as can be seen in Figure 1 a suspension is just like a cons cell.

GPH [24] is a parallel extension of Haskell for parallel programming. To
express parallelism, the programmer uses a par combinator (similar to pFun’s
par). Since Haskell is a lazy language, it is difficult to predict the order of
evaluation of expressions, thus the seq combinator must be used to control
sequencing. Furthermore, as Haskell is a lazy language, programmers have to
force the evaluation of expressions using evaluation strategies.

GRID/ML [1] is an extension of Standard ML for GRID programming. It
runs on top of the ConCert network [4], a peer-to-peer network of interconnected
nodes, each running the same abstract machine. All nodes maintain a queue of
pending work, and they can steal work from other nodes. GRID/ML provides
primitives (similar to pFun’s primitives) to express parallelism and populate the
node’s queue of pending work. The GRID/ML system focuses mainly on fault-
tolerant distributed programming: GRID applications are written as a series of
deterministic functions that can be memorized by the network and restarted at
any time. No measurements of their current implementation are given.

The work stealing scheduling strategy is widely used in practical applications,
in particular we name the Cilk [2] programming environment. Cilk requires an
extra effort by programmers: programs must be developed in a nested fork-join
structure. Different from pFun, this programming effort is unnatural since Cilk
extends an imperative programming language (C).

6 Conclusions and Future Work

We have presented the design and implementation of pFun, a strict parallel func-
tional language. pFun provides a programming model based on annotations. Task
creation, synchronization and load distribution are automatically managed by
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its runtime system. Preliminary measurements for the prototype implementation
show that the work-stealing mechanism used for load balancing performs better
for data parallel programs. As future work we want to adapt pFun’s runtime
system to better exploit the characteristics of each parallel architecture. Work
messages contain code and data to be executed on slaves. That imposes a high
overhead when executing on multi-core machines as all code is already loaded
in memory. For clusters, a work server could keep track of the code that was
already sent to a slave. This would reduce significantly the size of messages in
applications that use parMap for example. Although not yet implemented, the
current implementation of the runtime system could provide a high degree of
fault tolerance. In the case of failure of one node, purely functional expressions
can be re-started at any time as they are free of side effects. Currently, all mes-
sages contain the total heap size needed to unpack work. If a slave does not
have enough space it could reject the work message and ask for another one.
Work servers could also ping slaves to see if they are still alive, and in the case
of failure, computations could be restarted on a different slave. At the language
level, we plan to investigate how pFun’s programming model could be extended
with higher-level abstractions to express parallelism, e.g., using different paral-
lel skeletons. The performance shown in Section 4 are promising since we have
obtained some speedup for different classes of architectures. As slaves do not
distribute work, the current load distribution mechanism performs poorly for
divide and conquer applications: towards the end of execution we have heavily
loaded slaves, while some slaves are idle and the ready queue of the work server
is empty. We plan to investigate the use of a distributed shared ready queue,
where all locations can share work. This distributed queue could be implemented
using a distributed shared memory as in the MT System [16] or GUM [25].
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Abstract. The paper presents the new multiparadigm programming
language ccfl which allows the description of concurrent processes and
of non-deterministic behavior and it discusses the compilation of ccfl
programs into the hierarchical graph rewriting language lmntal.
lmntal aims at the unification of paradigms of computation and supports
by its features and structure the transformation of ccfl programs such
that we reached clear and simple compilation schemata.

1 Introduction

The concurrent, hierarchical graph rewriting language lmntal [16, 17] aims to
unify various paradigms of computation resp. computational models. It has been
used for encoding various calculi [15, 14], e.g. the pure lambda calculus and
the ambient calculus. In this paper, we show the use of lmntal as base model
and target language for the compilation of programs of a new multiparadigm
programming language ccfl.

The C oncurrent C onstraint-based Functional Language ccfl combines con-
cepts from the functional and the constraint paradigms. ccfl allows besides
the description of deterministic computations using a functional programming
style also the implementation of non-deterministic behavior based on constraints.
Moreover, ccfl enables to describe systems of concurrent processes, whose com-
munication and synchronization is based on the concurrent constraint program-
ming (CCP) model [12].

The compilation of ccfl programs into lmntal rules is based on adaptions
of translation techniques for functional into logic languages. ccfl data elements
and variables are encoded by means of heap data structures handled during
run-time in lmntal. The introduction of these data structures allows us to deal
with free variables and constraints in ccfl, to realize lazy evaluation, and it
even simplifies the lmntal rule-set generated from the compilation for handling
higher-order functions and partial applications.

Encoding ccfl based on lmntal, we were able to underline three things:
1) lmntal is well suited as base for the encoding of calculi and programming



languages, 2) it supports particularly the combination of concepts of different
paradigms and, thus, the realization of a multiparadigm language, and 3) this
is, accordingly, reachable by relatively simple compilation schemata.

Related Work lmntal has been used for the encoding of various calculi, as pre-
sented by Ueda in [15, 14] e.g. for the pure lambda calculus and the ambient
calculus, resp. Like in the approach presented in this paper, the membrane con-
struct of LMNtal plays an essential role for the clarity and simplicity of the
encoding.

There are several functional languages allowing for concurrent computation
of processes among them eden [8] and erlang [1], both using explicit notions for
the generation of processes and their communication and concurrent haskell
[11] which supports threads via the IO monad.

The language goffin [2] combines haskell with a constraint-based coor-
dination language to express parallelism and non-deterministic computation. It
provides a similar structure like ccfl, while ccfl’s constraint abstractions are
more oriented to predicates than to functions and the ask-constraint’s function-
ality is a bit more extended. Moreover, in [5] we discuss the extension of ccfl
constraints to typical constraint systems.

curry [4] is a functional-logic language combining the functional and the
logic paradigms and builds on the evaluation principle narrowing in contrast to
residuation and non-deterministic choice in ccfl.

Beside the realization of ccfl based on hierarchical graph rewriting as dis-
cussed in this paper, there exists a ccfl implementation for a parallel multicore
architecture which supports the realization of data and task parallel skeletons
as presented in [6].

2 The Language CCFL

The multiparadigm programming language ccfl combines concepts and con-
structs from the functional and the constraint-based paradigms. A ccfl pro-
gram consists of data-type definitions, functions and user-defined constraints.
Functions are used to express deterministic computations, while user-defined
constraints allow the description of cooperating processes and non-deterministic
behavior.

2.1 Functional Programming

ccfl’s functional sublanguage is a lazy language with polymorphic type system.
A function consists of a type declaration and a definition allowing the typical
constructs such as case-expressions, let-expressions, function application, and
some predefined infix operator applications, constants, variables, and construc-
tor terms. A function call (without free variables) evokes a computation by
reduction. Prog. 2.1 shows the definition of a polymorphic data-type List a and
a function length computing the length of lists. In the following, we will use
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Program 2.1 List length

data L i s t a = [ ] | a : ( L i s t a )

fun l e n g t h : : L i s t a −> Int
def l e n g t h l i s t = case l i s t of [ ] −> 0 ;

x : xs −> 1 + l e n g t h xs

the haskell-typical notions for lists, i.e. [] and e.g. [1,2,4] for an empty and
non-empty list, resp., and ”:” as the list constructor.

Free Variables Expressions in ccfl may contain free variables. Function ap-
plications with free variables are evaluated using the residuation principle [13],
that is, function calls are suspended until the variables are bound to expres-
sions such that a deterministic reduction is possible. For example, a function
call (4 + x) with free variable x will suspend. On the other hand, the applica-
tion ( length [y ,1,x ]) successfully evaluates to 3 because the values of the free
variables y and x are not necessary to proceed with the computation.

2.2 Constraint-based Programming with CCFL

A user-defined constraint is given by its declaration and a constraint abstraction.
A constraint abstraction consists of a head and a body which may contain the
same elements as a function definition. Additionally, the body can be defined
by several alternatives the choice of which is decided by guards. A constraint
abstraction is allowed to introduce free variables and each body alternative is a
conjunction of constraint atoms. A constraint always has result type C.

ask- and tell-constraints Within a ccfl rule constraints may have two func-
tionalities: tell -constraints generate concurrently working processes which may
create knowledge in form of variable bindings (or constraints in general3). These
processes may communicate over common variables. In contrast, ask -constraints
do not generate knowledge but check for concrete variable bindings or con-
straints. ask -constraints control the choice of (potentially competing) rules and,
thus, allow to express the synchronization of concurrently working processes on
the one hand and non-deterministic computations on the other hand.

User-defined constraints mainly serve two purposes: expressing concurrent
computations and dealing with non-determinism.

Concurrent Processes ccfl allows the description of systems of communi-
cating and cooperating processes. Consider as an example Prog. 2.2 defining a
producer and a consumer communicating over a common buffer.
3 In [5] we discuss the extension of ccfl by constraints of other domains, e.g. arith-

metic or finite-domain constraints.
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Program 2.2 A producer-consumer setting

1 fun produce : : L i s t a −> C
2 def produce bu f =
3 with buf1 : : L i s t a , i tem : : a
4 in . . . −− g e n e r a t e i t em h e r e t h e n

5 −− pu t i t i n t o t h e b u f f e r and c o n t i n u e

6 bu f =:= i tem : buf1 & produce buf1
7
8 fun consume : : L i s t a −> C
9 def consume bu f =

10 bu f =:= f i r s t : buf1 −>
11 . . . −− c on sume f i r s t h e r e

12 consume buf1 −− and c o n t i n u e

13
14 fun main : : C
15 def main = with bu f : : L i s t a
16 in produce bu f & consume bu f

The main-function creates the buffer as a fresh variable buf using the with-
construct and initiates the computation. The constraint applications produce buf
and consume buf create concurrently working producer and consumer processes.
The user-defined constraint produce (lines 1–6) describes the behavior of the
producer process. It generates buffer elements item, puts them into the buffer
using the equality constraint buf =:= item : buf1 and concurrently initiates the
computation of the remaining buffer buf1 (lines 4–6). The consumer process
must wait until the buffer has been filled with at least one element first . This is
ensured by the match-constraint buf =:= first : buf1 (line 10) of the guard of
the consume rule. Note that, in contrast, the producer process is not restricted
to synchronize with the consumer because the produce-rule is not guarded.

The constraints in the body of the rules are tell-constraints. They create
processes which may compute bindings for the incorporated variables. Several
tell -constraints combined by the &-combinator (as in line 6) generate an accord-
ing number of processes and they communicate over common variables. tell -
constraints are either applications of user-defined or predefined constraints, e.g.
produce buf1 in line 6, or they are equality constraints x =:= fexpr between a
variable x and a functional expression fexpr (also see line 6). Equality constraints
are interpreted as strict. That is, the constraint t1 =:= t2 is satisfied, if both ex-
pressions can be reduced to the same ground data term [4]. While a satisfiable
equality constraint x =:= fexpr produces a binding of the variable x to the func-
tional expression fexpr and terminates with result value Success, an unsatisfiable
equality is reduced to the value Fail representing an unsuccessful computation.

The atoms of the guard of a user-defined constraint are ask-constraints. If
a guard of a rule with matching left-hand side is entailed by the current accu-
mulated bindings (and constraints in general), the concerning rule alternative
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Program 2.3 A simple game of dice

1 fun game : : Int −> Int −> Int −> C
2 def game x y n =
3 case n of 0 −> x =:= 0 & y =:= 0 ;
4 m −> with x1 , y1 , x1 , y2 : : Int
5 in d i ce x1 & d i ce y1 &
6 x =:= x1 + x2 & y =:= y1 + y2 &
7 game x2 y2 (m−1)
8
9 fun d i ce : : Int −> C

10 def d i ce x =
11 member [ 1 , 2 , 3 , 4 , 5 , 6 ] x
12
13 fun member : : L i s t a −> a −> C
14 def member l x =
15 l =:= y : ys −> x =:= y |
16 l =:= y : ys −> case ys of [ ] −> x =:= y ;
17 z : z s −> member ys x

may be chosen for further derivation. In case that the guard fails or cannot be
decided (yet), this rule alternative is suspended. If all rule alternatives suspend,
the computation waits (possibly infinitely) for a sufficient instantiation of the
concerning variables.

For ask -constraints, we distinguish between bound-constraints bound x
checking, whether a variable x is bound to a non-variable term, and match-
constraints (e.g. line 10) x =:= c x1 . . . xn which test for a matching of the root
symbol of a term bound to the variable x with a certain constructor c. The
variables x1 . . . xn are fresh.

Non-deterministic Computations Ask -constraints support the program-
ming of non-deterministic behavior. For an example consider Prog. 2.3. The
constraint game x y n initiates a game between two players throwing the dice n
times and reaching the overall values x and y, resp.

The tell -constraints dice x1 and dice y1 (line 5) non-deterministically pro-
duce values which are consumed by the equality constraints x =:= x1 + x2 and
y =:= y1 + y2, resp. Note that their computation is suspended until the argu-
ments are (sufficiently) instantiated to apply the built-in function +.

The constraint abstraction member is the source of non-determinism in this
program. It chooses a value from a list. Since the match-constraints of the guards
of both alternatives are the same (lines 15 and 16), i.e. l =:= y : ys, the alter-
natives are chosen non-deterministically which simulates the dice.
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Program 3.1 lmntal: encapsulating computations by membranes

1 {@r ,{ $p } , $s} :− {{@r , $p } , $s } .
2 {{@r , $q }/ , $s} :− {@r , $q , $s } .
3
4 {append ( [ ] ,Y,Z) :− Y = Z .
5 append ( [XH|XR] ,Y,Z) :− Z = [XH|ZR ] , append (XR,Y,ZR ) .
6 {append ( [ 1 , 2 ] , [ 4 ] ,R)} , {append ( [ 9 ] , [ 8 , 1 ] ,P)}
7 }

3 LMNtal

We briefly introduce the language lmntal which is the target language of the
compilation of ccfl programs. lmntal is a concurrent language based on hier-
archical graph rewriting. One of its major goals is to unify various paradigms of
computation resp. computational models [16]. Thus, we chose lmntal as target
language for the compilation of the multiparadigm programming language ccfl.

An lmntal program describes a process consisting of atoms, cells, links, and
rules. Links connect atoms and/or cells to build graphs. Cells are processes
encapsulated by membranes and allow to represent hierarchies in graphs. Rules
are used to describe graph rewriting.

Consider Prog. 3.1. Lines 4–7 show a cell which is encapsulated by a mem-
brane ”{}”. It contains two append-rewrite rules in a prolog-like syntax and two
cells each enclosing an append-atom in line 6. Y, Z, XH, ... are links. In the cur-
rent situation, the append-rewrite rules cannot be applied on the append-atoms
in line 6 because they are enclosed by extra membranes.

The rules in lines 1 and 2 realize the unpacking of the append-atoms from
their membranes for reduction. At this, @r denotes a (multi)set of rules, the
so-called rule-context, and $p and $s are process-contexts, i.e. they stand for
(multi)sets of cells and atoms. The template {@r, $q}/ in the second line has a
stable flag ”/” which denotes that it can only match with a stable cell, i.e. a cell
containing no applicable rules.

In the current situation, the rule in line 1 is applicable to the cell of the
lines 4–7, where @r matches the append-rules, $p matches one of the inner
append-atoms and $s stands for the remaining cell. A possible reduction of the
this cell is, thus, the following:

{append ( [ ] , Y, Z) :− Y = Z .
append ( [XH|XR] ,Y, Z) :− Z = [XH|ZR ] , append (XR,Y,ZR ) .
{append ( [ 1 , 2 ] , [ 4 ] ,R)} , {append ( [ 9 ] , [ 8 , 1 ] , P)}}
 (1)

{{append ( [ ] , Y, Z) :− Y = Z .
append ( [XH|XR] ,Y, Z) :− Z = [XH|ZR ] , append (XR,Y,ZR ) .
append ( [ 9 ] , [ 8 , 1 ] , P)} ,
{append ( [ 1 , 2 ] , [ 4 ] ,R)}}
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 ∗
append

{{append ( [ ] , Y, Z) :− Y = Z .
append ( [XH|XR] ,Y, Z) :− Z = [XH|ZR ] , append (XR,Y,ZR ) .
P = [ 9 , 8 , 1 ] } ,
{append ( [ 1 , 2 ] , [ 4 ] ,R)}}

The upper inner cell is now stable such that no rule is applicable inside. Thus,
we can apply the second outer rule (line 2).

. . .
 (2)

{append ( [ ] , Y, Z) :− Y = Z .
append ( [XH|XR] ,Y, Z) :− Z = [XH|ZR ] , append (XR,Y,ZR ) .
P = [ 9 , 8 , 1 ] ,
{append ( [ 1 , 2 ] , [ 4 ] ,R)}}

In this state, again the first outer rule (line 1) is applicable which yields after
a number of steps the following stable state:

{append ( [ ] , Y, Z) :− Y = Z .
append ( [XH|XR] ,Y, Z) :− Z = [XH|ZR ] , append (XR,Y,ZR ) .
P = [ 9 , 8 , 1 ] , R = [ 1 , 2 , 4 ] }

As one can see by the above example, lmntal supports a prolog-like syntax.
However, there are fundamental differences.

The above example already demonstrated the use of process-contexts, rule-
contexts, membrane enclosed cells, and the stable flag. Different from other
languages, the head of a rule may contain several atoms, even cells, rules,
and contexts. A further important difference to other declarative languages are
the logical links of lmntal. What one may hold for variables in our program,
e.g. Y, Z, XH, . . . are actually links. Their intended meaning strongly differs
from that of variables. Declarative variables stand for particular expressions or
values and, once bound, they stay bound throughout the computation and are
indistinguishable from their value. Links in lmntal also connect to a structure or
value. However, link connections may change. While this is similar to imperative
variables, links are used to interconnect exactly two atoms, two cells, or an atom
and a cell to build graphs and they have, thus, (at most) two occurrences. In
rules, logical links must occur exactly twice.

Semantically, lmntal is a concurrent language realizing graph rewriting. It
inherits properties from concurrent logic languages. The rule choice is non-
deterministic, but can be controlled by guards (not shown in the above example).
As demonstrated above, the encapsulation of processes by membranes allows to
express local computations and, it is possible to describe the migration of pro-
cesses and rules between local computation spaces.

For a detailed description of lmntal we refer to [7, 16, 17]. In Sect. 4, we
discuss further examples of lmntal programs as results of the compilation process
of ccfl programs.
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4 Encoding CCFL into LMNtal

ccfl integrates functional and constraint programming. Since constraints can
be considered as particular functions, the code generation treats them uniformly
such that we reach a proper unification of both paradigms. The transformation
of ccfl functions and constraints is partially based on translation techniques [3,
9, 10, 18] for functional into logic languages.

4.1 Functional Elements

Let us first consider the functional sublanguage of ccfl. A ccfl function defini-
tion is translated into a set of lmntal rules. At this, there is one initial rule and
possibly a set of subordered rules realizing e.g. pattern matching as necessary
for case-constructs.

ccfl data elements and variables are represented and processed by means
of heap data structures during run-time. However, to clarify the presentation
in this section, we represent ccfl variables directly by lmntal links4 instead
and data structures by lmntal atoms. We concentrate on the heap structures in
Sect. 4.3 subsequently.

The right-hand side of a ccfl function definition is an expression composed
by the typical constructs such as function applications, infix operator applica-
tions, let- and case-constructs and variables, constants, and constructors. ccfl
infix operations are mapped onto their lmntal counterparts. Function applica-
tions are realized by an atom app (...) and an according app-rule which is also
used for higher-order functions as discussed in Sect. 4.2. Case-expressions gener-
ate extra lmntal rules for pattern matching, let-constructs are straightforward
realized by equality constraints.

Example 1. Consider Prog. 4.1 as compilation result of the list length function
from Prog. 2.1.

The lmntal program illustrates the generation of different rule alternatives
from the case-construct and the handling of function applications and predefined
infix operations. Also note the additional link argument V0 of the length-rewrite
rule. This link is used to access the result of the rule application which is nec-
essary because lmntal explicitly deals with graphs while a computation with a
functional language like ccfl yields an expression as result.

4.2 Higher-order Functions and Partial Application

We use a transformation scheme from [18] to allow higher-order func-
tion application. For every ccfl function f x1 . . . xn = expr a rewrite rule
app (f , x1, . . . , xn) :− f (x1, . . . , xn) is generated which in combination with

4 Moreover, we tolerate n-fold occurrences of links in rules, where n 6= 2. This is also
not conform with lmntal, where links must occur exactly twice in a rule, but the
problem disappears with the introduction of heap data structures as well.
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Program 4.1 lmntal program as compilation result: list length

1 l e n g t h ( Lis t ,V0) :−
2 c a s e l e n g t h ( Lis t , Lis t ,V0) .
3
4 c a s e l e n g t h (V1 , Lis t ,V0) , n i l (V1) :−
5 V0 = 0 .
6
7 c a s e l e n g t h (V1 , Lis t ,V0) , cons (X,XS ,V1) :−
8 V0 = 1 + V3 , app ( l eng th ,XS ,V3) .
9

10 app ( l eng th ,X1 ,X2) :−
11 l e n g t h (X1 ,X2) .

the generation of an app-atom for a function application realizes higher-order
function application.

The partial application of functions in ccfl is enabled by a number of addi-
tional lmntal rules per ccfl function, where we adopt a transformation given
in [3, 9]. To simplify the generation of rules for the partial applications of func-
tions, the ccfl compiler performs an η-enrichment of functions, i.e. additional
arguments are appended to the left-hand sides and to the right-hand sides of
function definitions according to the function type declaration.

Example 2. Let add and addOne be ccfl functions, where the latter is defined
by a partial application of the former.

fun add : : Int −> Int −> Int
def add a b = a + b
fun addOne : : Int −> Int
def addOne = add 1

The η-enrichment of the function addOne within the compilation process
yields the following intermediate representation.

def addOne x = ( add 1) x

The method to enable the partial application of functions from [3, 9] generates
n×(n+1)

2 rules for every n-ary function. In [5] we give a detailed presentation of
the rule-set; we show an illustrative example here instead.

Example 3. Consider again the functions add and addOne from Example 2. A
ccfl derivation sequence is the following:

addOne 2 → (add 1) 2 → 1 + 2 → 3

The functions add and addOne are translated into lmntal rules as discussed
in Sect. 4.1. Additionally, we generate rules for each function for all possible
cases of its partial application. These rules just generate constructor terms of
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the function name and allow in this way to keep the data and to suspend the
computation until the function can be fully applied.

add (A,B ,V0) :− V0 = A + B .
addOne (V3 ,V4) :− app ( add , 1 ,X) , app (X,V3 ,V4) .

app ( add ,V0) :− add (V0 ) . // h a n d l i n g V0 = add ,

app ( add ,V0 ,V1) :− add (V0 ,V1 ) . // V1 = add V0 ,

app ( add (V0) ,V1 ,V2) :− add (V0 ,V1 ,V2 ) . // V2 = ( add V0 ) V1 ,

app ( add ,V0 ,V1 ,V2) :− add (V0 ,V1 ,V2 ) . // add a s HOF a r g . ,

app (addOne ,V0) :− addOne (V0 ) . // V0 = addOne ,

app (addOne ,V0 ,V1) :− addOne (V0 ,V1 ) . // addOne a s HOF a r g .

Using these lmntal rules we rewrite the atom addOne(2,R) which corresponds
to the ccfl expression addOne 2:

addOne(2,R)
 app(add,1,X), app(X,2,R)
 add(1,X), app(X,2,R) ≡ app(add(1),2,R)
 add(1,2,R)
 R = 1+2
 R = 3

The representation of data and variables by heap structures as run-time
environment as discussed in Sect. 4.3 allows to fuse the set of n×(n+1)

2 + 1 rules
for handling partial applications and higher-order functions from the original
approaches [3, 9, 18] into one unified rule.

4.3 Representing CCFL Expressions by Heap Structures

While links in lmntal look similar to variables, they have a different functionality
(cf. Sect. 3). In [5] we elaborately discuss that a direct translation of ccfl vari-
ables into lmntal links (and, thus, of ccfl data structures into lmntal atoms)
would not be successful. Since links connect exactly two elements, i.e. cells or
atoms, a representation of variables by links would disallow the representation
of free variables and the sharing of data structures as needed for lazy evaluation.
At least it can be shown [5] that a direct simulation is possible for a functional
language (without constraints) using a call-by-value evaluation strategy, where
multiply used data structures are just completely copied. Copying of data struc-
tures in lmntal is supported, even if not very efficiently treatable in general.

The introduction of a heap as run-time environment enables the representa-
tion of free variables and the sharing of common data by different structures.
This allows the compilation of user-defined constraints and rule guards and the
implementation of evaluation strategies using sharing of data structures.

The generation and transformation of heap structures is directly incorporated
into the generated lmntal rules as result of the compilation process.
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el (cons(double ),[ A],V0)

{$pA,+A}

el (...)

el (...)

{$p,on(V0)}

rewrites to

plus int (A1,A2,V0)

{$pA,+A1,+A2}

el (...)

el (...)

{$p,on(V0)}

Fig. 1. A graph rewriting rule double

Example 4. Consider the arithmetic function double.

fun doub le : : Int −> Int
def doub le a = a + a

The compilation according to the simplified schema from Sect. 4.1 yields the
following code.

doub le (A, V0) :− V0 = A + A .

Taking the handling of heap data structures into consideration we obtain the
following rule, where the atom plus int (A1,A2,V0) realizes a call to an appli-
cation of the lmntal infix operator +.

e l ( cons ( doub le ) , [A ] , V0) , {$pA,+A} :−
p l u s i n t (A1 , A2 , V0) , {$pA,+A1,+A2} .

Fig. 1 visualizes the generated lmntal rewrite rule. Non-variable ccfl-
expressions5 are represented by atoms el (cons(F),OL,I), where the F is the func-
tion or constructor name, OL is a list of (outgoing) links to cells connecting to
the structures of the arguments according to the original ccfl function, and I
is a (incoming) link from a cell which manages links onto the term. Accordingly,
the ccfl term (double a) or double(A,V0) in the intermediate lmntal form,
resp., yields the atom el (cons(double ),[ A],V0). Variables are handled similarly.
Cells containing links, like {$p,on(V0)}, are used to connect between the atoms
to build structures. In this way it is possible to realize sharing as illustrated by
the cell {$pA,+A1,+A2} which hold two incoming links +A1 and +A2 and one
outgoing link onto the common shared structure (indicated by the gray outgoing
link onto the atom el (...) ).

5 This holds except for built-in functions, i.e. + is represented by a prelude rule
plus int .
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el (cons(member),[L,X],V0)

{on(L0),$pL,+L}

el (cons(cons ),[Y,Ys],L0)

. . .

. . .

. . . . . .

Fig. 2. A heap structure representing the expression member (y : ys) x

4.4 Constraints and Rule Guards

User-defined constraints and functions are handled uniformly in the compilation
process. Constraints in lmntal allow all the constructs as introduced for func-
tions, but additionally free variables, a with-construct for the introduction of new
variables within a rule, ask -constraints in the rule guard and tell -constraints in
its body.

Just like lmntal rules for ccfl functions, rules for user-defined constraints
must hold an additional link in the rule head to connect to the computation result
because constraints must be accessible as elements e.g. for partial application.

Ask -constraints, i.e. bound- and match-constraints are realized by additional
atoms in the rule heads of the generated lmntal code matching for the according
heap structures.

Example 5. The user-defined constraint member of Prog. 2.3 non-determini-
stically chooses values from a given list. We either take the first element as
result value or initiate a further computation on the rest of the list.

The guards consist of identical match-constraints l =:= y : ys (lines 15 and
16) to realize a non-deterministic choice. The compilation yields, thus, identical
rule heads matching the list structure (y : ys) or cons(Y,Ys), resp., as given be-
low for both alternatives. The according heap structure is shown for illustration
in Fig. 2.

e l ( cons (member ) , [ L ,X ] , V0) ,
e l ( cons ( cons ) , [Y, Ys ] , L0 ) ,
{on (L0 ) , $pL ,+L} :−

. . .

For tell -constraints we distinguish between applications of user-defined con-
straints which are just handled like function applications and equality constraints
t1 =:= t2 (cf. Sect. 2.2). These latter base on a unification of the concerning
subexpressions t1 and t2 of the constraint. A unification mechanism for heap
data was implemented in lmntal: unify(L1,L2,R) unifies the heap structures

106



Program 4.2 lmntal compilation result: produce

1 e l ( cons ( produce ) , [ Buf ] ,V0) :−
2 // g e n e r a t e a f r e s h v a r i a b l e b u f 1

3 e l ( var ( . . . ) , OnBuf1 , InBuf1 ) , . . . , {on ( InBuf1 ) ,+Buf1 } ,
4 // g e n e r a t e s t r u c t u r e f o r i t em

5 . . .
6 // g e n e r a t e e x p r e s s i o n ( i t em : b u f 1 )

7 e l ( cons ( cons ) , [ Item , Buf1 ] ,V3) , {on (V3) ,+V2} ,
8 // u n i f y c a l l : b u f =:= i t em : b u f 1

9 un i f y (Buf ,V2 ,V0) ,
10 . . .

connected to the links L1 and L2 and yields a result structure linked to R. The
transformation of a ccfl equality constraint into concerning lmntal code, thus,
produces a unify-atom on both heap structures which initiates the unification
process.

Example 6. Consider the producer-consumer example in Prog. 2.2 and the
lmntal rule for produce as compilation result given in Prog. 4.2.

The constraint buf =:= item : buf1 of the produce-constraint in line 6,
Prog. 2.2, generates a concerning unify-atom in line 9, Prog. 4.2. This atom
unify (Buf,V2,V0) initiates the unification of the two structures connected to
the links Buf and V2 which yields a result structure with link V0. While the
first structure (connected to Buf) is passed as argument of the rule, the second
structure (connected to V2) is generated by the code of lines 2-7 of Prog. 4.2.

4.5 Evaluation Strategies

lmntal evaluates non-deterministically, and it does a priori not support certain
evaluation strategies. Thus, the control of the order of the subexpression eval-
uation for ccfl is integrated into the generated lmntal code. We realized code
generation schemata for different evaluation strategies for ccfl by encapsulating
computations by membranes using similar ideas as in Prog. 3.1.

We discussed the realization of evaluation strategies in more detail in [5].
Expressions are destructured into subexpressions which remain interconnected
by links. Each subexpression is encapsulated by a membrane and builds a cell.
Expressions to be reduced are provided with the rule-set such that their reduction
becomes possible. The implementation of a call-by-value strategy requires the
copying and provision of the generated lmntal rule-set for every innermost redex
to ensure that they are prioritized on the same level and independent reductions
do not influence each other. For call-by-name and lazy evaluations we typically
have one outermost redex and, thus, copying of the rule-set (which may become
expensive) is not necessary.
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5 Conclusion

We presented the multiparadigm programming language ccfl and its compila-
tion into the hierarchical graph rewriting language lmntal. We think that ccfl
is a successful integration of the functional and constraint-based paradigms al-
lowing a comfortable modeling of systems of concurrent processes and of deter-
ministic and non-deterministic behavior.

The ability of the compilation target language lmntal to unify and to model
computation paradigms proved to be very useful for our compiler implementa-
tion. It could be shown that modeling combined language paradigms in lmntal
is possible in a convenient way and by means of clear transformations.
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Abstract. Context-sensitive rewriting is a restriction of rewriting that
can be used to elegantly model declarative specification and program-
ming languages such as Maude. Furthermore, it can be used to model
lazy evaluation in functional languages such as Haskell. Building upon
our previous work on an expressive and elegant class of rewrite systems
(called CERSs) that contains built-in numbers and supports the use of
collection data structures such as sets or multisets, we consider context-
sensitive rewriting with CERSs in this paper. This integration results in
a natural way for specifying algorithms in the rewriting framework. In
order to automatically prove termination of this kind of rewriting, we de-
velop a dependency pair framework for context-sensitive rewriting with
CERSs, resulting in a flexible termination method that can be automated
effectively. Several powerful termination techniques are developed within
this framework. An implementation in the termination prover AProVE

has been successfully evaluated on a large collection of examples.

1 Introduction

While ordinary term rewrite systems (TRSs) can be used for modeling algo-
rithms in a functional programming style, there still remain serious drawbacks.
First, collection data structures such as sets or multisets cannot be represented
easily since these non-free data structures typically cause non-termination of the
ordinary rewrite relation. Notice that these collection data structures are used in
real-life functional programming languages such as OCaml (using Moca [7], which
adds relational data types to the language) and can be used in Maude by speci-
fying suitable equational attributes. Second, and equally severe, domain-specific
knowledge about primitive data types such as natural numbers or integers is not
directly available in ordinary TRSs. These primitives are available in any real-
life programming language, thus making an integration into the term rewriting
framework highly desirable. We have shown in [12] that constrained equational
rewrite systems (CERSs) provide an expressive and convenient tool for modeling
algorithms that solves both of these drawbacks. Since [12] considers only natural
numbers as a primitive, the first contribution of this paper is a reformulation of

⋆ Partially supported by NSF grants CCF-0541315 and CNS-0831462.



the ideas from [12] that allows for built-in integers.1 An integration of integers
into the term rewriting framework is important for automated termination prov-
ing since most currently available termination techniques are based on syntactic
considerations, whereas termination of algorithms operating on integers often
requires semantical reasoning.

Even though CERSs are an expressive and elegant tool for modeling algo-
rithms, they do not incorporate reduction strategies that are commonly used in
declarative specification and programming languages such as Maude [9]. Context-
sensitive rewriting [23, 25] has been introduced as an operational restriction of
term rewriting that can be used to model such reduction strategies (the close
relationship between context-sensitive rewriting and Maude’s strat-annotations
has been investigated in [24]). Furthermore, context-sensitive rewriting allows
to model (certain aspects of) lazy evaluation as used in functional programming
languages such as Haskell (for more on the relationship between lazy evalua-
tion and context-sensitive rewriting, see [26]). In context-sensitive rewriting, the
arguments where an evaluation may take place are specified for each function
symbol and a reduction is only allowed at a position that is not forbidden by a
function symbol occurring somewhere above it. The second contribution of this
paper is to introduce context-sensitive rewriting for CERSs, thus combining the
expressiveness of CERSs with increased flexibility on the reduction strategy.

Example 1. Consider the following rewrite rules, where ins is used to add a
further element to a set:

from(x) → ins(x, from(x + 1))
take(0, xs) → nil

take(x, ins(y, ys)) → cons(y, take(x − 1, ys))Jx > 0K
pick(ins(x, xs)) → x

drop(ins(x, xs)) → xs

Here, the function symbol from is used to generate the (infinite) subsets of in-
tegers that are greater than or equal to the argument of from. The meaning of
“Jx > 0K” in the second take-rule will be made precise in Sect. 2. Intuitively,
it allows application of that rule only if the instantiation of the variable x is a
positive number. The term take(2, from(0)) admits an infinite reduction in which
the from-rule is applied again and again. However, there also is a finite reduction
of that term which results in the normal form cons(0, cons(1, nil)). This reduc-
tion can be enforced using context-sensitive rewriting if evaluation of the second
argument of ins is forbidden since the recursive call to from is then blocked. ♦

As for ordinary rewriting, termination is a fundamental property of context-
sensitive rewriting. Since context-sensitive rewriting may result in a terminat-
ing rewrite relation where regular rewriting is diverging, proving termination of

1 Another recent integration of integers into the term rewriting framework is presented
in [16]. The approach of [16] is incomparable to the approach of the present paper.
On the one hand, [16] provides a more complete integration of integers since mul-
tiplication and division are supported. On the other hand, [16] does not consider
collection data structures or context-sensitive rewriting.
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context-sensitive rewriting is quite challenging. For ordinary TRSs, a promising
approach consists of the development of dedicated methods for proving termina-
tion of context-sensitive rewriting. Examples for adaptations of classical methods
are context-sensitive recursive path orderings [8] and context-sensitive polyno-
mial interpretations [27]. The main drawback of these adaptations is the limited
power which is inherited from the classical methods. Adapting the more powerful
dependency pair method [4] to context-sensitive TRSs has been a challenge. A
first adaptation of the dependency pair method to context-sensitive TRSs has
been presented in [2]. But this adaptation has severe disadvantages compared to
the ordinary dependency pair method since dependency pairs may be collapsing,
which requires strong restrictions on how the method can be applied.

An alternative adaptation of the dependency pair method to context-sensitive
TRSs has recently been presented in [1]. This adaptation does not require collaps-
ing dependency pairs and makes it much easier to adapt techniques developed
within the ordinary dependency pair method to the context-sensitive case.

The third and main contribution of this paper is the development of a de-
pendency pair method for context-sensitive rewriting with CERSs, taking [1] as
a starting point. This adaptation is non-trivial since [1] is concerned with ordi-
nary (syntactic) rewriting, whereas rewriting with CERSs is based on normal-
ized equational rewriting that uses constructor equations and constructor rules.
While the techniques presented in this paper are quite similar to the correspond-
ing techniques in [1], their soundness proofs are more involved and cannot be
presented due to space constraints. They can be found in the full version [14],
which furthermore contains additional techniques not presented in this paper.

After fixing terminology, Sect. 2 recalls and extends the CERSs introduced in
[12]. In contrast to [12], it is now possible to consider built-in integers. Context-
sensitive rewriting with CERSs is introduced in Sect. 3. The main technical
result of this paper is presented in Sect. 4. By a non-trivial extension of [1],
termination of context-sensitive rewriting with a CERS is reduced to showing
absence of infinite chains of dependency pairs. Sect. 5 introduces several power-
ful termination techniques that can be applied in combination with dependency
pairs. These techniques lift the most commonly used termination techniques in-
troduced for CERSs in [12] to context-sensitive CERSs. An implementation of
these techniques in the termination prover AProVE [17] is discussed and eval-
uated in Sect. 6. This evaluation shows that our implementation succeeds in
proving termination of a large class of context-sensitive CERSs.

2 Constrained Equational Rewrite Systems

Familiarity with the notation and terminology of term rewriting is assumed, see
[5] for an in-depth treatment. This paper uses many-sorted term rewriting over
a set S of sorts. It is assumed in the following that all terms, substitutions,
replacements, etc. are sort-correct. For a signature F and a disjoint set V of
variables, the set of all terms over F and V is denoted by T (F ,V). The set of
positions of a term t is denoted by Pos(t), where Λ denotes the root position.
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The set of variables occurring in a term t is denoted by V(t), and F(t) denotes
the set of function symbols occurring in t. This naturally extends to pairs of
terms, sets of terms, etc. The root symbol of a term t is denoted by root(t).

A context over F is a term C ∈ T (F ∪
⋃

s∈S{�s},V). Here, �s : → s is a
fresh constant symbol of sort s, called hole. If the sort of a hole can be derived
or is not important, then � will be used to stand for any of the �s. If C is
a context with n holes and t1, . . . , tn are terms of the appropriate sorts, then
C[t1, . . . , tn] is the result of replacing the occurrences of holes by t1, . . . , tn “from
left to right”. A substitution is a mapping from variables to terms, where the
domain of the substitution may be infinite. The application of a substitution σ

to a term t is written as tσ, using postfix notation.

A finite set E = {u1 ≈ v1, . . . , un ≈ vn} of equations induces a rewrite
relation →E by letting s →E t iff there exist a position p ∈ Pos(s) and a
substitution σ such that s|p = uiσ and t = s[viσ]p for some ui ≈ vi ∈ E . The
reflexive-transitive-symmetric closure of →E is denoted by ∼E . If equations are
used in only one direction, they are called rules. A term rewrite system (TRS)

is a finite set R = {l1 → r1, . . . , lm → rm} of rules. Equational rewriting uses
both a set E of equations and a set R of rules. Intuitively, E is used to model
“structural” properties, while R is used to model “simplifying” properties.

Definition 2 (E-Extended Rewriting). Let R be a TRS and let E be a set of

equations. Then s →E\R t if there exist a rule l → r ∈ R, a position p ∈ Pos(s),
and a substitution σ such that (i) s|p ∼E lσ, and (ii) t = s[rσ]p.

Writing
>Λ
∼E and

>Λ
−→E\R denotes that all steps are applied below the root,

and
>Λ
−→E\R−→! denotes normalization w.r.t.

>Λ
−→E\R.

In order to allow for built-in numbers and collection data structures, [12] has
introduced a new class of rewrite systems. Both built-in numbers and collection
data structures are modeled using E-extended rewriting. In order to model the
set of integers, recall that Z is an Abelian group with unit 0 that is generated
using the element 1. Integers can thus be modeled using the function symbols
FZ = {0 : → int, 1 : → int, − : int → int, + : int×int → int}. Terms over
FZ are written using a simplified notation, e.g., x−2 instead of x+((−1)+(−1)).

As is well-known, equational completion [21, 6] generates the following rules
SZ and equations EZ from the defining properties of Abelian groups:

x + 0 → x x + (−x) → 0

−− x → x (x + (−x)) + y → 0 + y

−0 → 0 x + y ≈ y + x

−(x + y) → (−x) + (−y) x + (y + z) ≈ (x + y) + z

Recall that equality w.r.t. the properties of Abelian groups is reduced to EZ-
equivalence of →EZ\SZ

-normal forms. This idea can be used for natural numbers
with FN = {0 : → nat, 1 : → nat, + : nat× nat → nat}, SN = {x + 0 → x},
and EN = {x+ y ≈ y +x, x+(y + z) ≈ (x+ y)+ z} as well [12]. In the following,
Th denotes one of Z or N, and base denotes the sort int or nat, respectively.
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Properties of the built-in numbers are modeled using the predicate symbols
P = {>, ≥, ≃}. The rewrite rules that are used in order to specify defined
functions then have constraints over these predicate symbols that guard when
a rewrite step may be performed. To this end, an atomic Th-constraint has the
form t1 P t2 for a predicate symbol P ∈ P and terms t1, t2 ∈ T (FTh ,V). The
set of Th-constraints is the closure of the set of atomic Th-constraints under ⊤
(truth), ¬ (negation), and ∧ (conjunction). The Boolean connectives ∨, ⇒, and
⇔ can be defined as usual. Also, Th-constraints have the expected semantics.
The main interest is in Th-satisfiability (i.e., the constraint is true for some
instantiation of its variables) and Th-validity (i.e., the constraint is true for all
instantiations of its variables). Notice that both of these properties are decidable.

In order to extend FTh by collection data structures and defined functions, a
finite signature F over the sort base and a new sort univ is used. The restriction
to two sorts is not essential, but the techniques presented in the remainder
of this paper only need to differentiate between terms of sort base and terms
of any other sort. Collection data structures can be handled similarly to the
built-in numbers by using equational completion on their defining properties [11,
12], see the table below. In the following, a combination of Th with (signature-
disjoint) collection data structures C1, . . . , Cn is considered. To this end, let S =
STh ∪

⋃n
i=1

SCi
and E = ETh ∪

⋃n
i=1

ECi
.

Constructors SC and EC

Compact Lists nil, ins ins(x, ins(x, ys)) → ins(x, ys)

Compact Lists nil, [·], ++ x ++ nil → x

nil ++ y → y

[x] ++ [x] → [x]
x ++ (y ++ z) ≈ (x ++ y) ++ z

Multisets ∅, ins ins(x, ins(y, zs)) ≈ ins(y, ins(x, zs))

Multisets ∅, {·},∪ x ∪ ∅ → x

x ∪ (y ∪ z) ≈ (x ∪ y) ∪ z

x ∪ y ≈ y ∪ x

Sets ∅, ins ins(x, ins(x, ys)) → ins(x, ys)
ins(x, ins(y, zs)) ≈ ins(y, ins(x, zs))

Sets ∅, {·},∪ x ∪ ∅ → x

x ∪ x → x

(x ∪ x) ∪ y → x ∪ y

x ∪ (y ∪ z) ≈ (x ∪ y) ∪ z

x ∪ y ≈ y ∪ x

The defined functions are specified using constrained rewrite rules. Here, the
Th-constraint guards when a rewrite step may be performed.

Definition 3 (Constrained Rewrite Rules). A constrained rewrite rule has

the form l → rJϕK for terms l, r ∈ T (F ∪ FTh ,V) and a Th-constraint ϕ such

that root(l) ∈ F − F(E ∪ S) and V(r) ∪ V(ϕ) ⊆ V(l).

In a constrained rewrite rule l → rJ⊤K, the constraint ⊤ is usually omitted.
A finite set R of constrained rewrite rules and the sets S and E for modeling Th
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and collection data structures as given above are combined into a constrained

equational rewrite system (CERS)2 (R,S, E). The rewrite relation of a CERS
is defined as follows [12]. Notice that checking the instantiated constraint for
validity requires the matching substitution to be Th-based, i.e., all variables of
sort base are mapped to terms from T (FTh ,V).

Definition 4 (Rewrite Relation of a CERS). For a CERS (R,S, E), let

s
S
→Th‖E\R t iff there exist l → rJϕK ∈ R, a position p ∈ Pos(s), and a Th-based

σ such that (i) s|p
>Λ
−→E\S−→! ◦

>Λ
∼E lσ, (ii) ϕσ is Th-valid, and (iii) t = s[rσ]p.

It is shown in [14] that
S
→Th‖E\R is decidable for the CERSs considered in

this paper. The function symbols occurring at the root position of left-hand sides
in R are of particular interest since they are the only function symbols that allow
a reduction to take place. These are the defined symbols D(R).

3 Context-Sensitive Rewriting with CERSs

A context-sensitive rewriting strategy is given using a replacement map µ with
µ(f) ⊆ {1, . . . , arity(f)} for every function symbol f ∈ F ∪ FTh . Replacement
maps specify the argument positions of function symbols where reductions are
allowed. If the replacement map restricts reductions in a certain argument posi-
tion, then the whole subterm below that argument position may not be reduced.
Formally, µ is used to define the set Pos

µ(t) of active positions of a term t.
Here, a position is active if it can be reached from the root of the term by only
descending into argument positions that are not restricted by the replacement
map, i.e., Pos

µ(x) = {Λ} for x ∈ V and Pos
µ(f(t1, . . . , tn)) = {Λ} ∪ {i.p | i ∈

µ(f) and p ∈ Pos
µ(ti)}. Dually, the set of inactive positions of t is defined as

Pos
6µ(t) = Pos(t)−Pos

µ(t). The concept of active positions can also be used to
define active (and inactive) subterms of a given term. tDµ s denotes that s is an
active subterm of t, i.e., t|p = s for an active position p ∈ Pos

µ(t). If p 6= Λ, then
this is written t ⊲µ s. Analogously, t ⊲ 6µ s means that s is an inactive subterm

of t. The classification of active and inactive subterms can easily be extended
to other notions as well to obtain the sets Vµ(t) of variables occurring in active
positions in t, V 6µ(t) of variables occurring in inactive positions in t, etc.

Now a context-sensitive constrained equational rewrite system (CS-CERS)

(R,S, E , µ) combines a regular CERS with a replacement map. As already no-
ticed in [15] for the AC -case, the permutative nature of the equations in E
disallows some choices of µ since inactive subterms may otherwise become ac-
tive subterms (or vice versa) by applying equations from E . Therefore, µ needs
to satisfy the following conditions:

µ(+) = {1, 2} µ(ins) = ∅ or µ(ins) = {1, 2}
µ(−) = {1} µ( ++ ) = µ(∪) = {1, 2}

2 A more abstract definition of CERSs that allows for more general non-free data
structures is given in [14]. The main requirement for this is that →E\S is convergent.
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The rewrite relation of a CS-CERS is obtained by a small modification of
Def. 4 such that the position where the reduction takes place has to be active.

Definition 5 (Rewriting with a CS-CERS). For a CS-CERS (R,S, E , µ),

let s
S
→Th‖E\R,µ t iff there exist l → rJϕK ∈ R, an active position p ∈ Pos

µ(s),

and a Th-based substitution σ such that (i) s|p
>Λ
−→E\S−→! ◦

>Λ
∼E lσ, (ii) ϕσ is Th-

valid, and (iii) t = s[rσ]p.

Example 6. The CERS from Ex. 1 becomes a CS-CERS by considering the re-
placement map µ with µ(ins) = ∅ and µ(f) = {1, . . . , arity(f)} for all f 6= ins.
Then the reduction of the term take(2, from(0)) has the following form:

take(2, from(0))
S
→Th‖E\R,µ take(2, ins(0, from(1)))
S
→Th‖E\R,µ cons(0, take(2 − 1, from(1)))
S
→Th‖E\R,µ cons(0, cons(1, take(1 − 1, from(2))))
S
→Th‖E\R,µ cons(0, cons(1, nil))

Notice that an infinite reduction of this term is not possible since the recursive
call in the rule from(x) → ins(x, from(x + 1)) occurs in an inactive position. ♦

4 Dependency Pairs for Rewriting with CS-CERSs

Recall from [4] that dependency pairs are built from recursive calls to defined
symbols occurring in right-hand sides of R since only these recursive calls may
cause non-termination. To this end, a signature F ♯ is introduced, containing
the function symbol f

♯ : s1 × . . . × sn → top for each function symbol f :
s1× . . .×sn → s from F . Here, top is a fresh sort. For t = f(t1, . . . , tn), the term
f

♯(t1, . . . , tn) is denoted by t
♯. Then a dependency pair generated from a rule

l → rJϕK has the shape l
♯ → t

♯JϕK, where t is a subterm of r with root(t) ∈ D(R).
The main theorem for CERSs [12] states that a CERS is terminating if it is not
possible to construct infinite chains from the dependency pairs.

For context-sensitive rewriting, one might be tempted to restrict the gener-
ation of dependency pairs to recursive calls occurring in active positions since
these are the only places where reductions may occur. As shown in [2] for ordi-
nary TRSs, this results in an unsound method if rules have migrating variables,
i.e., variables x with r Dµ x but l 6⊲µ x for some rule l → r. The reason for this
is that recursive calls occuring in inactive positions might be promoted to ac-
tive positions if they are matched to a migrating variable of another rule. Thus,
[2] introduces collapsing dependency pairs for such migrating variables, but this
causes severe disadvantages since it is hard to extend methods for proving ter-
mination from ordinary rewriting to context-sensitive rewriting. While progress
has been made [2, 3, 19], the resulting methods are quite weak in practice.

An alternative to the collapsing dependency pairs needed in [2] has recently
been presented in [1]. The main observation of [1] is that only certain instantia-
tions of the migrating variables need to be considered. A first, naive approach for
this would be to only consider instantiations by hidden terms, which are terms
with a defined root symbol occurring inactively in right-hand sides of rules.
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Definition 7 (Hidden Term). A term t is hidden for (R,S, E , µ) iff root(t) ∈
D(R) and there exists a rule l → rJϕK ∈ R such that r ⊲ 6µ t.

In Ex. 6, the term from(x+1) is hidden since ins(x, from(x+1))⊲ 6µ from(x+1).
As shown in [1] for ordinary TRSs, it does not suffice to only consider the hidden
terms. Instead, it becomes necessary to consider certain contexts that may be
built above a hidden term using the rewrite rules. Formally, this observation is
captured using the notion of hiding contexts. The definition in this paper differs
from the one given in [1] by also considering S and E .

Definition 8 (Hiding Contexts). Given a CS-CERS (R,S, E , µ), f ∈ F∪FTh

hides position i iff i ∈ µ(f) and either f ∈ F(E ∪ S) or there exist a rule

l → rJϕK ∈ R and a term s = f(s1, . . . , si, . . . , sn) with r ⊲ 6µ s and si Dµ x for

an x ∈ V or si Dµ g(. . .) with g ∈ D(R). A context C is hiding iff C = � or

C = f(t1, . . . , ti−1, C
′
, ti+1, . . . , tn) where f hides position i and C

′ is hiding.

In Ex. 6, + hides positions 1 and 2 and − and from hide position 1. Notice
that there are infinitely many hiding contexts, but that these hiding context
have a regular shape. In order to represent all hiding contexts using only finitely
many dependency pairs, fresh function symbols Ubase and Uuniv and unhiding

dependency pairs are used.

Definition 9 (Context-Sensitive Dependency Pairs). Let (R,S, E , µ) be

a CS-CERS. The set of context-sensitive dependency pairs of R is defined as

DP(R, µ) = DPo(R, µ) ∪ DPu(R, µ) where

DPo(R, µ) = {l♯ → t
♯JϕK | l → rJϕK ∈ R, r Dµ t, root(t) ∈ D(R)}

DPu(R, µ) = {l♯ → Us(x)JϕK | l → rJϕK ∈ R, r Dµ x, l 6⊲µ x}
∪ {Us(g(x1, . . . , xi, . . . , xn)) → Us′(xi)J⊤K | g hides position i}
∪ {Us(h) → h

♯J⊤K | h is a hidden term}

Here, Ubase : base → top and Uuniv : univ → top are fresh function symbols that

are added to F ♯ and s and s
′ are the appropriate sorts. Furthermore, µ(Ubase) =

µ(Uuniv) = ∅ and µ(f ♯) = µ(f) for all f ∈ F .

Example 10. For Ex. 6, DP(R, µ) is as follows:

take♯(x, ins(y, ys)) → take♯(x − 1, ys) Jx > 0K (1)

take♯(x, ins(y, ys)) → Ubase(y) Jx > 0K (2)
take♯(x, ins(y, ys)) → Uuniv(ys) Jx > 0K (3)

pick♯(ins(x, xs)) → Ubase(x) (4)

drop♯(ins(x, xs)) → Uuniv(ys) (5)

Uuniv(from(x + 1)) → from♯(x + 1) (6)
Ubase(x + y) → Ubase(x) (7)
Ubase(x + y) → Ubase(y) (8)

Ubase(−x) → Ubase(x) (9)
Uuniv(from(x)) → Ubase(x) (10)

For this, recall the hidden terms and the hiding contexts from above. ♦
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As usual in methods based on dependency pairs, context-sensitive depen-
dency pairs can be used in order to build chains, and the goal is to show that
S
→Th‖E\R,µ is terminating if there are no infinite minimal chains.

Definition 11 ((Minimal) (P ,R,S, E , µ)-Chains). Let (R,S, E , µ) be a CS-

CERS and let P be a set of dependency pairs. A (variable-renamed) sequence of

dependency pairs s1 → t1Jϕ1K, s2 → t2Jϕ2K, . . . from P is a (P ,R,S, E , µ)-chain

iff there exists a Th-based substitution σ such that tiσ
S
→Th‖E\R,µ→∗ ◦

>Λ
−→E\S−→! ◦

>Λ
∼E

si+1σ and ϕiσ is Th-valid for all i ≥ 1. The above (P ,R,S, E , µ)-chain is min-

imal iff tiσ does not start an infinite
S
→Th‖E\R,µ-reduction for all i ≥ 1.

Here,
S
→Th‖E\R,µ→∗ corresponds to reductions occurring strictly below the root

of tiσ and
>Λ
−→E\S−→! ◦

>Λ
∼E corresponds to normalization and matching before ap-

plying si+1 → ti+1JϕiK at the root position. Notice that this definition of chains
is essentially identical to the non-context-sensitive case in [12]. Proving the main
result for CS-CERSs constitutes the main technical contribution of this paper.
The proof requires several technical lemmas and can be found in [14].

Theorem 12. Let (R,S, E , µ) be a CS-CERS. Then
S
→Th‖E\R,µ is terminating

if there are no infinite minimal (DP(R, µ),R,S, E , µ)-chains.

In the next section, several techniques for showing absence of infinite chains
are presented. These techniques are given in the form of CS-DP processors that
operate on CS-DP problems in the spirit of [18]. Here, a CS-DP problem has the
form (P ,R,S, E , µ), where P is a finite set of dependency pairs and (R,S, E , µ)
is a CS-CERS. A CS-DP processor is a function that takes a CS-DP problem
as input and returns a finite set of CS-DP problems as output. A CS-DP pro-
cessor Proc is sound iff for all CS-DP problems (P ,R,S, E , µ) with an infinite
minimal (P ,R,S, E , µ)-chain there exists a CS-DP problem (P ′

,R′
,S′

, E ′
, µ

′) ∈
Proc(P ,R,S, E , µ) with an infinite minimal (P ′

,R′
,S′

, E ′
, µ

′)-chain. For a termi-
nation proof of the CS-CERS (R,S, E , µ), sound CS-DP processors are applied
recursively to the initial CS-DP problem (DP(R, µ),R,S, E , µ). If all resulting
CS-DP problems have been transformed into ∅, then termination has been shown.

5 CS-DP Processors

This section introduces several sound CS-DP processors. Most of these processors
are similar to corresponding processors developed for the non-context-sensitive
case in [12]. The soundness proofs for the CS-DP processors are, however, more
involved than the corresponding soundness proofs in [12], see [14] for details.

5.1 Dependency Graphs

Like the corresponding DP processor from [12], the CS-DP processor introduced
in this section decomposes a CS-DP problem into several independent CS-DP
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problems by determining which dependency pairs from P may follow each other
in a (P ,R,S, E , µ)-chain. The processor relies on the notion of (estimated) de-

pendency graphs, which has initially been introduced for ordinary TRSs [4]. Here,
the estimation from [12] is adaptated using an approach similar to [2, 1].

Definition 13 (Estimated Context-Sensitive Dependency Graphs). For

a CS-DP problem (P ,R,S, E , µ), the nodes in the estimated (P ,R,S, E , µ)-
dependency graph EDG(P ,R,S, E , µ) are the dependency pairs in P and there

is an arc from s1 → t1Jϕ1K to s2 → t2Jϕ2K iff there is a substitution σ such that

capµ(t1)σ
>Λ
−→E\S−→! ◦

>Λ
∼E s2σ and ϕ1σ, ϕ2σ are Th-valid. Here, capµ is given by

1. for x ∈ V, capµ(x) = x if sort(x) = base and capµ(x) = y otherwise,

2. capµ(f(t1, . . . , tn)) = f(t′
1
, . . . , t

′
n) if f 6∈ D(R), where t

′
i = ti if i 6∈ µ(f)

and t
′
i = capµ(ti) if i ∈ µ(f), and capµ(f(t1, . . . , tn)) = y if f ∈ D(R).

In both cases, y is the next variable in an infinite list y1, y2, . . . of fresh variables.

Incomplete methods to implement this estimation are given in [10]. The fol-
lowing CS-DP processor uses the estimated dependency graph in order to decom-
pose a CS-DP problem into several independent CS-DP problems by considering
the strongly connected components (SCCs) of EDG(P ,R,S, E , µ).

Theorem 14 (CS-DP Processor Using Dependency Graphs). The CS-

DP processor with Proc(P ,R,S, E , µ) = {(P1,R,S, E , µ), . . . , (Pn,R,S, E , µ)},
where P1, . . . ,Pn are the SCCs of EDG(P ,R,S, E , µ), is sound.

Example 15. For the dependency pairs from Ex. 10, the following estimated
dependency graph EDG(P ,R,S, E , µ) is obtained:

(1) (6)

(4) (2) (3) (5)

(7), (8), (9) (10)

Here, the nodes for (7)–(9) have been combined since they have “identical”
incoming and outgoing arcs. This estimated dependency graph contains two
SCCs, and according to Thm. 14, the following CS-DP problems are obtained:

({(1)},R,S, E , µ) (11) ({(7), (8), (9)},R,S, E , µ) (12)

These CS-DP problem can now be handled independently of each other. ♦

5.2 Subterm Criterion

The subterm criterion for ordinary TRSs [20] is a relatively simple technique
which is nonetheless surprisingly powerful. The technique works particularly
well for functions that are defined using primitive recursion. The subterm crite-
rion applies a projection which collapses a term f

♯(t1, . . . , tn) to one of its direct

120



subterms. Given a set P of dependency pairs and a subset P ′ ⊆ P , the method
consists of finding a projection such that the collapsed right-hand side is a sub-
term of the collapsed left-hand side for all dependency pairs in P , where this
subterm relation is furthermore strict for all dependency pairs from P ′. Then
the dependency pairs in P ′ may be removed from the CS-DP problem.

Definition 16 (Projections). A projection is a mapping π that assigns to

every f
♯ ∈ F ♯ with arity(f ♯) = n an i with 1 ≤ i ≤ n. The mapping that assigns

to every term f
♯(t1, . . . , tn) the term tπ(f♯) is also denoted by π.

In the context of CERSs, the subterm relation modulo E can be used [12].
For CS-CERSs, this relation needs to take the replacement map into account by
only considering subterms in active positions. This is similar to [2].

Definition 17 (E-µ-Subterms). Let (R,S, E , µ) be a CS-CERS and let s, t be

terms. Then t is a strict E-µ-subterm of s, written s⊲E,µ t, iff s ∼E ◦⊲µ ◦ ∼E t.

The term t is an E-µ-subterm of s, written s DE,µ t, iff s ⊲E,µ t or s ∼E t.

It is shown in [14] that ⊲E,µ and DE,µ are decidable for the sets E of equations
considered in this paper. Furthermore, the following properties can be shown.

Lemma 18. Let (R,S, E , µ) be a CS-CERS. Then ⊲E,µ is well-founded and

⊲E,µ and DE,µ are stable and compatible with ∼E .

Now the subterm criterion as outlined above can easily be implemented using
a CS-DP processor. Notice that the sets R and S do not need to be considered
when operating on the CS-DP problem (P ,R,S, E , µ).

Theorem 19 (CS-DP Processor Using the Subterm Criterion). For a

projection π, let Proc be a CS-DP processor with Proc(P ,R,S, E , µ) =

• {(P − P ′
,R,S, E , µ)}, if P ′ ⊆ P such that

– π(s) ⊲E,µ π(t) for all s → tJϕK ∈ P ′, and
– π(s) DE,µ π(t) for all s → tJϕK ∈ P − P ′.

• (P ,R,S, E , µ), otherwise.

Then Proc is sound.

Example 20. Recall the CS-DP problem (12) from Ex. 15, consisting of (7)–(9).
Using π(Ubase) = 1, this CS-DP problem can easily be handled. ♦

5.3 Reduction Pairs

As usual in methods based on dependency pairs, well-founded relations on terms
may be used in order to remove dependency pairs from CS-DP problems. The
idea for this is simple: If all dependency pairs from a CS-DP problem are at least
weakly decreasing, then all dependency pairs that are strictly decreasing cannot
occur infinitely often in infinite chains and may thus be deleted.

Often, reduction pairs [22] are used for this purpose, and they can immedi-
ately be applied for CS-CERSs as well. If the CS-CERS uses built-in natural
numbers, then PA-reduction pairs [12] may be used. Here, it is shown that a
special class of polynomial interpretations is applicable if integers are built-in.3

3 It is also possible to develop an abstract framework of Z-reduction pairs [10].
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A Z-polynomial interpretation Pol fixes a constant cPol ∈ Z and maps
• the symbols in FZ to polynomials over Z in the natural way, i.e., Pol(0) = 0,
Pol(1) = 1, Pol(−) = −x1 and Pol(+) = x1 + x2,

• the symbols in F to polynomials over N such that Pol(f) ∈ N[x1, . . . , xn] if
arity(f) = n, and

• the symbols in F ♯ to polynomials over Z such that Pol(f ♯) ∈ Z[x1, . . . , xn] if
arity(f ♯) = n and Pol(f ♯) is weakly increasing in all xi where the i

th argument
of f

♯ has sort univ.
Terms are mapped to polynomials by defining [x]Pol = x for variables x ∈ V and
[f(t1, . . . , tn)]Pol = Pol(f)([t1]Pol , . . . , [tn]Pol).

Definition 21 (≻Pol , &Pol , and ∼Pol for Z-Polynomial Interpretations).

Let Pol be a Z-polynomial interpretation. Then s ≻Pol t iff [sσ]Pol ≥ cPol and

[sσ]Pol > [tσ]Pol for all ground substitutions σ : V(s) ∪ V(t) → T (F ∪ FZ).
Analogously, s &Pol t iff [sσ]Pol ≥ [tσ]Pol for all ground substitutions σ : V(s) ∪
V(t) → T (F ∪ FZ) and s ∼Pol t iff [sσ]Pol = [tσ]Pol for all ground substitutions

σ : V(s) ∪ V(t) → T (F ∪ FZ).

For constrained terms, it suffices to consider all substitutions σ that make
the constraint Z-valid. This is similar to the PA-reduction pairs of [12].

Definition 22 (≻Pol and &Pol on Constrained Terms). Let Pol be a Z-

polynomial interpretation, let s, t be terms and let ϕ be a Z-constraint. Then

sJϕK &Pol tJϕK iff sσ &Pol tσ for all Z-based substitutions σ such that ϕσ is

Z-valid. Similarly, sJϕK ≻Pol tJϕK iff sσ ≻Pol tσ for all Z-based substitutions σ

such that ϕσ is Z-valid.

Thus, sJϕK ≻Pol tJϕK if the following formulas are true in the integers:

∀x1, . . . , xn. ϕ ⇒ [s]Pol ≥ cPol

∀x1, . . . , xn. ϕ ⇒ [s]Pol > [t]Pol

Here, x1, . . . , xn are the variables occurring in [s]Pol or [t]Pol . This requirement
might be impossible to show if one of the xi has sort univ since then the possible
values it can take are not restricted by the Z-constraint ϕ. By restricting the Z-
polynomial interpretation Pol such that for each f ∈ F with resulting sort univ,
the polynomial Pol(f) may only depend on a variable xi if the i

th argument of
f has sort univ, an easier requirement is obtained since ground terms of sort
univ are then mapped to non-negative integers. Thus, it suffices to show that

∀x1, . . . , xk. ∀y1 ≥ 0, . . . , yl ≥ 0. ϕ ⇒ [s]Pol ≥ cPol

∀x1, . . . , xk. ∀y1 ≥ 0, . . . , yl ≥ 0. ϕ ⇒ [s]Pol > [t]Pol

are true in the integers, where x1, . . . , xk are the variables of sort base in [s]Pol

or [t]Pol and y1, . . . , yl are the variables of sort univ in [s]Pol or [t]Pol .
Since Pol(−) is not monotonic in its argument, it becomes necessary to im-

pose restrictions on the CS-DP problem under which Z-polynomial interpreta-
tions may be applied. More precisely, it has to be ensured that no reduction with
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S
→Th‖E\R,µ takes place below an occurrence of −. There are two possibilities:

1. All arguments of right-hand sides of P are terms from T (FZ,V). Then no

reductions w.r.t.
S
→Th‖E\R,µ can take place between instantiated dependency

pairs in a chain since chains are built using Z-based substitutions.
2. F does not contain a function symbol with resulting sort base. Then, terms

with sort univ do not occur below occurrences of − and only terms with sort

univ are reducible by
S
→Th‖E\R,µ.

These possibilities give rise to two CS-DP processors. For the first possibility,
notice that R, S, and E do not need to be considered.

Theorem 23 (CS-DP Processor Using Z-Polynomial Interpretations–

Version 1). Let Proc be a CS-DP processor with Proc(P ,R,S, E , µ) =

• {(P − P ′
,R,S, E , µ)}, if all arguments of right-hand sides of P are terms

from T (FZ,V), Pol is a Z-polynomial interpretation, P ′ ⊆ P, and
– sJϕK ≻Pol tJϕK for all s → tJϕK ∈ P ′

– sJϕK &Pol tJϕK for all s → tJϕK ∈ P − P ′

• {(P ,R,S, E , µ)}, otherwise.

Then Proc is sound.

If P contains right-hand sides with arguments that are not from T (FZ,V),
then it might be possible to use a non-collapsing argument filter [22] for the
function symbols f

♯ ∈ F ♯ that ensures that condition 1 is true afterwards.

Example 24. Recall the CS-DP problem (11) from Ex. 15, consisting of the de-
pendency pair (1). Using a non-collapsing argument filtering that only retains
the first argument of take♯, this dependency pair is transformed into

take♯(x) → take♯(x − 1) Jx > 0K

Now condition 1 from above is satisfied and Z-polynomial interpretations are
applicable. Indeed, using Pol(take♯) = x1 concludes the termination proof of the
running example. ♦

If condition 2 from above is satisfied, the following CS-DP processor can
be obtained. A refinement that only needs to consider syntactically determined
subsets of R, S, and E is presented in [14].

Theorem 25 (CS-DP Processor Using Z-Polynomial Interpretations–

Version 2). Let Proc be a CS-DP processor with Proc(P ,R,S, E , µ) =

• {(P−P ′
,R,S, E , µ)}, if F does not contain a function symbol with resulting

sort base, Pol is a Z-polynomial interpretation, P ′ ⊆ P, and
– sJϕK ≻Pol tJϕK for all s → tJϕK ∈ P ′

– sJϕK &Pol tJϕK for all s → tJϕK ∈ (P − P ′) ∪R
– l &Pol r for all l → r ∈ S
– u ∼Pol v for all u ≈ v ∈ E

• {(P ,R,S, E , µ)}, otherwise.

Then Proc is sound.
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6 Evaluation and Conclusions

This paper has presented a generalization of the constrained equational rewrite
systems (CERSs) introduced in [12]. Then, context-sensitive rewriting strategies
for these generalized CERSs have been investigated. The main interest has been
in the automated termination analysis for such context-sensitive CERSs. For
this, a dependency pair framework for CS-CERSs has been developed, taking
the recent method of [1] for ordinary context-sensitive TRSs as a starting point.
Then, many of the DP processors developed for non-context-sensitive rewriting
in [12] have been adapted to the context-sensitive case.

The techniques presented in this paper have been fully implemented as part
of the termination prover AProVE [17], resulting in AProVE-CERS. While most
of the implementation is relatively straightforward, the automatic generation of
suitable Z-polynomial interpretations is non-trivial. Details on this can be found
in [13, 10]. In order to evaluate the effectiveness of the approach on “typical”
algorithms, the implementation has been evaluated on a collection of 150 (both
context-sensitive and non-context-sensitive) examples. Most of these examples
stem from the Termination Problem Data Base, suitably adapted to make use
of built-in integers and/or collection data structures. The majority of examples
correspond to functional programs as written in, e.g., OCaml. Additionally, the
collection contains several examples corresponding to functional Maude modules
taken from [9] that operate on sets or multisets. The collection furthermore con-
tains more than 40 examples that were obtained by encoding programs from the
literature on termination proving of imperative programs into CERSs. Within
a time limit of 60 seconds for each example, AProVE-CERS succeeds in proving
termination of 140 (93.3%) of the examples, taking an average time of about 2
seconds for one example. An empirical comparison with AProVE-Integer based
on the methods presented in [16] has been conducted on a subset of 80 examples
where the methods of [16] are applicable (i.e., examples that use neither context-
sensitive strategies nor collection data structures). Out of these 80 examples,
AProVE-CERS succeeds on 73, while AProVE-Integer succeeds on 72. There are
examples that can only be handled by AProVE-CERS but not by AProVE-Integer,
and vice versa. On examples that can be handled by both AProVE-CERS and
AProVE-Integer, the system AProVE-CERS that is based on the present paper
is much faster than AProVE-Integer, usually by one or two orders of magnitude
(in the most extreme case, AProVE-CERS succeeds in 0.1s while AProVE-Integer

needs 52.7s in order to prove termination). The detailed empirical evaluation is
available at http://www.cs.unm.edu/∼spf/tdps/.
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Abstract. We give a method of proving termination of higher-order rewrite rules
in Klop’s format called combinatory reduction system (CRS). The format CRS
essentially covers the usual pure higher-order functional programs such as Haskell.
Our method to prove termination, called higher-order semantic labelling, is an
extension of a method known in the theory of term rewriting. This attaches se-
mantics of the arguments to each function symbol. We systematically define the
labelling by using the complete algebraic semantics of CRS, Σ-monoids. We also
examine the power of higher-order semantic labelling by several examples. This
includes an interesting example from the viewpoint of functional programming.

1 Introduction

Rewrite rules appear everywhere in computer science. In programming language theory,
we often use transformation of states, expressions, terms, or programs given by some
form of rewrite rules. Functional programs such as Haskell can also be regarded as
rewrite rules.

When reasoning with such rewrite rules, termination property is important, so we
need some way to ensure termination of rewrite rules. This topic has been extensively
investigated in the field of term rewriting [BN98, Ter03]. In this paper, we deal with
higher-order rewrite rules in Klop’s format called combinatory reduction systems (CRSs)
[Klo80]. The format CRS is known as the first detailed formulation of higher-order
rewriting system (i.e. rewriting system having the feature of variable binding and meta-
level substitutions) in the theory of term rewriting. A CRS is essentially a set of rewrite
rules on second-order terms. In this paper, we give a method to prove termination
(meaning strong normalisation) of a CRS, called higher-order semantic labelling. This
is an extension of semantic labelling for first-order term rewriting systems (TRSs) given
by Zantema [Zan95]. Let us look at examples first.

Example 1 (CRS for the prefix sum of a list). Consider the following CRS P for
computing the prefix sum of a list i.e. the list with the sum of all prefixes of a given list
using the higher-order function map (taken from [BR01]).

map(a.[a], nil)→ nil

map(a.[a],  : )→ [] : map(a.[a], )
ps(nil)→ nil

ps( : )→  : ps(map(a. + a, ))



We try to prove termination of the CRS P. A powerful decidable method to prove
termination is known for CRSs, called General Schema [Bla00]. The idea of General
Schema is to control the arguments of the right-hand side recursive calls in a rewrite rule
by checking that they are smaller than the left-hand sides ones in the strict subterm order
(as in the primitive recursion) extended in a multiset or lexicographic manner. However,
General Schema cannot show termination of the CRS P because the argument of ps in
the right-hand side of the last rule is not a subterm of the argument of ps in the left-
hand side. Intuitively, we know that the map function does not change the length of
the argument of a list, thus we can see that a shorter list than x : xs is used in the
recursive call of ps. To prove termination of ps, this “semantic” information (rather
than syntactical structural decreasingness) must be taken into account.

Higher-order semantic labelling developed in this paper is a method to reflect such
information in rewrite rules. Here we use the “length” of a list for ps as the semantics.
By using higher-order semantic labelling, we obtain the following labelled rules:

ps0(nil)→ nil

psi+1( : )→  : psi(map(a. + a, ))

for all i ∈ N (cf. Sec. 4.4). This i denotes the length of the argument of ps. Then, General
Schema succeeds in showing termination of the labelled rules with the precedence psi >
ps j > map > : for i > j ∈ N because this time the subterm comparison is not needed by
using psi+1 > psi. The main theorem (Thm. 9) of higher-order semantic labelling we
obtain is that if the labelled CRS is terminating, then the original CRS is terminating.
Hence, we can conclude termination of P.

Contribution. The contribution of this paper is summarised as follows.

(i) Theoretical contribution.
• We generalised semantics labelling for TRSs [Zan95] to higher-order semantic

labelling for CRSs in the framework of Σ-monoids. This also showed that Σ-
monoids was certainly the right structure as the semantics of CRSs.
• We showed that semantic labelled meta-terms form a Σ-monoid.
• We identified the commutativity of the labelling operation with the substitu-

tions appearing in formulation of CRSs is an essential property to establish
semantic labelling.

(ii) Practical contribution. We showed usefulness of higher-order semantic labelling by
several examples for which General Schema alone fails.

Background. Higher-order semantic labelling was firstly introduced for Inductive
Datatype Systems [Ham07]. This paper simplifies the labelling method and applies
it to examples taken from functional programming. The semantics used in this paper
is based on the algebraic semantics of CRS [Ham05], Σ-monoids. The notion of Σ-
monoids was introduced by Fiore, Plotkin and Turi [FPT99], then a higher-order ab-
stract syntax for free Σ-monoids was developed by the author [Ham04]. The algebraic
semantics for CRSs [Ham05] was a further application of this Σ-monoid structure. The
outline of higher-order semantic labelling for CRSs (without proofs) has appeared in
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13th International Conference on Logic for Programming Artificial Intelligence Rea-
soning (LPAR’06) as a short paper.

Organisation. This paper is organised as follows. We first review the definition of
CRSs in Section 2 and the semantics of CRSs in Section 3. We give higher-order se-
mantic labelling of CRSs in Section 4. In Section 5, we give the quasi-model version of
higher-order semantic labelling and show several examples of termination proof using
our method. For lack of space, all omitted proofs are given in Appendix.

2 Combinatory Reduction Systems

CRS. We review the definition of CRSs. We use the definition of the standard reference
[KOR93] of CRSs with a slight modification of syntax used in [DR98]: −.− and −[−]
instead of ordinary ones [−]− and −(−) in [KOR93].

Assume a signature Σ of function symbols f l with arity, metavariables l with arity
(in both cases the superscript l ∈ N is the arity).

(i) CRS terms have the form t ::= x | x.t | f l(t1, . . . , tl). These forms are respectively
called variables, abstractions, and function terms.

(ii) CRS meta-terms extend CRS terms to t ::= x | x.t | f l(t1, . . . , tl) | l [t1, . . . , tl].
The last form is called a meta-application.

(iii) A valuation θ is a mapping that assigns to n-ary metavariable  an n-ary substitute
(a meta-level lambda notation, cf. [KOR93]) θ :  - λ(x1, . . . , xn).t where t is a
term. Any valuation is extended to a function on meta-terms:

θ(x) = x θ( f (t1, . . . , tl)) = f (θ(t1), . . . , θ(tl))
θ(x.t) = x.θ(t) θ([t1, . . . , tl]) = θ() (θ(t1), . . . , θ(tl)) (1)

Note that the right-hand side of the equation (1) uses an application at the meta-
level to the substitute. The valuation is safe if there are no two substitutes θ() and
θ(’) such that θ() contains a free variable x which appears also bound in θ(’).

(iv) CRS rules, written l → r, consist of two meta-terms l and r with the following
additional restrictions:

(iv-a) l and r are closed (w.r.t. variables) meta-terms,
(iv-b) l must be a “pattern”, i.e. a function term where all meta-applications have the

form [x1, . . . , xn] with distinct variables xi,
(iv-c) r can only contain meta-applications with meta-variables occurring in the left-

hand side.
The rewrite rule l → r is safe for θ, if for no  in l and r, the substitute θ() has
a free variable x occurring in an abstraction x.− of l and r. A set of rewrite rules
under the signature Σ is called a CRS and denoted by (Σ,R) or simply R.

(v) The CRS rewrite relation→R is generated by context and safe valuation closure of
a given CRS R:

l→ r ∈ R
θ(l)→R θ(r)

safe θ
s→R t

x.s→R x.t
s→R t

f (. . . , s, . . .)→R f (. . . , t, . . .)

where l→ r must be safe for the safe valuation θ. The third rule means rewriting at
the i-th argument of f . We say that R is terminating if→R is well-founded.
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Structural CRSs. In this paper, we treat only CRSs built from binding signatures (cf.
Aczel’s contraction schemes [Acz78]), which we call structural CRSs. A (binding) sig-
nature Σ is consisting of a set Σ of function symbols with an arity function a : Σ → N∗

(N∗ denotes the set of all finite sequences of natural numbers). A function symbol of
binding arity 〈n1, . . . , nl〉, denoted by f : 〈n1, . . . , nl〉, has l arguments and binds ni

variables in the i-th argument (1 ≤ i ≤ l). For a formal treatment of named variables
modulo α-equivalence in CRSs, we assume the method of de Bruijn levels [FPT99]
for the naming convention of variables (N.B. not for metavariables) in CRSs. We also
use the convention that n ∈ N denotes the set {1, . . . , n} (n is possibly 0). Under the
method of de Bruijn levels, this n means the set of variables from 1 to n. Structural
meta-terms are of the form t ::= x | f (x1 · · · xi1.t1 , . . . , x1 · · · xil.tl) | 

l [t1, . . . , tl] satis-
fying the restriction generated by the inference system given blow. Fix an N-indexed
set Z of metavariables defined by Z(l) , { |  has arity l}. A meta-term t is structural
if n ` t is derived from the following rules for some n ∈ N.

x ∈ n
n ` x

f : 〈i1, . . . , il〉 ∈ Σ n+i1 ` t1 · · · n+il ` tl
n ` f ( n+1 . . . n+i1.t1, . . . , n+1 . . . n+il.tl )
 ∈ Z(l) n ` t1 · · · n ` tl

n ` [t1, . . . , tl]

By using these rules, we obtain meta-terms in the method of de Bruijn levels. A rewrite
rule 1. · · · n.l → 1. · · · n.r is called structural if l and r are structural, i.e. n ` l and
n ` l. A CRS is structural if all rules are structural. A valuation θ is structural if for
any mapping by θ :  7→ λ(x1, . . . , xn).t, t is a structural term and all variables in t are
included in x1, . . . , xn. We may use the notation Z|n ` s → t for a rule or a rewrite step
if metavariables and variables in s and t are included in Z and n respectively. We may
also simply write Z ` s→ t or n ` s→ t if another part is not important.

3 Semantics of CRSs

3.1 Binding Algebras

We review the notion of binding algebras [FPT99]. Let F be the category which has
finite cardinals n = {1, . . . , n} (n is possibly 0) as objects, and all functions between
them as arrows. This is the category of object variables by the method of de Bruijn
levels (i.e. natural numbers) and their renamings. We use the functor category SetF. An
object A of SetF is often called a presheaf . Subscripts may be used to denote parameters.
The functor δ : SetF → SetF for “index extension” is defined by (δL)(n) = L(n + 1) for
L ∈ SetF. To a binding signature Σ, we associate the signature functor Σ : SetF → SetF
given by ΣA =

∐
f :〈n1,...,nl〉∈Σ

∏
1≤i≤l δ

ni A. A Σ-algebra is a pair (A, α) consisting of a
presheaf A ∈ SetF called a carrier and a map ([ ] denotes a copair of coproducts)
α = [ fA] f∈Σ : ΣA - A called a algebra structure, where fA is an operation fA :
δn1 A × . . . × δnl A - A defined for each function symbol f : 〈n1, . . . , nl〉 ∈ Σ. The
“presheaf of variables” V ∈ SetF is defined by V(n) = n, V(ρ) = ρ (ρ : m→ n in F). For
presheaves A and B, (A • B)(n) , (

∐
m∈N A(m) × B(n)m)/ ∼ where ∼ is the equivalence

relation generated by (t; uρ1, . . . , uρm) ∼ (A(ρ)(t); u1, . . . , ul) for ρ : m → l in F. Then,
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(SetF, •,V) forms a monoidal category [Mac71], where the “substitution” monoidal
product is defined as follows. An element of A(m) × B(n)m is denoted by (t; u1, . . . , um)
where t ∈ A(m) and u1, . . . , um ∈ B(m). A representative of an equivalence class in
A • B(n) is also denoted by this notation. Let Σ be a signature functor with strength
st defined by a binding signature. A Σ-monoid M = (M, α, η, µ) consists of a monoid
(M, η : V→ M, µ : M •M → M) in the monoidal category (SetF, •,V) with a Σ algebra
structure α : ΣM → M satisfying µ ◦ (α • idM) = α ◦ Σµ ◦ st. A Σ-monoid morphism
M - M′ is a morphism in SetF which is both Σ-algebra homomorphism and monoid
morphism.

An intuition of a Σ-monoid is an algebra with the operation of an interpretation
of substitution on (semantics of) terms. This semantic substitution operation is called
multiplication, typically denoted by β and µ in this paper. Why this is a multiplication
is that the substitution operation satisfies the monoid law in an abstract setting.

3.2 Algebra of Meta-terms

Let Z be an arbitrary N-indexed set of metavariables (cf. Sec. 2). The presheaf MΣZ of
meta-terms is defined by MΣZ(n) = {t | n ` t}.We abbreviate n+1, . . . , n+k.t to n+~k.t. For
every f : 〈i1, . . . , il〉 ∈ Σ, we define the map fT : δi1 MΣZ×· · ·×δil MΣZ - MΣZ in SetF
by (t1, . . . , tl) - f (n+~i1.t1, . . . , n+~il.tl). The multiplication β : MΣZ•MΣZ - MΣZ
is a map in SetF that performs a substitution of variables defined inductively as follows.

β(n)(i; ~t) = ti β(n)([s1, . . . , sl]; ~t) = [β(n)(s1;~t), . . . , β(n)(sl;~t)]
β(n)( f (m+~i1.s1, . . . ,m+~il.sl); ~t) = f (m+~i1. β(m+i1)(s1; upi1 (~t),m+1, . . . ,m+i1), . . .

m+~il. β(m+il)(sl; upil (~t),m+1, . . . ,m+il)

where f : 〈i1, . . . , il〉 ∈ Σ and ~t denotes t1, . . . , tm, and the weakening map from MΣZ(m)
to MΣZ(m + i) is defined by upi , MΣZ(idm + wi) where wi : 0 → i. Then, the struc-
tural meta-terms (MΣZ, [ fT ] f∈Σ, ν, β) is a free Σ-monoid over a presheaf Ẑ, where ν :
V - MΣZ in SetF is defined by x - x and Ẑ(n) =

∐
k∈N F(k, n) × Z(k) [Ham04].

Hereafter we abuse the notation to use Z to denote its presheaf version Ẑ ∈ SetF in an
assignment. We use the following “homomorphic extension” in this paper.

Definition 2. We call an assignment a morphism φ : Z - A of SetF whose target
A has a Σ-monoid structure (A, α, η, µ). By freeness, an assignment φ : Z - A is
extended to the Σ-monoid morphism φ∗ : MΣZ - A defined by

φ∗n(x) = ηn(x) (x ∈ n)

φ∗n( f (n+~i1.t1, . . . , n+~il.tl)) = fA(φ∗n+i1 (t1), . . . , φ∗n+il (tl))

φ∗n([t1, . . . , tl]) = µn( φl(); φ
∗
n(t1), . . . φ∗n(tl) )

where f : 〈i1, . . . , il〉 ∈ Σ.

When the N-indexed set of metavariables Z = 0 (empty set), MΣ0 is the presheaf
of all structural terms (written as TΣV in [Ham05]). Moreover, MΣ0 forms the initial Σ-
monoid [FPT99, Ham04]. An assignment θ : Z - MΣ0 gives a structural valuation,
and θ∗ : MΣZ - MΣ0 gives its “homomorphic” extension on meta-terms. We also
call a valuation an assignment θ : Z - MΣ0.
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3.3 Algebraic Semantics of Rewriting

Henceforth, in this paper we consider structural CRSs only. So we just say “a CRS” for
a structural CRS.

The notions of models and quasi-models for CRSs can be defined by immediate
variations of algebraic semantics in [Ham05]. For a presheaf A, we write ≥A for a
family of preorders {≥A(n)}n∈N, where ≥A(n) is a preorder on a set A(n) for each n ∈
N. Let (A1,≥A1 ), . . . , (Al,≥Al ), (B,≥B) be presheaves equipped with preorders. A map
f : A1 × · · · × Al - B in SetF is weakly monotone if all n ∈ N, all a1, b1 ∈

A1(n), . . . , al, bl ∈ Al(n) with ak ≥A(n) bk for some k and a j = b j for all j , k, then
f (n)(a1, . . . , al) ≥B(n) f (n)(b1, . . . , bl). A weakly monotone V+Σ-algebra (A,≥A) is a
V+Σ-algebra A = (A, [ν, [ fA] f∈Σ]), where ν : V - A, equipped with preorders
{≥A(n)}n∈N, such that every operation fA is weakly monotone. Let A be a V + Σ-algebra.
A term-generated assignment φ : Z - A is a morphism of SetF that is expressed
as the composite Z

θ- MΣ0
!A- A for some valuation θ, where !A is the unique

V + Σ-algebra homomorphism from the initial V + Σ-algebra MΣ0. A V+Σ-algebra A
satisfies a rewrite rule Z ` ~n.l → ~n.r if φ∗(n)(l) = φ∗(n)(r) for all term-generated as-
signments φ : Z - A. A model A for a CRS (Σ,R) is a V+Σ-algebra A that satisfies
all rules in the weakening closure R◦ (cf. [Ham05]). A weakly monotone V+Σ-algebra
(A,≥A) satisfies a rewrite rule Z ` ~n.l → ~n.r if φ∗(n)(l) ≥A(n) φ

∗(n)(r) for all term-
generated assignments φ : Z - A. A quasi-model A for (Σ,R) is a weakly monotone
V+Σ-algebra A that satisfies all rules in the weakening closure R◦. An important fact
is that any Σ-monoid (M, α, ν, µ) gives a V+Σ-algebra (M, [ν, α]). Thus in this paper,
we will basically work with Σ-monoids rather than V+Σ-algebras, which gives uniform
semantic treatment of algebras with substitutions.

4 Higher-Order Semantic Labelling

We are now ready to give our semantic labelling for CRSs. We extend semantic labelling
for TRSs by Zantema [Zan95] by a more abstract formulation along the idea of initial
algebra semantics in the framework of Σ-monoids.

4.1 Semantic Labelling for Meta-terms

Henceforth, we assume that Z is an N-indexed set of metavariables, Σ is a binding
signature and M is a Σ-monoid. We introduce labelling of functions symbols: choose
for every f ∈ Σ a corresponding non-empty set S f of labels, called sort set. The binding
signature Σ for labelled function symbols is defined by

Σ = { fp | f ∈ Σ, p ∈ S f }

where the binding arity of fp is defined to be the binding arity of f . A function symbol
is labelled if S f contains more than one element. For unlabelled f , the set S f containing
only one element can be left implicit; in that case we will often write f instead of fp.

Choose for f : 〈i1, . . . , il〉 ∈ Σ, a sort map that is a morphism of SetF defined by

〈〈−〉〉 f : δi1 M × · · · × δil M - KS f .
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where KS f ∈ SetF is the constant presheaf defined by KS f (n) = S f . If it is clear from
the context, the superscript of 〈〈−〉〉 f will be omitted. The sort map was originally called
a projection, denoted by π f in [Zan95]. Then, as in the case of ordinary signature, we
define MΣZ by the presheaf of all meta-terms generated by the labelled signature Σ.

Definition 3 (Labelling map). Let φ : Z - M be an assignment. The labelling map
φL : MΣZ - MΣZ is a morphism of SetF defined by

φL
n : MΣZn

- MΣZn

φL
n(x) = x φL

n([~t]) = [φL
n~t]

φL
n( f (n+~i1.t1, . . . , n+~il.tl)) = f〈〈φ∗n+i1 (t1),...,φ∗n+il (tl)〉〉

f
n
(n+~i1.φL

n+i1 t1, . . . , n+~il.φL
n+il tl)

We state the following characterisation that clarifies what is the mathematical struc-
ture of semantic labelled meta-terms. While it is mathematically natural, this algebraic
viewpoint was not considered in the original proposal [Zan95].

Theorem 4. For each assignment φ : Z - M, (MΣZ, [ fφ] f∈Σ, νφ, βφ) is a Σ-monoid.

Corollary 5. For each assignment φ : Z → M, the labelling map φL : MΣZ → MΣZ is
the unique Σ-monoid morphism (MΣZ, [ fT ] f∈Σ, ν, β)→ (MΣZ, [ fφ] f∈Σ, νφ, βφ).

Below we describes the Σ-monoid structure. on MΣZ mentioned above for each assign-
ment φ : Z - M. Let | − | be the function that erases all labels in a labeled meta-term
for the ordinary signature Σ.

Unit. νφ : V→ MΣZ is defined by x 7→ x.

Operations. For f : 〈i1, . . . , il〉 ∈ Σ, the corresponding operation fφ : δi1 MΣZ × · · · ×
δil MΣZ - MΣZ is defined by

fφ(n)(s1, . . . , sl) = f〈〈φ∗n+i1
(|s1 |),...,φ∗n+il

(|sl |)〉〉
n
(n + i1.s1, . . . , n + il.sl).

Multiplication. βφ : MΣZ • MΣZ - MΣZ is defined by

βφ(n)(x; ~t) = tx

βφ(n)([s1, . . . , sl]; ~t) = [βφ(n)(s1;~t), . . . , βφ(n)(sl;~t)]

βφ(n)( fq(m+~i1.s1, . . . ,m+~il.sl); ~t)

=

 fp(m+~i1. βφ(m+i1)(s1; upm+i1 (~t),m+1, . . . ,m+i1), . . .) if m + 1 > n
fp(n+~i1. βφ(n+i1)(s1; upn+i1 (~t), n+1, . . . , n+i1), . . .) if m + 1 ≤ n

where p = 〈〈φ∗(n)|βφ(n+i1)(s1; upi1 (~t), n+1, . . . , n+i1)|, . . . , φ∗(n)|βφ(n+il)(sl; upil (~t), n+
1, . . . , n + il)|〉〉n. For the third clause, we assume that m is the length of ~t, and I is the
maximum of i1, . . . , il, Note that the length of “upi1 (~t), n+1, . . . , n+i1” is m + i1, and it
renames m + k by n + k to make bound variables sense.

133



Laws. To check that MΣZ satisfies the monoid law is straightforward induction on meta-
terms. To check the Σ-monoid law βφ ◦ ([ fφ] f∈Σ • id) = [ fφ] f∈Σ ◦ Σβφ ◦ st, we instantiate
this at n ∈ F and chase an element, this eventually becomes the equality

βφ(n)( fr(m+~i1.s1, . . . ,m+~il.sl); ~t) = fp(m+~i1. βφ(m+i1)(s1; upi1 (~t),m+1, . . . ,m+i1), . . .

m+~il. βφ(m+il)(sl; upil (~t),m+1, . . . ,m+il)

where r = 〈〈φ∗n+i1
(|s1|), . . . , φ∗n+il

(|sl|)〉〉n and p is the one given above. This obviously
holds by the definition of βφ.

4.2 Commutativity

In CRSs, there are two kinds of variables, i.e. “variables” and “metavariables”. Accord-
ingly, there are two kinds of substitutions:

• substitution of variables (written as β in Lemma 6), to perform (essentially) the
β-reduction of an instantiated meta-application, such as an instance of []
• substitution of metavariables (written as θ in Lemma 7), used to instantiate rewrite

rules, and formally called valuation (Def. 2).

The labelling map φL has to commute with these two substitutions. Why this is needed
is that to establish higher-order semantic labelling, we translate a usual rewrite s →R t
to the labelled rewrite φL

n s →
R
φL

nt (Prop. 8). This process requires to “push” substi-
tutions outside of an application of the labelling map in a term in two levels (i.e. for
variables and for metavariables). This is nothing but commutativity of labelling with
substitutions.

Lemma 6. Let φ : 0 - M be an assignment. Then, the following diagram com-
mutes in SetF:

MΣ0 • MΣ0
β - MΣ0

MΣ0 • MΣ0

φL • φL

?

βφ
- MΣ0

φL

?

Proof. Since φL is a Σ-monoid morphism, the multiplication is preserved.

Lemma 7. Let φ : 0 - M and θ : Z - MΣ0 be assignments. Then, the following
diagram commutes in SetF:

MΣZ
θ∗ - MΣ0

MΣZ

(φ∗θ)L

?

(φLθ)∗
- MΣ0

φL

?

Here (−)∗ denotes the Σ-monoid morphism extension (−)∗ (cf. Def. 2) for the case of
the labelled signature Σ.
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4.3 Labelled System

For a given CRS (Σ,R) and Σ-monoid M, we define the labelled rules by

R = {Z ` ~n.φL
nl→ ~n.φL

nr | Z ` ~n.l→ ~n.r ∈ R, assignment φ : Z - M}.

Thus R is a set of rewrite rules on labelled terms in MΣZ(0). So, (Σ,R) forms a CRS
that gives rewriting on Σ-terms. We have seen that the labelling map φL is a Σ-monoid
morphism, i.e. preserves Σ-meta-term structures. The following proposition states that
φL moreover preserves R-rewrite structures.

Proposition 8. Let M be a model of R. If we have CRS rewriting n ` s→R t on MΣ0n,
then for the assignment φ : 0 - M, we have rewriting n ` φL

n s→
R
φL

nt on MΣ0n.

Theorem 9 (Higher-order semantic labelling). Let M be a model of R. A CRS R is
terminating if and only if R is terminating.

Proof. For both directions, we prove contrapositions. [⇐]: By Prop. 8. [⇒]: By erasing
all labels in rewrite steps. ut

4.4 Example

We illustrate how to apply the higher-order semantic labelling method. Higher-order se-
mantic labelling itself merely transforms a CRS into a labelled one. We need separately
a way to prove termination of the labelled system. For this purpose, we use Blanqui’s
version of General Schema for CRSs [Bla00] to prove termination of labelled CRSs
because in our experience, this is the most powerful decidablemethod to prove termina-
tion of CRSs. General Schema uses a precedence which is a partial order on function
symbols occurring in a CRS. Using a precedence, if General Schema satisfies all rewrite
rules of a given CRSs, we conclude termination of it [Bla00].

Example 10 (CRS for prefix sum). Consider the example of CRS P for computing
prefix sum of lists given in Example 1. The CRS P is formulated under the binding
signature Σ = {map : 〈1, 0〉,S, ps : 〈0〉, 0, nil : 〈〉,+, “ : ” : 〈0, 0〉}.

To use higher-order semantic labelling, we need a model of P. Here we take the
presheafMn , (Nn → N) of all functions on N. ThisM forms a monoid (cf. [FPT99]
Sec. 2) in the monoidal category (SetF, •,V) by taking the multiplication β :M•M→
M as the composition “◦”, and the unit ν : V → M as the projections of Cartesian
products i 7→ πi. To construct a Σ-monoidM, we define a Σ-algebra structure onM.
First, we define the operations at the stage 0 (here we call the component parameter of
a natural transformation stage):

mapM0
( f , y) = y ps(x) = x :M0 (x, y) = y + 1 nilM0 = 0 x +M0 y = 0.

The idea of this model is to count the number of cons’s. The definition of :M0 reflects
this idea and the definition of mapM0

comes from the observation that map does not
change the number of cons’s. For each f : 〈i1, . . . , il〉 ∈ Σ, the operation at stage n ≥ 1 is
given by using pairing of functions fMn (a1, . . . , al) , fM0◦〈a1, . . . , al〉,more concretely,
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fMn (a1, . . . , al)(Γ) = fM0 (a1(Γ), . . . , al(Γ)) for Γ ∈ Nn. This indeed gives a morphism of
SetF. We can straightforwardly check that this gives a model ofP. We label the function
symbol ps and assume that other function symbols are unlabelled. We use the natural
numbers N as the sort set S ps. The sort map is defined by 〈〈x〉〉ps

0 = x. Then, we have the
following labelled rules

ps0(nil)→ nil

psi+1( : )→  : psi(map(a. + a, ))

for all i ∈ N. General Schema succeeds in showing termination of this labelled CRS
with the precedence psi > ps j > map > nil, : for i > j ∈ N.

5 Labelling with Quasi-Models

Until now the model M was a presheaf and sort set S f was a set. Here we require them
to be equipped with well-founded partial orders. The operations fM and sort map 〈〈−〉〉 f
have to be weakly monotone morphisms in SetF. Moreover, here M is only required to
be a quasi-model for a CRS, meaning that the interpretation of the left-hand side of a
rule is greater than or equal to (≥) the corresponding right-hand side.

We define this labelling with quasi-models formally. For f : 〈i1, . . . , il〉 ∈ Σ, we as-
sociate a well-founded poset (S f ,≥S ) of sorts and a sort map that is a weakly monotone
morphism 〈〈−〉〉 f : δi1 M × · · · × δil M - KS f . The labelled signature Σ is defined by
using the sort set S f as in Sec. 4. Let (M,≥M) be a quasi-model for a CRS R. Using the
sort map and the Σ-monoid M, the labelled CRS R is also defined by the same as in Sec.
4.3. Moreover, we define the CRS Decr (called “decreasing rules”) over Σ to consist of
the rules

fp(~i1.1[~i1], . . . , ~i1.l[~il]) → fq(~i1.1[~i1], . . . , ~i1.l[~il])

for all f : 〈i1, . . . , il〉 ∈ Σ and all p >S q ∈ S f . Here each metavariable k has arity ik
(for 1 ≤ k ≤ l) and >S denotes the strict part of ≥S .

Proposition 11. Let (M,≥M) be a quasi-model for R. If we have rewriting n ` s →R t
on MΣ0n, then for the assignment φ : 0 - M, n ` φL

n s →∗Decr;→R φ
L
nt holds. Here

“;” denotes the sequential composition of relations.

Theorem 12. Let M be a quasi-model for a CRS R and R the labelled CRS with respect
to M. Then R is terminating if and only if R ∪ Decr is terminating.

Example 13 (CRS for quick sort). We define the CRS R for quick sort by the follow-
ing rules [BR01] with the rewrite rules of standard functions: if,++ , filter, “>”, “≤”.

0 >  → false 0 ≤  → true
 > 0 → true s() ≤ 0 → false
s() > s() →  >  s() ≤ s() →  ≤ 
if(true, , ) →  nil ++ → 

if(false, , )→  ( : ) ++→  : ( ++)
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filter(, nil)→ nil

filter(,  : )→ if([],  : filter(, ), filter(, ))
qsort(nil)→ nil

qsort( : )→ qsort(filter(a. a ≤ , )) ++(( : nil) ++
qsort(filter(a. a > , )))

To show termination of this CRS R by employing an RPO-like method is again dif-
ficult because the argument of qsort in the right-hand side of the last rule (filter(· · · ))
is structurally bigger than the argument of qsort in the left-hand side ( : ). Thus,
General Schema fails to show termination. The higher-order RPO for the correspond-
ing rewrite system written in the format called Inductive data type Systems [BJO02]
also fails [BR01].

Here, we use higher-order semantic labelling with a quasi-model. We use the same
carrierMn , (Nn → N) as in Example 10, equipped with the usual order ≥ on N and
its pointwise extension. We give a quasi-model that estimates the maximum bounds of
the lengths of lists appearing in the arguments of functions in R. The operations nilM0

and :M0 are the same as in Example 10 and other operations are:

qsortM0
(x) = x filterM0 (p, x) = x

++M0 (x, y) = max(x, y) :M0 (x, y) = y + 1 ifM0 (x, y, z) = max(y, z)

where max is the maximum function on N. This is indeed a quasi-model and cannot be
a model because the interpretation of the rule for qsort (the last rule) is decreasing (≥).
We label the function symbol qsort only. The sort map is the same as the case of ps:
〈〈−〉〉qsort = 〈〈−〉〉ps, which is weakly monotone. Then, we have the labelled rules:

qsort0(nil)→ nil
qsorti+1( : )→ qsorti(filter(a.a ≤ , )) ++(( : nil) ++

qsorti(filter(a.a > , ))) for all i ∈ N
qsorti()→ qsort j() for all i > j ∈ N

General Schema shows termination of the labelled CRS with the precedence qsorti >
qsort j > filter > if,++, “>”, “≤” > nil, :, 0,S, true, false for i > j ∈ N.

6 Conclusion

We have given a method of proving termination of higher-order rewrite rules in Klop’s
format called combinatory reduction system (CRS). The method to prove termination,
called higher-order semantic labelling, is an extension of a method known in the theory
of term rewriting. This attaches semantics of the arguments to each function symbol.
We systematically define the labelling by using the complete algebraic semantics of
CRS, Σ-monoids. A key to establish the main theorem of semantic labelling was com-
mutativity of labelling with two kinds of substitutions appearing in formulation of CRS.
We have examined the power of higher-order semantic labelling by several examples
taken from functional programming. This shows usefulness of higher-order semantic
labelling in programming languages.
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A Appendix

A.1 Proof of Corollary 5

Let iφ : Z → MΣZ be the assignment into the Σ-monoid (MΣZ, [ fφ] f∈Σ, νφ, βφ) defined by
 7→ . It is clear that i∗φ = φ

L by just comparing the definitions of φL and the Σ-monoid
extension (−)∗. Hence φL gives a Σ-monoid morphism.
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A.2 Proof of Lemma 7

By induction on meta-terms in MΣZ. The cases x and f (~s) ∈ MΣZn are straightforward.
For the case [~t] ∈ MΣZn, we have the following.

lhs = φLθ∗([~t])

= φLβ(θ; θ∗~t) = βφ(φ
Lθ; φLθ∗~t) (by Lemma 6)

rhs = (φLθ)∗(φ∗θ)L[~t]

= (φLθ)∗[(φ∗θ)L~t]

= βφ(φ
Lθ; (φLθ)∗(φ∗θ)L~t)

= βφ(φ
Lθ; φLθ∗~t) = lhs (by I.H.)

A.3 Proof of Proposition 8

By induction on proof trees of →R. Since R is structural, it suffices to consider the
following two cases [Ham05].

(i) Case n ` θ∗nl→R θ∗nr.
This is derived from Z ` ~n.l → ~n.r ∈ R where θ : Z - MΣ0. Let φ : 0 - M
be the assignment. Now we have a labeled rule

(φ∗θ)L
nl→ (φ∗θ)L

nr ∈ R.

By Lemma 7 and closedness of R-rewrite by the valuation φLθ : Z - MΣ0, we
have

φL
n(θ∗nl) = (φLθ)

∗

n(φ∗θ)L
nl →

R
(φLθ)

∗

n(φ∗θ)L
nr = φL

n(θ∗nr)

(ii) Case n ` f (. . . , n +~i.s, . . .)→R f (. . . , n +~i.t, . . .).
This is derived from n + i ` s →R t. Since M is a model, notice φ∗n+is = φ

∗
n+it. By

induction hypothesis, we have φL
n+is→R φ

L
n+it. So,

φL
n( f (. . . , n +~i.s, . . .))

= f〈〈...,φ∗n+i s,...〉〉n (. . . , n +~i.φL
n+is, . . .)

= f〈〈...,φ∗n+it,...〉〉n (. . . , n +~i.φL
n+is, . . .)

→
R

f〈〈...,φ∗n+it,...〉〉n (. . . , n +~i.φL
n+it, . . .)

= φL
n( f (. . . , n +~i.t, . . .))

A.4 Proof of Proposition 11

By induction on proof trees of→R.

(i) Case n ` θ∗nl→R θ∗nr. This case is proved by the same as in the proof of Prop. 8.
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(ii) Case n ` f (. . . , n + i.s, . . .)→R f (. . . , n + i.t, . . .)
This is derived from n + i ` s →R t. Since (M,≥M) is a quasi-model, we have
φ∗n+is ≥M(n+i) φ

∗
n+it. By induction hypothesis, we have φL

n+is →
∗
Decr;→R φ

L
n+it. No-

tice also that 〈〈−〉〉 is weakly monotone. So,

φL
n( f (. . . , n + i.s, . . .)) = f〈〈...,φ∗

n+~i
s,...〉〉

n
(. . . , n +~i.φL

n+is, . . .)

→∗Decr f〈〈...,φ∗n+it,...〉〉n (. . . , n +~i.φL
n+is, . . .)

→∗Decr;→R f〈〈...,φ∗n+it,...〉〉n (. . . , n +~i.φL
n+it, . . .)

= φL
n( f (. . . , n +~i.t, . . .))

A.5 Proof of Theorem 12

For both directions, we prove contrapositions. [⇐]: By Prop. 11. [⇒]: By erasing all
labels in rewrite steps.

A.6 Structural CRSs as Typed CRSs

In [Bla00], Blanqui defined a version of higher-order rewriting format Inductive Data
Type Systems (IDTS), which he called “new definition of IDTS” ([Bla00] Def. 1). We
call his “new definition of IDTS” typed CRS since as mentioned in his paper, it is a
simply-typed version of CRS. Blow we show that our structural CRSs is a subclass of
Blanqui’s typed CRSs. Hence we can apply General Schema for typed CRSs given in
[Bla00] to structural CRSs to show termination of structural CRSs.

To give a typed CRSs, the following alphabet A ([Bla00] Def. 1) is required. In
typed CRSs, types are simple types generated by the base types. (i) a set of base types,
(ii) type-indexed collection of variables, (iii) type-indexed collection of function sym-
bols, (iv) type-indexed collection of metavariables. Then the set of all meta-terms of a
typed CRS is constructed fromA, and a typed CRS is a set of pairs of meta-terms.

Suppose that a structural CRS (Σ,R) using a N-indexed set Z of metavariables is
given. We show that this gives rise to the following alphabet A and typed CRS. We
assume the only base type ι and all variables (now, natural numbers) have the base type.
For each function symbol f : 〈i1, . . . , il〉 ∈ Σ, we assign to the type f : ιi1 , . . . , ιil → ι
where ιi = (ι → · · · → ι) → ι (the part (ι → · · · → ι) denotes i-times ι). For each
metavariable  of arity n in Z, we associate a metavariable  in A of the type ιn → ι.
Then, the set of all structural meta-terms

⋃
k∈N MΣZ(k) is equal to the set of all meta-

terms of typed CRS given in [Bla00] under this alphabetA. Thus, the structural CRS R
is a typed CRS. Valuations and generation of a rewrite relation for structural CRSs also
fit into those of typed CRS version.
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Abstract. A logic program strongly terminates if it terminates for any
selection rule. Clearly, considering a particular selection rule—like Pro-
log’s leftmost selection rule—allows one to prove more goals terminating.
In contrast, a strong termination analysis gives valuable information for
those applications in which the selection rule cannot be fixed in advance
(e.g., partial evaluation, dynamic selection rules, parallel execution). In
this paper, we introduce a fast and accurate size-change analysis that can
be used to infer conditions for both strong termination and strong quasi-
termination of logic programs. We also provide several ways to increase
the accuracy of the analysis without sacrificing scalability. In the experi-
mental evaluation, we show that the new algorithm is up to three orders
of magnitude faster than the previous implementation, meaning that we
can efficiently deal with programs exceeding 25,000 lines of Prolog.

1 Introduction

Analysing the termination of logic programs is a challenging problem that has
attracted a lot of interest (see, e.g., [5, 7, 23, 29] and references therein). However,
strong termination analysis (i.e., termination for any selection rule) has received
little attention, a notable exception being the work by Bezem [2], who introduced
the notion of strong termination by defining a sound and complete characterisa-
tion (the so called recurrent programs). Also, we can find a well established line
of research on termination of logic programs with dynamic selection rules (e.g.,
[25, 4, 24, 27, 26]). In these works, however, there are a number of assumptions,
like the use of local selection rules (a slight extension of the left-to-right selection
rule), input-consuming derivations (i.e., derivations where input arguments are
not instantiated by SLD resolution steps [3]), etc., which are not useful in our
context.

In this work, we consider strong (quasi-)termination3 so that our results can
be applied to any application domain where the selection rule is not known in
? This work has been partially supported by the Spanish Ministerio de Ciencia e In-

novación under grant TIN2008-06622-C03-02, by the Generalitat Valenciana under
grant GVPRE/2008/001, and by the UPV (Programs PAID-05-08 and PAID-06-08).

3 A computation quasi-terminates if it reaches finitely many different states. This is
an essential property in many contexts since it allows one to construct a finite rep-
resentation of the search space, thus allowing for finite analysis and transformation.



advance or should be dynamically defined, e.g., partial evaluation, resolution
with dynamic selection rules, parallel execution, etc.

Consider, for instance, the case of partial evaluation [14], a well-known tech-
nique for program specialisation. Within the so-called offline approach to partial
evaluation, there is a first stage called binding-time analysis (BTA) that should
analyse the termination of the program and also propagate known data follow-
ing the program’s control flow. In this context, one of the main limitation of
previous approaches to the offline partial evaluation of logic programs like, e.g.,
[6], is that the associated BTA is usually rather expensive and does not scale
up well to medium-sized programs. Intuitively speaking, this is mainly due to
the fact that the termination analysis and the algorithm for propagating known
information are interleaved, so that every time a call is annotated as “not un-
foldable”, the termination analysis has to be re-executed to take into account
that some bindings will not be propagated anymore.

In recent work [17, 30], we have shown that this drawback can be overcome
by using instead a strong termination analysis based on the size-change princi-
ple [15, 28]. In this case, both tasks—termination analysis and propagation of
known information—are kept independent, so that the termination analysis is
done once and for all before the propagation phase, resulting in major efficiency
improvements over the previous approach of [6].

The new BTA scheme of [17], however, still had some shortcomings concern-
ing both efficiency and accuracy. In particular, the size-change analysis involves
computing the transitive closure of the so-called size-change graphs of the pro-
gram. This is often an expensive process with a worst case exponential growth
factor [15].

In order to overcome this drawback, in this work we introduce an efficient
algorithm for the size-change analysis based on the insight that many size change
graphs are irrelevant for inferring strong termination and quasi-termination con-
ditions. In particular, we introduce an ordering for size-change graphs, so that
only the weakest graphs need to be kept without compromising correctness nor
accuracy.

Then, we consider the application of the new analysis to the particular do-
main of offline partial evaluation (cf. Sect. 4) and empirically evaluate the new
algorithm. In summary, the empirical results demonstrate the usefulness and
scalability of our proposals in practice, meaning that we can efficiently deal with
realistic interpreters and systems exceeding 25,000 lines of Prolog.

Finally, in Sect. 5 we develop a further improvement of our new algorithm
in the context of partial evaluation. Indeed, the fact that the size-change anal-
ysis considers strong termination may involve a significant loss of accuracy. For
instance, given the clauses

p(X)← q(X, Y ), p(Y ).
q(s(X), X).

the size-change analysis infers no relation between the sizes of p(X) and p(Y ) in
the first clause (while, in contrast, one can easily determine that the argument of
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p decreases from one call to the next one by assuming Prolog’s leftmost selection
rule). Clearly, this makes the size change analysis independent of the selection
rule and, particularly, of whether q(X, Y ) is unfolded before selecting p(Y ) or
not. However, in many cases, some partial knowledge is available (e.g., one can
safely assume that all facts can be unfolded no matter the available information)
and could be used to improve the accuracy of the analysis. For this purpose, we
develop an extension of the size-change analysis that allows us to propagate some
size information from left to right.

2 Fundamentals of Size-Change Analysis

The size-change principle [15] was originally aimed at proving the termination
of functional programs. This analysis was adapted to the logic programming
setting in [30], where both termination and quasi-termination were analysed. The
main difference w.r.t. previous termination analyses for logic programs is that
[30] considers strong termination, i.e., termination for all computation rules. As
mentioned in the introduction, this makes the output of the analysis less accurate
but allows the definition of much faster analyses that can be successfully applied
in a number of application domains (e.g., for defining a scalable binding-time
analysis; see [17] for more details).

For conciseness, in the remainder of this paper, we write “(quasi-)termination”
to refer to “strong (quasi-)termination.”

Size-change analysis is based on constructing graphs that represent the de-
crease of the arguments of a predicate from one call to another. For this purpose,
some ordering on terms is required. Analogously to [28], in [30] reduction pairs
(%,�) consisting of a quasi-order and a compatible well-founded order (i.e.,
% ◦ �⊆� and � ◦ %⊆�), both closed under substitutions, were used. The
orders (%,�) are induced from so called norms. Here, we only consider the well-
known term-size norm || · ||ts [9] which counts the number of (non-constant)
function symbols. The associated induced orders (%ts,�ts) are defined as fol-
lows: t1 �ts t2 (resp. t1 %ts t2) if ||t1σ||ts > ||t2σ||ts (resp. ||t1σ||ts > ||t2σ||ts)
for all substitutions σ that make t1σ and t2σ ground. For instance, we have
f(s(X), Y ) �ts f(X, a) since ||f(s(X), Y )σ||ts > ||f(X, a)σ||ts for all σ that
makes X and Y ground.

We produce a size-change graph G for every pair (H,Bi) of every clause
H ← B1, . . . , Bn of the program. Formally,

Definition 1 (size-change graph). Let P be a program and (%,�) a reduction
pair. We define a size-change graph for every clause p(s1, . . . , sn)← Q of P and
every atom q(t1, . . . , tm) in Q (if any).

The graph has n output nodes marked with {1p, . . . , np} and m input nodes
marked with {1q, . . . ,mq}. If si � tj holds, then we have a directed edge from
output node ip to input node jq marked with �. Otherwise, if si % tj holds, then
we have an edge from output node ip to input node jq marked with %.
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A size-change graph is thus a bipartite labelled graph G = (V,W,E) where
V = {1p, . . . , np} and W = {1q, . . . ,mq} are the labels of the output and input
nodes, respectively, and E ⊆ V ×W × {%,�} are the edges.

Example 1. Consider the following program MLIST :

(c1) mlist(L, I, [ ])← empty(L).
(c2) mlist(L, I, LI)← nonempty(L), hd(L,X), tl(L,R),ml(X, R, I, LI).

(c3) ml(X, R, I, [XI|RI])← mult(X, I,XI), mlist(R, I,RI).

(c4) mult(0, Y, 0). (c5) mult(s(X), Y, Z)← mult(X, Y, Z1), add(Z1, Y, Z).
(c6) add(X, 0, X). (c7) add(X, s(Y ), s(Z))← add(X, Y, Z).

(c8) hd([X | ],X ). (c9) empty([ ]).

(c10) tl([ |R],R). (c11) nonempty([ | ]).

which is used to multiply all the elements of a list by a given number. The
program is somewhat contrived in order to better illustrate our technique.

Here, the size-change graphs associated to, e.g., clause c3 are as follows:4

1ml

%ts // 1mult

2ml 2mult

3ml

%ts 44iiiiiii
3mult

4ml

�ts 44iiiiiii

1ml 1mlist

2ml

%ts 44iiiiiii
2mlist

3ml

%ts 44iiiiiii
3mlist

4ml

�ts 44iiiiiii

using a reduction pair (%ts,�ts) induced from the term-size norm.

In order to identify the program loops, we should compute roughly a transitive
closure of the size-change graphs by composing them in all possible ways.

Definition 2 (graph concatenation, idempotent multigraph). A multi-
graph of P is inductively defined to be either a size-change graph of P or the
concatenation (see below) of two multigraphs of P . Given two multigraphs:

G = ({1p, . . . , np}, {1q, . . . ,mq}, E1) and H = ({1q, . . . ,mq}, {1r, . . . , lr}, E2)

w.r.t. the same reduction pair (%,�), then the concatenation

G • H = ({1p, . . . , np}, {1r, . . . , lr}, E)

is also a multigraph, where E contains an edge from ip to kr iff E1 contains an
edge from ip to some jq and E2 contains an edge from jq to kr. If some of the
edges are labelled with �, then so is the edge in E; otherwise, it is labelled with
%.

We say that a multigraph G of P is idempotent when G = G • G. Intuitively
speaking, an idempotent multigraph represents a chain of multigraphs.
4 In general, we denote with p/n a predicate symbol of arity n. However, in the ex-

amples, we simply write p for predicate p/n when no confusion can arise.
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Example 2. For the program MLIST of Example 1, we have the following four
idempotent multigraphs:

1mlist 1mlist

2mlist

%ts // 2mlist

3mlist
�ts // 3mlist

1ml 1ml

2ml 2ml

3ml

%ts // 3ml

4ml
�ts // 4ml

1mult
�ts // 1mult

2mult

%ts // 2mult

3mult 3mult

1add

%ts // 1add

2add
�ts // 2add

3add
�ts // 3add

that represent how the size of the arguments of the four potentially looping
predicates changes from one call to another.

The main termination results from [17, 30] can be summarised as follows:

– A predicate p/n terminates if every idempotent multigraph for p/n contains
at least one edge ip

�−→ ip, 1 ≤ i ≤ n, such that the i-th argument of every
call to this predicate is ground.5

– A predicate p/n quasi-terminates if every idempotent multigraph for p/n

contains edges j1
p

R1−→ 1p, . . . , jn
p

Rn−→ np, Ri ∈ {�,%}, and the arguments
j1, . . . , jn are ground in every call to p/n. Additionally, the considered quasi-
order % should be well-founded and finitely partitioning [8, 29], i.e., there
should not be infinitely many “equal” ground terms under %.

These conditions, though in principle undecidable, can be approximated in a
number of ways. For instance, in the context of partial evaluation, the computed
binding-times—static for definitely known arguments and dynamic for possibly
unknown arguments—can easily be used for this purpose (cf. Sect. 4.1).

3 A Procedure for Size-Change Analysis

In this section, we introduce a fast and accurate procedure for the size-change
analysis of logic programs. In principle, a naive procedure for computing the set
of idempotent multigraphs of a program may proceed as follows:

1. First, the size-change graphs of the program are built according to Def. 1.
2. Then, after initialising a set M with the computed size-change graphs, one

proceeds iteratively as follows:
(a) compute the concatenation of every pair of (not necessarily different)

multigraphs ofM;
(b) update M with the new multigraphs.
This process is repeated until no new multigraphs are added toM.

Unfortunately, such a naive algorithm is unacceptably expensive and does not
scale up to even simple programs. Therefore, in the following, we introduce
a much more efficient procedure. Intuitively speaking, it improves the naive
procedure by taking into account the following observations:
5 A more relaxed condition based on the notion of instantiated enough w.r.t. a norm

[22] can be found in [17].
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– Firstly, not all size-change graphs need to be constructed, but only those in
the path of a (potential) loop. For instance, in Example 1, the size-change
graph from mlist to empty cannot contribute to the construction of any
idempotent multigraph.

– Secondly, in many cases, computing the idempotent multigraphs for a single
predicate for each loop suffices. For instance, in Example 2, the idempotent
multigraphs for both mlist and ml actually refer to the same loop. This is
somehow redundant since either the two multigraphs will point out that both
predicates terminate or that both of them may loop.

– Finally, when we have multigraphs G1 and G2 for a given predicate p/n such
that termination of p/n using G1 always implies termination of p/n using
G2, then we can safely discard G2.

These observations allow us to design a faster procedure for size-change analysis.
It proceeds in a stepwise manner as follows:

a) Identifying the program loops. In order to identify the (potential) pro-
gram loops, we first construct the call graph of the program, i.e., a directed graph
that contains the predicate symbols as vertices and an edge from predicate p/n
to predicate q/m for each clause of the form6 p(tn) ← B1, . . . , q(sm), . . . , Bk,
k ≥ 1, in the program.

For instance, the call graph of program MLIST in Example 1 is as follows:

mlist
**

rreeeeeeeeeeeeeeeeeee
uukkkkkk

�� ''OOOOOO mlll // multRR
// addRR

empty nonempty hd tl

Then, we compute the strongly connected components (SCC) of the call graph
and delete both trivial SCCs (i.e., SCCs with a single predicate symbol which is
not self-recursive) and edges between SCCs. We denote the resulting graph with
scc(P ) for any program P . E.g., for program MLIST , scc(MLIST ) is as follows:

mlist
**
mlll multRR addRR

b) Determining the initial set of size-change graphs. We denote by
sc graphs(P ) a subset of the size-change graphs of program P that fulfils the
following condition: there is a size-change graph from atom p(tn) to atom q(sm)
in sc graphs(P ) iff there is an associated edge from p/n to q/m in scc(P ). E.g.,
for program MLIST of Example 1, sc graphs(MLIST ) contains only four size-
change graphs, while the naive approach would have constructed ten size-change
graphs.

In principle, only the size-change graphs in sc graphs(P ) need to be con-
sidered in the size-change analysis. This refinement is correct since idempotent

6 We use tn to denote the sequence t1, . . . , tn.
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multigraphs can only be built from the concatenation of a sequence of size-change
graphs that follows the path of a cycle in the call graph (i.e., a path of scc(P )).

Furthermore, not all concatenations between these size-change graphs are ac-
tually required. As mentioned before, computing a single idempotent multigraph
for each (potential) program loop suffices. In the following, we say that S is a
cover set for scc(P ) if S contains at least one predicate symbol for each loop in
scc(P ). We denote by CS(P ) the set of cover sets for scc(P ).

Definition 3 (initial size-change graphs). Let P be a program and S ∈
CS(P ) be a cover set for scc(P ). We denote by i sc graphs(P, S) the size-change
graphs from sc graphs(P ) that start from a predicate of S.

Intuitively, the size-change graphs in i sc graphs(P, S) will act as the seeds of
our iterative process for computing idempotent multigraphs. As a consequence,
only idempotent multigraphs for the predicates of S are produced. Therefore,
the termination result of Sect. 2 should be rephrased as follows:

A predicate p/n terminates if there exists some (not necessarily different)
predicate q/m in the same cycle of scc(P ) and every idempotent multigraph
of q/m contains at least one edge iq

�−→ iq, 1 ≤ i ≤ m, such that the i-th
argument of every call to this predicate q/m is ground.

(∗)

A similar condition could be given for quasi-termination. Proving the correctness
of this refinement is not difficult and relies on the fact that either all predicates
in a loop are terminating or none.

Example 3. Given the program MLIST of Ex. 1, both S1 = {mlist/3,mult/3, add/3}
and S2 = {ml/4,mult/3, add/3} are cover sets for scc(MLIST ). For instance,
the set i sc graphs(P, S1) contains only the three size-change graphs starting
from mlist/3, mult/3 and add/3.

c) Computing the idempotent multigraphs. The core of our improved
procedure for size-change analysis is shown in Fig. 1. The algorithm considers
the following ordering on multigraphs:

Definition 4 (weaker multigraph). Given two multigraphs G1 = 〈V1,W1, E1〉
and G2 = 〈V2,W2, E2〉, we say that G1 is weaker than G2, in symbols G1 v G2,
iff the following conditions hold:

– the output and input nodes coincide, i.e., V1 = V2 and W1 = W2, and
– for every edge i

R1−→ j ∈ E1, R1 ∈ {�,%}, there exists an edge i
R2−→ j ∈ E2,

R2 ∈ {�,%}, such that R1 v R2

where �v�, %v% and %v�, but � 6v%.

Basically, if a multigraph G is weaker than another multigraph H, then we have
that whenever termination can be proved with G only, it could also be proved
with both G and H. Indeed, if G v H and G′ v H′ then G •G′ v H•H′. Thus, by
induction, we can prove that for every size change graph derivable from H there
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is a corresponding weaker graph derived from G. Therefore, one can safely discard
H from the computed sets of multigraphs. Intuitively speaking, an idempotent
multigraph represents a chain of multigraphs, and this chain is only as strong as
its weakest segment.

Example 4. Consider the following four clauses extracted from the regular ex-
pression matcher from [18]:

generate(or(X, ), H, T )← generate(X, H, T ).
generate(or( , Y ), H, T )← generate(Y, H, T ).
generate(star( ), T, T ).
generate(star(X), H, T )← generate(X, H, T1), generate(star(X), T1, T ).

Here, we have the following three size-change graphs:7

1gen
�ts // 1gen

2gen

%ts // 2gen

3gen

%ts // 3gen

1gen
�ts // 1gen

2gen

%ts // 2gen

3gen 3gen

1gen

%ts // 1gen

2gen 2gen

3gen

%ts // 3gen

using a reduction pair based on the term-size norm, where generate is abbrevi-
ated to gen in the graphs. Here, both the second and third size-change graphs
are weaker than the first one, hence the first graph can be safely discarded and
also does not have to be concatenated with other graphs.

The algorithm of Fig. 1 follows these principles:
– In every iteration, we only consider concatenations of the form G1 •G2 where
G1 belongs to the current set of multigraphsMi and G2 is one of the original
size-change graphs in sc graphs(P ).

– Also, those graphs that are stronger than some other graphs are removed
from the computed multigraphs in every iteration. Here, Madd denotes the
weakest multigraphs that should be added toMi, whileMdel keeps track of
the already computed graphs (i.e., fromMi ∪Madd) that should be deleted
because a weaker multigraph has been produced.

Example 5. Consider again program MLIST of Example 1. By using the im-
proved procedure with the cover set {mlist/3,mult/3, add/3}, only five concate-
nations are required to get the fixpoint (actually, three of them are only needed
to check that a graph is indeed idempotent) and return the final set of idempo-
tent multigraphs (i.e., the first, third and fourth graphs shown in Example 2).
With the original algorithm, 48 concatenations were required. This is a simple
example, but gives an idea of the speedup factor associated to the new algorithm
(more details can be found in Sect. 4).

The following result formally states the correctness of keeping only the weakest
multigraphs during the iterative process:
7 Note that the first two clauses produce the same size-change graph, otherwise we

would have four size-change graphs, one for each body atom in the program.
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1. Input: a program P and a cover set S ∈ CS(P )
2. Initialisation:

i := 0; Mi := i sc graphs(P, S); SC := sc graphs(P )
3. repeat

– Madd := ∅; Mdel := ∅
– for all G1 ∈Mi and G2 ∈ SC such that G1 • G2 is defined

(a) G := G1 • G2

(b) if 6 ∃H ∈ (Mi ∪Madd) \Mdel such that G v H or H v G
thenMadd := Madd ∪ {G}

(c) if ∃H ∈ (Mi∪Madd)\Mdel such that G v H thenMadd :=Madd∪{G}
andMdel := Mdel ∪ {H ∈ (Mi ∪Madd) \Mdel) | G v H}

– Mi+1 := (Mi ∪Madd) \Mdel

– i := i + 1
untilMi =Mi+1

Fig. 1. An improved algorithm for size-change analysis

Theorem 1. Let P be a logic program and M be the set of idempotent multi-
graphs of P computed using the naive algorithm shown at the beginning of this
section. LetM′ be the set of idempotent multigraphs computed with the algorithm
of Fig. 1 using a cover set S. Then, a predicate p/n ∈ S is (quasi-)terminating
w.r.t. M iff it is (quasi-)terminating w.r.t. M′.

As a straightforward corollary, we have that proving termination using the naive
algorithm is equivalent to proving termination according to (∗) above using the
improved algorithm of Fig. 1 for all program predicates (and not only for those
predicates in the cover set).

4 Application to Partial Evaluation and Experiments

In this section, we apply our new algorithm to the case of offline partial eval-
uation of logic programs, both to show the usefulness of the technique in that
setting and also to evaluate its scalability in realistic applications.

4.1 Offline Partial Evaluation of Logic Programs

There are two basic approaches to partial evaluation, differing in the way termi-
nation issues are addressed [14]. Online specializers include a single, monolithic
algorithm, while offline partial evaluators contain two clearly separated stages:
a binding-time analysis (BTA) and the proper partial evaluation. A BTA nor-
mally includes both a termination analysis and an algorithm for propagating
static (i.e., known) information through the program. The output of the BTA is
an annotated version of the source program where every call is decorated either

149



with unfold (to be evaluated) or memo (to be residualized, i.e., the call will be-
come part of the residual program); also, every procedure argument is annotated
either with static (definitely known at partial evaluation time) or dynamic (pos-
sibly unknown at partial evaluation time). Typically, offline partial evaluators
are faster but less precise than online partial evaluators.

In the following, patterns are expressions of the form p(b1, . . . , bn), with p/n
a predicate symbol of arity n and b1, . . . , bn binding-times. Here, we consider
a simple domain of binding-times with two elements: static and dynamic; more
refined domains can be found in, e.g., [6].

An offline partial evaluator takes an annotated program and an initial set of
atoms and proceeds iteratively as follows:

– First, the initial atoms are unfolded as much as possible according to the
program annotations. This is called the local level of partial evaluation.

– Then, every atom in the leaves of the incomplete SLD trees produced in the
local level are added—perhaps generalising some of their arguments—to the
set of (to be) partially evaluated atoms. This is called the global level of
partial evaluation.

Similarly, termination issues can be split into local and global termination, i.e.,
termination of the local and global levels, respectively. Following the (quasi-
)termination results sketched at the end of Sect. 2, source programs are anno-
tated as follows:8

Local termination. If all idempotent multigraphs for a predicate p/n include
an edge ip

�−→ ip and the i-th argument of p/n is static, then all calls to p/n
are annotated with unfold; otherwise, they are annotated with memo.

Global termination. If all idempotent multigraphs for a predicate p/n include
an edge jp

R−→ ip such that R ∈ {�,%} and its j-th argument is static,
then the i-th argument of p/n can be kept as static; otherwise, it should be
annotated as dynamic so that it will be generalised at the global level.

4.2 Prolog Implementation and Empirical Evaluation

We have implemented our new algorithm from Fig. 1 (cf. Sect. 3) for size-change
analysis in SICStus Prolog. To be able to measure the effectiveness of the re-
striction to SCCs (i.e., the restriction to sc graphs(P )) and the restriction to
only consider one predicate per loop (i.e., the restriction to i sc graphs(P, S) for
some cover set S), we have provided a way to turn these optimisations off. We
also compare to the old implementation from [17], which includes none of the
new ideas presented in this paper.

An interesting implementation technique, which all three versions consider
(not described in [17]), is the use of hashing9 to more quickly identify which
size-change graphs already exist and which ones can be concatenated with each

8 The groundness of an argument is now replaced by the argument being static.
9 We note that, in earlier versions of SICStus, term hash generates surprisingly many

collisions; a problem which we reported and which has been fixed in version 4.0.5.
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other. All these three algorithms are integrated into the same BTA from [17],
which provides a command-line interface. The BTA is by default polyvariant
(but can be forced to be monovariant) and uses a domain with the following
values: static, list nv (for lists of non-variable terms), list, nv (for non-variable
terms), and dynamic. The user can also provide hints to the BTA (see below).
The implemented size-change analysis uses a reduction pair induced from the
term-size norm.

Evaluation of Efficiency. Figure 2 contains an overview of our empirical results,
where all times are in seconds. A value of 0 means that the timing was below our
measuring threshold. The experiments were run on a MacBook Pro with a 2.33
GHz Core2 Duo Processor and 3 GB of RAM. Our BTA was run using SICStus
Prolog 4.0.5. The first six benchmarks come from the DPPD [18] library, vanilla,
ctl and lambdaint come from [16]. The picemul program is the PIC processor
emulator from [11] with 137 clauses and 855 lines of code. javabc and javabc heap
are Java Bytecode interpreters from [10] with roughly 100 clauses. peval are over
2500 lines of Prolog from a partial evaluator for the ground representation from
[20]. self app are the 1925 lines of our size-change analysis and BTA itself. dSL
is an interpreter of 444 lines for the dSL specification language [31]. csp is the
core interpreter for full CSP-M from [21], consisting of 1771 lines of code. prob
is the core interpreter of ProB [19] for B machines, not containing the kernel
predicates or the model checker. It consists of 1910 lines of code and deals with
B expressions, predicates and substitutions. promela is an interpreter for the full
Promela language (see, e.g., [13]), consisting of 1148 lines of code. Finally, goedel
is the source code of the Gödel system [12] consisting of 27354 lines of Prolog.10

The “noentry” annotation in Fig. 2 means that no entry point was provided,
hence only the size-change analysis was performed (and no propagation of static
information).

The output of the new BTA (without SCC) and the old BTA from [17] are
identical as far as local and global annotations are concerned.

In summary, the new size change analysis is always faster and we see improve-
ments of roughly three orders of magnitude on the most complicated examples
(up to a factor of 3500 for prob (noentry)). We are able to deal with realistic
interpreters and systems exceeding 25K lines of code. For goedel, a small part
of the inferred termination conditions are as follows:

is_not_terminating(parse_language1, 6, [d,_,_,_,_,_]).

global_binding_times(parse_language1, 6, [s,d,s,s,d,s]).

is_not_terminating(build_delay_condition, 4, [d,d,_,_]).

global_binding_times(build_delay_condition, 4, [s,s,d,d]).

In particular, this means that the analysis has inferred that the predicate parse language1

can be unfolded if the first argument is static, and that the first, third, fourth
and last argument do not need to be generalised to ensure quasi-termination.
10 Downloaded from http://www.cs.bris.ac.uk/Research/LanguagesArchitecture/goedel/

and put into a single file, removing module declarations and adapting some of the
code for SICStus 4.
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Benchmark Old BTA New BTA New BTA
from [17] (without SCC) (with SCC)

contains.kmp 0.01 0.00 0.00
imperative-power 2.35 0.03 0.02
liftsolve.app 0.02 0.01 0.01
match-kmp 0.00 0.00 0.00
regexp.r3 0.01 0.00 0.00
ssuply 0.01 0.01 0.01

vanilla 0.01 0.00 0.00
lambdaint 0.17 0.02 0.02
picemul 0.31 0.15 0.15
picemul (noentry) 0.18 0.01 0.01
ctl 0.03 0.02 0.02
javabc 0.03 0.03 0.03
javabc heap 0.09 0.09 0.09
peval 0.48 0.15 0.06
self app (noentry) 0.34 0.20 0.05
dSL 0.03 0.01 0.01
csp (noentry) 5.16 0.21 0.09
prob 387.12 1.41 0.61
prob (noentry) 386.63 0.79 0.11
promela (noentry) 330.05 0.35 0.34
goedel (noentry) 1750.90 13.32 2.61

Fig. 2. Empirical results

Compared to the BTA from [6] using binary clauses rather than size-change
analysis, the difference is even more striking. This BTA is in turn, e.g., 200 times
slower than the old BTA for the picemul example; see [17]. We have also tried
the latest version of Terminweb,11 based upon [5]. However, the online version
failed to terminate successfully on, e.g., the picemul example (for which our size-
change analysis takes 0.01 s). We have also tried TermiLog,12 but it timed out
after 4 minutes (the maximum time that can be set in the online version).

Evaluation of Precision. Without the use of the SCC optimisations in the al-
gorithm of Fig. 1, the precision remains unchanged w.r.t. [17], and as such the
same specialisations can be achieved as described in [17] using hints: e.g., Jones-
optimal specialisation for vanilla, reproducing the decompilation from Java byte-
code to CLP from [10] or automatically generating the generated code from [11]
for picemul.

With the SCC optimisations, we reduce the number of predicates that are
memoised. This in turn also reduces the number of hints that a user has to
provide to obtain the desired specialisation.

For example, the vanilla example required two hints in [17] and now only
one hint is required to obtain a good specialisation. For lambdaint 6 hints were
11 http://www.cs.bgu.ac.il/∼mcodish/TerminWeb/
12 http://www.cs.huji.ac.il/∼naomil/termilog.php
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required in [17] to get good performance. Now only two hints are required,
expressing the fact that the expression being evaluated and the list of bound
variable names are expected to be static and should not be generalised away
by the BTA.13 In the following section we show how the precision of the size-
change analysis can be further improved in the setting of partial evaluation,
further reducing the need for hints.

5 Propagating Partial Left-To-Right Information

In this section, we extend the size-change analysis in order to right-propagate
size information in some cases. Consider, e.g., clause (c2) in Example 1:

(c2) mlist(L, I, LI)← nonempty(L), hd(L,X), tl(L,R),ml(X, R, I, LI).

Since our size-change analysis considers strong termination, we compare the size
of the head of the clause with the size of each atom in the body independently.
Therefore, we get no relation between the sizes of list L in the head and its head
X and tail R in the call to ml .

In some cases, however, one might assume some additional restrictions. For
instance, in many partial evaluators a left-to-right selection rule is used with
the only exception that those calls which are annotated with memo are never
selected. Therefore, if we know that some calls can be fully unfolded without
entering an infinite loop (the case, e.g., of non-recursive predicates), then one can
safely propagate the size relationships for the success patterns of these calls to the
subsequent atoms in the clause. In principle, these “fully unfoldable” calls can
be detected using a standard left-termination analysis (i.e., one that considers a
standard left-to-right computation rule), e.g., [5], while size relations of success
patterns can be obtained from the computation of the convex hull of [1]. Here,
though, we consider that this information is provided by the user by means
of hints of the form ’$FULLYUNFOLD’(p,n,size relations) where size_relations

are the interargument size relations for the success patterns of p/n. For instance,
for the program MLIST of Ex. 1, we may have the following hints:

’$FULLYUNFOLD’(hd,2,[1>2]). ’$FULLYUNFOLD’(tl,2,[1>2]).

which should be read as “when the call to hd (resp. tl) succeeds, the size of its
first argument is strictly greater than the size of its second argument”. We note
that, in order to be safe, the interargument size relations should be based on the
same norm used induce the reduction pair considered in the size-change graphs.

Let us now describe how the size-change analysis can be improved by using
this new kind of hints. Consider a clause of the form

P ← Q1, . . . , Qi−1, p(t1, . . . , tn), Qi+1, . . . , Qm.

13 This does not give exactly the same result; the solution with 6 hints memoises on
eval if, which in this case leads to a more efficient version than memoising on eval.
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together with the hint ’$FULLYUNFOLD’(p,n,I). Then, we first replace this clause
by the following ones:

P ← Q1, . . . , Qi−1, pentry(x1, . . . , xk, t1, . . . , tn).
pentry(x1, . . . , xk, y1, . . . , yn)← p(y1, . . . , yn), pexit(x1, . . . , xk, y1, . . . , yn).
pexit(x1, . . . , xk, y1, . . . , yn)← Qi+1, . . . , Qm.

where {x1, . . . , xk} = (Var(P,Q1, . . . , Qi−1)∩Var(Qi+1, . . . , Qm))\Var(p(t1, . . . , tn)).
This transformation is clearly safe w.r.t. SLD resolution since the original clause
can be obtained by just unfolding both pentry and pexit.

Now, the size-change graphs of the first and third clauses are computed as
usual. For the second clause, however, we assume that the atom p(y1, . . . , yn)
could be fully unfolded producing the set of clauses

pentry(x1, . . . , xk, y1, . . . , yn)σ1 ← pexit(x1, . . . , xk, y1, . . . , yn)σ1.
. . .
pentry(x1, . . . , xk, y1, . . . , yn)σj ← pexit(x1, . . . , xk, y1, . . . , yn)σj .

where σ1, . . . , σj are the computed answers and the set of interargument size
relations I safely approximates the size relations between the arguments of pentry

and pexit. Note that we do not need to fully unfold p/n to construct the size-
change graphs (it is rather a device to show the correctness of our approach).
Formally, for every relation i > j (resp. i > j) in the interargument size relations

for p/n, we should add an edge ipentry

�7−→ jpexit (resp. ipentry

%7−→ jpexit) to the
size-change graph from pentry to pexit. Moreover, we add an edge of the form

ipentry

%7−→ ipexit since both pentry and pexit are actually the same predicate.
For instance, by considering the previous hints for program MLIST , the

clause (c2) is transformed into

(c21) mlist(L, I, LI)← nonempty(L), hdentry(L,X, I, LI).
(c22) hdentry(L,X, I, LI)← hd(L,X), hdexit(L,X, I, LI).
(c23) hdexit(L,X, I, LI)← tlentry(L,R,X, I, LI).
(c24) tlentry(L,R,X, I, LI)← tl(L,R), tlexit(L,R,X, I, LI).
(c25) tlexit(L,R,X, I, LI)← ml(X, R, I, LI).

Now, by using the interargument size relations for hd and tl , we construct the
following size-change graphs associated to clauses c22 and c24:

1hdentry �ts

**TTTTTTT
%ts // 1hdexit

2hdentry

%ts // 2hdexit

3hdentry

%ts // 3hdexit

4hdentry

%ts // 4hdexit

1tlentry �ts

**UUUUUUU
%ts // 1tlexit

2tlentry

%ts // 2tlexit

3tlentry

%ts // 3tlexit

4tlentry

%ts // 4tlexit

5tlentry

%ts // 5tlexit

Finally, by constructing the size-change graphs for clauses c21, c23 and c25 as
usual, the size-change analysis can now infer the right relation between the sizes
of list L in the atom mlist(L, I, LI) and the head X and tail R in the atom
ml(X, R, I, LI).
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6 Discussion and Conclusion

In this paper, we have presented a new algorithm to perform strong termina-
tion and quasi-termination inference using size-change analysis. The experiments
have shown that we can analyse the full 25K lines of source code of the Gödel
system in under three seconds. The main application of this algorithm is for
offline partial evaluation of large programs. In the experimental evaluation we
have shown that, with our new algorithm, we can now deal with realistic inter-
preters, such as the interpreter for the full B specification language from [19].
Together with the selective use of hints [17], we have obtained both a scalable
and an effective partial evaluation procedure. The logical next step is to bring
this work to practical fruition, by, e.g., optimising the interpreter from [19] for
particular specifications, speeding up the animation and model checking process.
This challenge has been on our research agenda for quite a while, and we now
believe that the goal can be achieved in the near future. One remaining technical
hurdle is the treatment of meta predicate annotations (the B interpreter uses
meta-predicates to implement delaying versions of negation and findall).
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Abstract. Type systems are widely used in programming languages as a
powerful tool providing safety to programs, and forcing the programmers
to write code in a clearer way. Functional logic languages have inherited
Damas & Milner type system from their functional part due to its sim-
plicity and popularity. In this paper we address a couple of aspects that
can be subject of improvement. One is related to a problematic feature
of functional logic languages not taken under consideration by standard
systems: it is known that the use of opaque HO patterns in left-hand sides
of program rules may produce undesirable effects from the point of view
of types. We re-examine the problem, and propose a Damas & Milner-
like type system where certain uses of HO patterns (even opaque) are
permitted while preserving type safety, as proved by a subject reduction
result that uses HO-let-rewriting, a recently proposed reduction mecha-
nism for HO functional logic programs. The other aspect is the different
ways in which polymorphism of local definitions can be handled. At the
same time that we formalize the type system, we have made the effort
of technically clarifying the overall process of type inference in a whole
program.

1 Introduction

Type systems for programming languages are an active area of research [18], no
matter which paradigm one considers. In the case of functional programming,
most type systems have arisen as extensions of Damas & Milner’s [3], for its
remarkable simplicity and good properties (decidability, existence of principal
types, possibility of type inference). Functional logic languages [11, 7, 6], in their
practical side, have inherited more or less directly Damas & Milner’s types.
In principle, most of the type extensions proposed for functional programming
could be also incorporated to functional logic languages (this has been done, for
instance, for type classes in [15]). However, if types are not only decoration but
? This work has been partially supported by the Spanish projects Merit-Forms-

UCM (TIN2005-09207-C03-03), STAMP (TIN2008-06622-C03-01), Promesas-CAM
(S-0505/TIC/0407) and GPD-UCM (UCM-BSCH-GR58/08-910502)



are to provide safety, one should be sure that the adopted system has indeed good
properties. In this paper we tackle a couple of orthogonal aspects of existing FLP
systems that are problematic or not well covered by standard Damas & Milner
systems. One is the presence of so called HO patterns in programs, an expressive
feature allowed in some systems and for which a sensible semantics exists [4];
however, it is known that unrestricted use of HO patterns leads to type unsafety,
as recalled below. The second is the degree of polymorphism assumed for local
pattern bindings, a matter with respect to which existing FP or FLP systems
vary greatly.

The rest of the paper is organized as follows. The next two subsections further
discuss the two mentioned aspects. Sect. 2 contains some preliminaries about FL
programs and types. In Sect. 3 we expose the type system and prove its soundness
wrt. the let rewriting semantics of [10]. Sect. 4 contains a type inference relation,
which let us find the most general type of expressions. Sect. 5 presents a method
to infer types for programs. Finally, Sect. 6 contains some conclusions and future
work. Omitted proofs can be found in [12].

1.1 Higher order patterns

In our formalism patterns appear in the left-hand side of rules and in lambda
or let expressions. Some of these patterns can be HO patterns, if they contain
partial applications of function or constructor symbols. HO patterns can be a
source of problems from the point of view of the types. In particular, it was shown
in [5] that unrestricted use of HO patterns leads to loss of subject reduction, an
essential property for a type system expressing that evaluation does not change
types. The following is a crisp example of the problem.

Example 1 (Polymorphic Casting [2]). Consider the program consisting of the
rules snd X Y → Y , and true X → X, and false X → false, with the usual
types inferred by a classical Damas & Milner algorithm. Then we can write the
functions co (snd X) → X and cast X → co (snd X), whose inferred types
will be ∀α.∀β.(α → α) → β and ∀α.∀β.α → β respectively. It is clear that the
expression and (cast 0) true is well-typed, because cast 0 has type bool (in fact
it has any type), but if we reduce that expression using the rule of cast the
resulting expression and 0 true is ill-typed.

The problem arises when dealing with HO patterns, because unlike FO pat-
terns, knowing the type of a HO pattern does not always permit us to know the
type of its subpatterns. In the previous example the cause is function co, because
its pattern snd X is opaque and shadows the type of its subpattern X. Usual
inference algorithms treat this opacity as polymorphism, and that is the reason
why it is inferred a completely polymorphic type for the result of the function
co.

In [5] the appearance of any opaque pattern in the left-hand side of the rules
is prohibited, but we will see that it is possible to be less restrictive. The key is
making a distinction between transparent and opaque variables of a pattern:

158



a variable is transparent if its type is univocally fixed by the type of the pattern,
and is opaque otherwise. We call a variable of a pattern critical if it is opaque in
the pattern and also appears elsewhere in the expression. The formal definition
of opaque and critical variables will be given in Sect. 3. With these notions we
can relax the situation in [5], prohibiting only those patterns having critical
variables.

1.2 Local definitions

Functional and functional logic languages provide syntax to introduce local def-
initions inside an expression. But in spite of the popularity of let-expressions,
different implementations treat them differently because of the polymorphism
they give to bound variables. This difference can be observed in Ex. 2, being
(e1, . . . , en) and [e1, . . . , en] the usual tuple and list notation respectively.

Example 2 (let expressions). Let e1 be let F = id in (F true, F 0), and e2 be
let [F,G] = [id, id] in (F true, F 0, G 0, G false)

Intuitively, e1 gives a new name to the identity function and uses it twice with
arguments of different types. Surprisingly, not all implementations consider this
expression as well-typed, and the reason is that F is used with different types
in each appearance: bool → bool and int → int. Some implementations as Clean
2.2, PAKCS 1.9.1 or KICS 0.81893 consider that a variable bound by a let-
expression must be used with the same type in all the appearances in the body
of the expression. In this situation we say that lets are completely monomorphic,
and write letm for it.

On the other hand, we can consider that all the variables bound by the
let-expression may have different but coherent types, i.e., are treated polymor-
phically. Then expressions like e1 or e2 would be well-typed. This is the decision
adopted by Hugs Sept. 2006, OCaml 3.10.2 or F# Sept. 2008. In this case, we
will say that lets are completely polymorphic, and write letp.

Finally, we can treat the bound variables monomorphically or polymorphi-
cally depending on the form of the pattern. If the pattern is a variable, the let
treats it polymorphically, but if it is compound the let treats all the variables
monomorphically. This is the case of GHC 6.8.2, SML of New Jersey v110.67
or Curry Münster 0.9.11. In this implementations e1 is well-typed, while e2 not.
We call this kind of let-expression letpm.

Fig. 1 summarizes the decisions of various implementations of functional and
functional logic languages. The exact behavior wrt. types of local definitions is
usually not well documented, not to say formalized, in those systems. One of our
contributions is this paper is to technically clarify this question by adopting a
neutral position, and formalizing the different possibilities for the polymorphism
of local definitions.
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Programming language and version letm letpm letp

GHC 6.8.2 ×
Hugs Sept. 2006 ×

Standard ML of New Jersey 110.67 ×
Ocaml 3.10.2 ×

F# Sept. 2008 ×
Clean 2.0 ×
T OY 2.3.1* ×

Curry PAKCS 1.9.1 ×
Curry Münster 0.9.11 ×

KICS 0.81893 ×
(*) we use where instead of let, not supported by T OY

Fig. 1. Let expressions in different programming languages.

2 Preliminaries

We assume a signature Σ = DC ∪ FS, where DC and FS are two disjoint
sets of data constructor and function symbols resp., all them with associated
arity. We write DCn (resp FSn) for the set of constructor (function) symbols
of arity n. We also assume a denumerable set DV of data variables X. We
define the set of patterns Pat 3 t ::= X | c t1 . . . tn (n ≤ k) | f t1 . . . tn (n <
k), where c ∈ DCk and f ∈ FSk; and the set of expressions Exp 3 e ::=
X | c | f | e1 e2 | λt.e | letm t = e1 in e2 | letpm t = e1 in e2 | letp t = e1 in e2

where c ∈ DC and f ∈ FS. We split the set of patterns in two: first order patterns
FOPat 3 fot ::= X | c t1 . . . cn where c ∈ DCn, and Higher order patterns
HOPat = Pat r FOPat. Expressions h e1 . . . en are called junk if h ∈ CSk and
n > k, and active if h ∈ FSk and n ≥ k. FV (e) is the set of variables in e
which are not bound by any lambda or let expression and is defined in the usual
way (notice that since our let expressions do not support recursive definitions
the bindings of the pattern only affect e2: FV (let∗ t = e1 in e2) = FV (e1) ∪
(FV (e2)rvar(t)). A one-hole context C is an expression with exactly one hole. A
data substitution θ ∈ PSubst is a finite mapping from data variables to patterns:
[Xi/ti]. Substitution application over data variables and expressions is defined in
the usual way. A program rule is defined as PRule 3 r ::= f t1 . . . tn → e (n ≥ 0)
where the set of patterns ti is linear and FV (e) ⊆

⋃
i var(ti). Therefore, extra

variables are not considered in this paper. A program is a set of program rules
Prog 3 P ::= {r1; . . . ; rn}(n ≥ 0).

For the types we assume a denumerable set T V of type variables α and a
countable alphabet T C =

⋃
n∈N T C

n of type constructors C. The set of simple
types is defined as SType 3 τ ::= α | τ1 → τ2 | C τ1 . . . τn (C ∈ T Cn). Based on
simple types we define the set of type-schemes as TScheme 3 σ ::= τ | ∀α.σ. The
set of free type variables (FTV) of a simple type τ is var(τ), and for type-schemes
FTV (∀αi.τ) = FTV (τ) r {αi}. A type-scheme ∀αi.τn → τ is transparent if
FTV (τn) ⊆ FTV (τ). A set of assumptions A is {si : σi}, where si ∈ DC ∪
FS ∪ DV. Notice that the transparency of type-schemes for data constructors
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is not required in our setting, although that hypothesis is usually assumed in
classical Damas & Milner type systems. If (si : σi) ∈ A we write A(si) = σi. A
type substitution π ∈ T Subst is a finite mapping from type variables to simple
types [αi/τi]. For sets of assumptions FTV ({si : σi}) =

⋃
i FTV (σi). We will

say a type-scheme σ is closed if FTV (σ) = ∅. Application of type substitutions
to simple types is defined in the natural way, and for type-schemes consists in
applying the substitution only to their free variables. This notion is extended
to set of assumptions in the obvious way. We will say σ is an instance of σ′ if
σ = σ′π for some π. τ ′ is a generic instance of σ ≡ ∀αi.τ if τ ′ = τ [αi/τi] for some
τi, and we write it σ � τ ′. We extend � to a relation between type-schemes by
saying that σ � σ′ iff every simple type such that is a generic instance of σ′ is
also a generic instance of σ. Then ∀αi.τ � ∀βi.τ [αi/τi] iff {βi}∩FTV (∀αi.τ) = ∅
[13]. Finally, τ ′ is a variant of σ ≡ ∀αi.τ (σ �var τ ′) if τ ′ = τ [αi/βi] and βi are
fresh type variables.

3 Type derivation

We propose a modification of Damas & Milner type system [3] with some differ-
ences. We have found convenient to separate the task of giving a regular Damas
& Milner type and the task of checking critical variables. To do that we have
defined two different type relations: ` and `•.

The basic typing relation ` in the upper part of Fig. 2 is like the classical
Damas & Milner’s system but extended to handle the three different kinds of
let expressions and the occurrence of patterns instead of variables in lambda
and let expressions. We have also made the rules more syntax-directed so that
the form of type derivations depends only on the form of the expression to be
typed. Gen(τ,A) is the closure or generalization of τ wrt. A [3, 13, 19], which
generalizes all the type variables of τ that do not appear free in A. Formally:
Gen(τ,A) = ∀αi.τ where {αi} = FTV (τ) r FTV (A). As can be seen, [LETm]
and [LETh

pm] behave the same, and do not generalize any of the types τi for the
variables Xi to give a type for the body. On the contrary, [LETX

pm] and [LETp]
generalize the types given to the variables. Notice that if two variables share the
same type in the set of assumptions A, generalization will lose the connection
between them. This fact can be seen with e2 in Ex. 2. Although the type for both
F and G can be α → α (with α a variable not appearing in A) the generalization
step will assign both the type-scheme ∀α.α → α, losing the connection between
them.

The `• relation (lower part of Fig. 2) uses ` but enforces also the absence of
critical variables. A variable Xi is opaque in t when it is possible to build a type
derivation for t where the type assumed for Xi contains type variables which do
not occur in the type derived for the pattern. The formal definition is as follows.

Definition 1 (Opaque variable of t wrt. A). Let t be a pattern that admits
type wrt. a given set of assumptions A. We say that Xi ∈ Xi = var(t) is opaque
wrt. A iff ∃τi, τ s.t. A⊕ {Xi : τi} ` t : τ and FTV (τi) * FTV (τ).
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The previous definition is based on the existence of a certain type derivation,
and therefore cannot be used as an effective check for the opacity of variables.
Prop. 1 provides a more operational characterization of opacity that exploits the
close relationship between ` an type inference � presented in Sect. 4.

[ID]
A ` s : τ

if
s ∈ DC ∪ FS ∪ DV
∧ (s : σ) ∈ A ∧ σ � τ

[APP]

A ` e1 : τ1 → τ
A ` e2 : τ1

A ` e1e2 : τ

[Λ]

A⊕ {Xi : τi} ` t : τt

A⊕ {Xi : τi} ` e : τ

A ` λt.e : τt → τ

if {Xi} = var(t)

[LETm]

A⊕ {Xi : τi} ` t : τt

A ` e1 : τt

A⊕ {Xi : τi} ` e2 : τ2

A ` letm t = e1 in e2 : τ2

if {Xi} = var(t)

[LETX
pm]

A ` e1 : τ1

A⊕ {X : Gen(τ1,A)} ` e2 : τ2

A ` letpm X = e1 in e2 : τ2

[LETh
pm]

A⊕ {Xi : τi} ` h t1 . . . tn : τt

A ` e1 : τt

A⊕ {Xi : τi} ` e2 : τ2

A ` letpm h t1 . . . tn = e1 in e2 : τ2

if
{Xi} = var(t1 . . . tn)
∧ h ∈ DC ∪ FS

[LETp]

A⊕ {Xi : τi} ` t : τt

A ` e1 : τt

A⊕ {Xi : Gen(τi,A)} ` e2 : τ2

A ` letp t = e1 in e2 : τ2

if {Xi} = var(t)

[P]
A ` e : τ

A `• e : τ
if critV arA(e) = ∅

Fig. 2. Rules of type system

Proposition 1. Xi ∈ Xi = var(t) is opaque wrt. A iff A⊕{Xi : αi} � t : τg|πg

and FTV (αiπg) * FTV (τg).

We write opaqueV arA(t) for set of opaque variables of t wrt. A. Now, we can
define the critical variables of an expression e wrt. A as those variables that,
being opaque in a let or lambda pattern of e, are indeed used in e. Formally:
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Definition 2 (Critical variables).
critV arA(s) = ∅ if s ∈ DC ∪ FS ∪ DV
critV arA(e1e2) = critV arA(e1) ∪ critV arA(e2)
critV arA(λt.e) = (opaqueV arA(t) ∩ FV (e)) ∪ critV arA(e)
critV arA(let∗ t = e1 in e2)

= (opaqueV arA(t) ∩ FV (e2)) ∪ critV arA(e1) ∪ critV arA(e2)

Notice that the if we write the function co of Ex. 1 as λ(snd X).X, it is
well-typed wrt. ` using the usual type for snd. However it is ill-typed wrt. `•
since X is an opaque variable in snd X and it occurs in the body, so it is critical.

The typing relation `• has been defined in a modular way in the sense that
the opacity check is kept separated from the regular Damas & Milner typing.
Therefore it is easy to see that if every constructor and function symbol in
program has a transparent assumption, then all the variables in patterns will be
transparent, and so `• will be equivalent to `. This happens in particular for
those programs using only first order patterns and whose constructor symbols
come from a Haskell (or Toy, Curry)-like data declaration.

3.1 Properties of the typing relations

The typing relations fulfill a set of useful properties. Here we use `? for any of
the two typing relations: ` or `•.

Theorem 1 (Properties of the typing relations).
a) If A `? e : τ then Aπ `? e : τπ, for any π ∈ T Subst.
b) Let s ∈ DC ∪FS ∪DV be a symbol not occurring in e. Then A `? e : τ ⇐⇒
A⊕ {s : σs} `? e : τ .

c) If A ⊕ {X : τx} `? e : τ and A ⊕ {X : τx} `? e′ : τx then A ⊕ {X : τx} `?

e[X/e′] : τ .
d) If A⊕ {s : σ} ` e : τ and σ′ � σ, then A⊕ {s : σ′} ` e : τ .

Part a) states that type derivations are closed under type substitutions. b)
shows that type derivations for e depend only on the assumptions for the symbols
in e. c) is a substitution lemma stating that in a type derivation we can replace
a variable by an expression with the same type. Finally, d) establishes that
from a valid type derivation we can change the assumption of a symbol for a
more general type-scheme, and we still have a correct type derivation for the
same type. Notice that this is not true wrt. the typing relation `• because a
more general type can introduce opacity. For example the variable X is opaque
in snd X with the usual type for snd, but with a more specific type such as
bool → bool → bool it is no longer opaque.

3.2 Subject Reduction

Subject reduction is a key property for type systems, meaning that evaluation
does not change the type of an expression. This ensures that run-time type errors
will not occur. Subject reduction is only guaranteed for well-typed programs, a
notion that we formally define now.
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Definition 3 (Well-typed program). A program rule f t1 . . . tn → e is well-
typed wrt. A if A `• λt1 . . . λtn.e : τ and τ is a variant of A(f). A program P
is well-typed wrt. A if all its rules are well-typed wrt. A. If P is well-typed wrt.
A we write wtA(P).

Notice the use of the extended typing relation `• in the previous definition.
This is essential, as we will explain later. Returning to Ex. 1, we can see that
the program will not be well-typed because of the rule co (snd X) → X, since
λ(snd X).X will be ill-typed wrt. the usual type for snd, as we explained before.

Although the restriction that the type of the lambda abstraction associated
to a rule must be a variant of the type of the function symbol (and not an
instance) might seem strange, it is necessary. Otherwise, the fact that a program
is well-typed will not give us important information about the functions like the
type of their arguments, and will make us to consider as well-typed undesirable
programs like P ≡ {f true → true; f 2 → false} with the assumptions A ≡
{f :: ∀α.α → bool}. Besides, this restriction is implicitly considered in [5].

TRL(s) = s, if s ∈ DC ∪ FS ∪ DV
TRL(e1 e2) = TRL(e1) TRL(e2)

TRL(letK X = e1 in e2) = letK X = TRL(e1) in TRL(e2), with K ∈ {m, p}
TRL(letpm X = e1 in e2) = letp X = TRL(e1) in TRL(e2)

TRL(letm t = e1 in e2) = letm Y = TRL(e1) in letm Xi = fXi Y in TRL(e2)

TRL(letpm t = e1 in e2) = letm Y = TRL(e1) in letm Xi = fXi Y in TRL(e2)

TRL(letp t = e1 in e2) = letp Y = TRL(e1) in letp Xi = fXi Y in TRL(e2)

for {Xi} = var(t) ∩ var(e2), fXi ∈ FS1 fresh defined by the rule fXi t → Xi,
Y ∈ DV fresh, t a non variable pattern.

Fig. 3. Transformation rules of let expressions with patterns

For subject reduction to be meaningful, a notion of evaluation is needed.
In this paper we consider the let-rewriting relation of [10]. As can be seen, let-
rewriting does not support let expressions with compound patterns. Instead of
extending the semantics with this feature we propose a transformation from let-
expressions with patterns to let-expressions with only variables (Fig. 3). There
are various ways to perform this transformation, which differ in the strictness of
the pattern matching. We have chosen the alternative explained in [17] that does
not demand the matching if no variable of the pattern is needed, but otherwise
forces the matching of the whole pattern. This transformation has been enriched
with the different kinds of let expressions in order to preserve the types, as is
stated in Th. 2. Notice that the result of the transformation and the expressions
accepted by let-rewriting only has letm or letp expressions, since without com-
pound patterns letpm is the same as letp. Finally, we have added polymorphism
annotations to let expressions (Fig. 4). Original (Flat) rule has been split into
two, one for each kind of polymorphism. Although both behave the same from

164



the point of view of values, the splitting is needed to guarantee type preservation.
λ-abstractions have been omitted, since they are not supported by let-rewriting.

(Fapp) f t1θ . . . tnθ →l rθ, if (f t1 . . . tn → r) ∈ P and θ ∈ PSubst

(LetIn) e1 e2 →l letm X = e2 in e1 X, if e2 is an active expression, variable
application, junk or let rooted expression, for X fresh.

(Bind) letK X = t in e →l e[X/t], if t ∈ Pat

(Elim) letK X = e1 in e2 →l e2, if X 6∈ FV (e2)

(Flatm) letm X = (letK Y = e1 in e2) in e3 →l letK Y = e1 in (letm X =
e2 in e3), if Y 6∈ FV (e3)

(Flatp) letp X = (letK Y = e1 in e2) in e3 →l letp Y = e1 in (letp X = e2 in e3)
if Y 6∈ FV (e3)

(LetAp) (letK X = e1 in e2) e3 →l letK X = e1 in e2 e3, if X 6∈ FV (e3)

(Contx) C[e] →l C[e′], if C 6= [ ], e →l e′ using any of the previous rules

where K ∈ {m, p}

Fig. 4. Higher order let-rewriting relation →l

Theorem 2 (Type preservation of the let transformation). Assume A `•
e : τ and let P ≡ {fXi ti → Xi} be the rules of the projection functions needed in
the transformation of e according to Fig. 3. Let also A′ be the set of assumptions
over that functions, defined as A′ ≡ {fXi : Gen(τXi ,A)}, where A �• λti.Xi :
τXi |πXi . Then A⊕A′ `• TRL(e) : τ and wtA⊕A′(P).

Th. 2 also states that the projection functions are well-typed. Then if we
start from a well-typed program P wrt. A and apply the transformation to all
its rules, the program extended with the projections rules will be well-typed
wrt. the extended assumptions: wtA⊕A′(P ] P ′). This result is straightforward,
because A′ does not contain any assumption for the symbols in P, so wtA(P)
implies wtA⊕A′(P).

Th. 3 states the subject reduction property for a let-rewriting step, but its
extension to any number of steps is trivial.

Theorem 3 (Subject Reduction). If A `• e : τ and wtA(P) and P ` e →l e′

then A `• e′ : τ .

For this result to hold it is essential that the definition of well-typed pro-
gram relies on `•. A counterexample can be found in Ex. 1, where the pro-
gram would be well-typed wrt. ` but the subject reduction property fails for
and (cast 0) true.

The proof of the subject reduction property is based on the following lemma,
an important auxiliary result about the instantiation of transparent variables.
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Intuitively it states that if we have a pattern t with type τ and we change its
variables by other expressions, the only way to obtain the same type τ for the
substituted pattern is by changing the transparent variables for expressions with
the same type. This is not guaranteed with opaque variables, and that is why
we forbid their use in expressions.

Lemma 1. Assume A⊕{Xi : τi} ` t : τ , where var(t) ⊆ {Xi}. If A ` t[Xi/si] :
τ and Xj is a transparent variable of t wrt. A then A ` sj : τj.

4 Type inference for expressions

The typing relation `• lacks some properties that prevent its usage as a type-
checker mechanism in a compiler for a functional logic language. First, in spite
of the syntax-directed style, the rules for ` and `• have a bad operational be-
havior: at some steps they need to guess a type. Second, the types related to
an expression can be infinite due to polymorphism. Finally, the typing relation
needs all the assumptions for the symbols in order to work. To overcome these
problems, type systems usually are accompanied with a type inference algorithm
which returns a valid type for an expression and also establish the types for some
symbols in the expression.

In this work we have given the type inference in Fig. 5 a relational style to
show the similarities with the typing relation. But in essence, the inference rules
represent an algorithm (similar to algorithm W [3, 13]) which fails if any of the
rules cannot be applied. This algorithm accepts a set of assumptions A and an
expression e, and returns a simple type τ and a type substitution π. Intuitively,
τ will be the “most general” type which can be given to e, and π the “minimum”
substitution we have to apply to A in order to able to derive a type for e.

Th. 4 shows that the type and substitution found by the inference are correct,
i.e., we can build a type derivation for the same type if we apply the substitution
to the assumptions.

Theorem 4 (Soundness of �?). A �? e : τ |π =⇒ Aπ `? e : τ

Th. 5 expresses the completeness of the inference process. If we can derive a
type for an expression applying a substitution to the assumptions, then inference
will succeed and will find a type and a substitution which are the most general
ones.

Theorem 5 (Completeness of � wrt `). If Aπ′ ` e : τ ′ then ∃τ, π, π′′. A �
e : τ |π ∧ Aππ′′ = Aπ′ ∧ τπ′′ = τ ′.

A result similar to Th. 5 cannot be obtained for �• because of critical variables,
as the following example 3 shows.

Example 3 (Inexistence of a most general typing substitution). Let A ≡ {snd′ :
α → bool → bool} and consider the following two valid derivations D1 ≡
A[α/bool] `• λ(snd′ X).X : (bool → bool) → bool and D2 ≡ A[α/int] `•
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[iID] A � s : τ |id if
s ∈ DC ∪ FS ∪ DV
∧ (s : σ) ∈ A ∧ σ �var τ

[iAPP]

A � e1 : τ1|π1

Aπ1 � e2 : τ2|π2

A � e1e2 : απ|π1π2π
if

α fresh type variable
∧ π = mgu(τ1π2, τ2 → α)

[iΛ]

A⊕ {Xi : αi} � t : τt|πt

(A⊕ {Xi : αi})πt � e : τ |π
A � λt.e : τtπ → τ |πtπ

if
{Xi} = var(t)
∧ αi fresh type variables

[iLETm]

A⊕ {Xi : αi} � t : τt|πt

Aπt � e1 : τ1|π1

(A⊕ {Xi : αi})πtπ1π � e2 : τ2|π2

A � letm t = e1 in e2 : τ2|πtπ1ππ2

if {Xi} = var(t) ∧ αi fresh type variables
∧ π = mgu(τtπ1, τ1)

[iLETX
pm]

A � e1 : τ1|π1

Aπ1 ⊕ {X : Gen(τ1,Aπ1)} � e2 : τ2|π2

A � letpm X = e1 in e2 : τ2|π1π2

[iLETh
pm]

A⊕ {Xi : αi} � h t1 . . . tn : τt|πt

Aπt � e1 : τ1|π1

(A⊕ {Xi : αi})πtπ1π � e2 : τ2|π2

A � letpm h t1 . . . tn = e1 in e2 : τ2|πtπ1ππ2

if h ∈ DC ∪ FS ∧ {Xi} = var(h t1 . . . tn)
∧ αi fresh type variables ∧ π = mgu(τtπ1, τ1)

[iLETp]

A⊕ {Xi : αi} � t : τt|πt

Aπt � e1 : τ1|π1

Aπtπ1π ⊕ {Xi : Gen(αiπtπ1π,Aπtπ1π)} � e2 : τ2|π2

A � letp t = e1 in e2 : τ2|πtπ1ππ2

if {Xi} = var(t) ∧ αi fresh type variables
∧ π = mgu(τtπ1, τ1)

[iP]
A � e : τ |π
A �• e : τ |π if critV arAπ(e) = ∅

Fig. 5. Inference rules
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λ(snd′ X).X : (bool → bool) → int. It is clear that there is not a substitution
more general than [α/bool] and [α/int] which makes possible a type derivation
for λ(snd′ X).X. The only substitution more general than these two will be
[α/β] (for some β), converting X in a critical variable.

In spite of this, we will see that �• is still able to find the most general
substitution when it exists. To formalize that, we will use the notion of Π•

A,e,
which denotes the set collecting all type substitution π such that Aπ gives some
type to e.

Definition 4 (Typing substitutions of e).
Π•
A,e = {π ∈ T Subst | ∃τ ∈ T ype. Aπ `• e : τ}

Now we are ready to formulate our result regarding the maximality of �•.

Theorem 6 (Maximality of �•).
a) Π•

A,e has a maximum element ⇐⇒ ∃τg, πg ∈ T ype.A �• e : τg|πg.
b) If Aπ′ `• e : τ ′ and A �• e : τ |π then exists a type substitution π′′ such
that Aπ′ = Aππ′′ and τ ′ = τπ′′.

5 Type inference for programs

In the functional programming setting, type inference does not need to distin-
guish between programs and expressions, because the program can be incor-
porated in the expression by means of let expressions and λ-abstractions. This
way, the results given for expressions are also valid for programs. But in our
framework it is different, because our semantics (let-rewriting) does not sup-
port λ-abstractions and our let expressions do not define new functions but only
perform pattern matching. Thereby in our case we need to provide an explicit
method for inferring the types of a whole program. By doing so, we will also
provide a specification closer to implementation.

The type inference procedure for a program takes a set of assumptions A
and a program P and returns a type substitution π. The set A must contain
assumptions for all the symbols in the program, even for the functions defined in
P. We want to reflect the fact that in practice some defined functions may come
with an explicit type declaration. Indeed this is a frequent way of documenting a
program. Furthermore, type declarations are sometimes a real need, for instance
if we want the language to support polymorphic recursion [16, 9]. Therefore, for
some of the functions –those for which we want to infer types– the assumption
will be simply a fresh type variable, to be instantiated by the inference process.
For the rest, the assumption will be a closed type-scheme, to be checked by the
procedure.

Definition 5 (Type Inference of a Program). The procedure B for type
inference of a program {rule1, . . . , rulem} is defined as:

B(A, {rule1, . . . , rulem}) = π, if
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1. A �• (ϕ(rule1), . . . , ϕ(rulem)) : (τ1, . . . , τm)|π.
2. Let f1 . . . fk be the function symbols of the rules rulei in P such that A(f i)

is a closed type-scheme, and τ i the type obtained for rulei in step 1. Then
τ i must be a variant of A(f i).

ϕ is a transformation from rules to expressions defined as:

ϕ(f t1 . . . tn → e) = pair λt1. . . . λtn.e f

where () is the usual tuple constructor, with type () : ∀αi.α1 → . . . αm →
(α1, . . . , αm); and pair is a special constructor of tuples of two elements of the
same type, with type pair : ∀α.α → α → α.

The procedure B has two important properties. It is sound: if the procedure
B finds a substitution π then the program P is well-typed with respect to the
assumptions Aπ (Th. 7). And second, if the procedure B succeeds it finds the
most general typing substitution (Th. 8). It is not true in general that the ex-
istence of a well-typing substitution π′ implies the existence of a most general
one. A counterexample of this fact is very similar to Ex. 3.

Theorem 7 (Soundness of B). If B(A,P) = π then wtAπ(P).

Theorem 8 (Maximality of B). If wtAπ′(P) and B(A,P) = π then ∃π′′ such
that Aπ′ = Aππ′′.

Notice that types inferred for the functions are simple types. In order to
obtain type-schemes we need and extra step of generalization, as discussed in
the next section.

5.1 Stratified Type Inference of a Program

It is known that splitting a program into blocks of mutually recursive functions
and inferring the types in order may reduce the need of providing explicit type-
schemes. This situation is shown in the next example.

Example 4 (Program Inference vs Stratified Inference).
A ≡ {true : bool, 0 : int, id : α, f : β, g : γ}
P ≡ {id X → X; f → id true; g → id 0}
P1 ≡ {id X → X}, P2 ≡ {f → id true}, P3 ≡ {g → id 0}

An attempt to apply the procedure B to infer types for the whole program
fails because it is not possible for id to have types bool → bool and int → int at
the same time. We will need to provide explicitly the type-scheme for id : ∀α.α →
α in order to the type inference to succeed, yielding types f : bool → bool and
g : int → int. But this is not necessary if we first infer types for P1, obtaining
δ → δ for id which will be generalized to ∀δ.δ → δ. With this assumption the
type inference for both programs P2 and P3 will succeed with the expected types.

A general stratified inference procedure can be defined in terms of the basic
inference B. First, it calculates the graph of strongly connected components from
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the dependency graph of the program, using e.g. Kosaraju or Tarjan’s algorithm
[20]. Each strongly connected component will contain mutually dependent func-
tions. Then it will infer types for every component (using B) in topological order,
generalizing the obtained types before following with the next component.

Although stratified inference needs less explicit type-schemes, programs in-
volving polymorphic recursion still require explicit type-schemes in order to infer
their types.

6 Conclusions and Future Work

In this paper we have proposed a type system for functional logic languages based
on Damas & Milner type system. As far as we know, prior to our work only [5]
treats with technical detail a type system for functional logic programming. Our
paper makes clear contributions when compared to [5]:

– By introducing the notion critical variables, we are more liberal in the treat-
ment of opaque variables, but still preserving the essential property of subject
reduction; moreover, this liberality extends also to data constructors, drop-
ping the traditional restriction of transparency required to them. This is
somehow similar to what happens with existential types [14] or generalized
abstract datatypes [8], a connection that we plan to further investigate in the
future.

– Our type system considers local pattern bindings and λ-abstractions (also
with patterns), that were missing in [5]. In addition to that, we have made
a rather exhaustive analysis and formalization of different possibilities for
polymorphism in local bindings.

– Subject reduction was proved in [5] wrt. a narrowing calculus. Here we do it
wrt. an small-step operational semantics closer to real computations.

– In [5] programs came with explicit type declarations. Here we provide algo-
rithms for inferring types for programs without such declarations that can
became part of the type stage of a FL compiler.

We have in mind several lines for future work. As an immediate task we
plan to implement and integrate the stratified type inference into the T OY
[11] compiler. Apart from the relation to existential types mentioned above, we
are interested in other known extensions of type system, like type classes or
generic programming. We also want to generalize the subject reduction property
to narrowing, using let narrowing reductions of [10], and taking into account
known problems [5, 1] in the interaction of HO narrowing and types. Handling
extra variables (variables occurring only in right hand sides of rules) is another
challenge from the viewpoint of types.
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Abstract. Computing with data values that are some kind of trees —
finite, infinite, rational— is at the core of declarative programming, either
logic, functional or functional-logic. Understanding the logic of trees is
therefore a fundamental question with impact in different aspects, like
language design, including constraint systems or constructive negation,
or obtaining methods for verifying and reasoning about programs. The
theory of true equality over finite or infinite trees is quite well known. In
particular, a seminal paper by Maher proved its decidability and gave a
complete axiomatization of the theory. However, the sensible notion of
equality for functional and functional-logic languages with a lazy evalua-
tion regime is strict equality, a computable approximation to true equal-
ity for possibly infinite and partial trees. In this paper, we investigate
the first-order theory of strict equality, arriving to remarkable and not
obvious results: the theory is again decidable and admits a complete ax-
iomatization, not requiring predicate symbols other than strict equality
itself. Besides, the results stem from an effective —taking into account
the intrinsic complexity of the problem— decision procedure that can be
seen as a constraint solver for general strict equality constraints.

1 Introduction

Computing with data values that are —or can be interpreted as— some kind
of trees is at the core of declarative programming, either logic, functional or
functional-logic programming. The family of trees may vary from finite trees, for
the case of standard logic programming, infinite rational trees, for the case of
Prolog-II and variants, or infinite trees (that correspond to data values in con-
structor data-types) for the case of functional or functional-logic programming
that allow non-terminating programs by following a lazy evaluation regime.

Understanding trees, in particular the logical principles governing tree equal-
ity, is a fundamental question with impact in different aspects of declarative
programming languages. For instance, adding constructive negation abilities to
a logic language requires solving complex Herbrand constraints over finite trees.

? This work has been partially supported by the Spanish projects
TIN2005-09207-C03-03, TIN2008-06622-C03-01, S-0505/TIC/0407,
UCM-BSCH-GR58/08-910502, TIN2007-66523 and GIU07/35.



The theory of true equality ≈1 over finite or infinite trees is quite well known.
In a seminal paper [11], Maher proved its decidability and gave a complete
axiomatization for the cases of finite and infinite trees, and finite and infinite
signatures. In another influential paper [6], the authors provided more effective
decision procedures, based on reduction to solved forms by quantifier elimination.

However, true equality is not the sensible notion to consider in lazy functional
or functional-logic languages like Haskell, Curry or Toy [12, 8, 4]. In those, the
possibility of non-terminating programs handled with lazy evaluation implies
that denotations of expressions may be seen as infinite trees. Furthermore, trees
may be partial, in the sense that some of their components may be undefined.
For instance, with the definitions loop = loop and l = [loop|l], l can be seen as
computing the infinite partial list [⊥,⊥,⊥, . . .]. True equality over partial trees
is not Scott continuous (hence not computable) and, therefore, must be replaced
by a computable approximation, like strict equality ==, the restriction of ≈ to
finite and total trees. The theories of equality and of strict equality are far from
being the same, starting by the fact that == is not even reflexive.

As far as we know, a comprehensive study of the full first-order theory of
strict equality has not been done before. Certainly, strict equality is incorpo-
rated as primitive in the aforementioned languages, and there are several works
incorporating various Herbrand constraint systems —and corresponding solving
procedures— to functional logic languages [2, 9, 3]. But in all cases, the consid-
ered class of formulae over == is only a subset of general first-order formulae.

The aim of this paper is precisely to investigate the full first-order theory of
strict equality over the algebra IT of possibly infinite partial trees. Note that
decidability and existence of complete axiomatization for ≈ says nothing about
the same problems for strict equality, even if == is a strict subset of ≈ (i.e.,
∀x · y ( x == y → x ≈ y ) is valid in IT ). These are indeed the main questions
tackled in this paper:
− Does the theory of strict equality over IT admit a complete recursive axio-

matization?
− In the affirmative case, is it possible that the axioms use only the symbol

==? We cannot discard a priori the possibility that the axiomatization
needs an explicit connection of == to ≈, like the one stated above. If so, the
resulting axiomatization would become more complicated due to the number
of required axioms and transformation rules.

− A complete recursive axiomatization of a theory implies its decidability (at
least a brute force decision procedure exists). Can we give a more practical
decision procedure, in the style of [6]? As a matter of fact, such a procedure
—if existing— will be itself a proof of completeness for the theory.

We obtain affirmative answers to these questions, both in the cases of infinite and
finite signatures. Our paper does not look for immediate applications, keeping
in a theoretical realm and trying to achieve fundamental and not obvious results
about strict equality that could be a basis for potential applications: the design

1 By true equality we mean t1 ≈ t2 iff t1 and t2 are the same tree.

174



of constraint systems more expressive than existing ones or the development of
reasoning frameworks for functional-logic programs with built-in equality.

The organization of the paper is as follows: in the next section, we provide
preliminary definitions and notation. In Section 3, we give an axiomatization
for strict equality and introduce the transformation rules that will be used in
the decision methods of Section 4, distinguishing the cases of infinite and finite
signatures. Finally, in Section 5, we discuss complexity issues and future work.
For the sake of space, proofs have been omitted, but the interested reader may
refer to [1].

2 Preliminaries

Let V be a set of countable variables and Σ = PΣ ∪FΣ a signature of predicate
and function symbols where each symbol s has an associated arity n, denoted by
s/n, and PΣ exclusively consists of the symbol ==/2, known as strict equality.
For technical convenience, we assume that FΣ contains at least a 0-ary function
symbol (constant), an n-ary function symbol with n > 0 and a distinguished 0-
ary function symbol ⊥ known as bottom. If Σ contains a finite number of function
symbols, then Σ is said to be finite. Otherwise, Σ is infinite. By using the name
function, we follow the tradition of first-order logic, but note that the notion of
function corresponds to the notion of free constructor in functional/functional-
logic programming and not to defined function, which plays no role in this paper.

We consider the classical definitions of finite and infinite ground trees. The
interested reader is referred to [5] for an exhaustive definition. A tree is said to
be partial if it contains ⊥ at some node. Otherwise, the tree is total. The algebra
of finite and infinite trees are respectively denoted by FT and IT . Besides, we
also refer to [6] for the definitions that do not appear in this paper.

A term (or constructor term) is either a variable v ∈ V or an expression of
the form f(t1, . . . , tn) where f/n ∈ FΣ and t1, . . . , tn are terms. For any terms
t and s, the expression t[s] denotes that s occurs in t (that is, s is a subterm of
t). For any n > 0, a n-tuple of terms is denoted by 〈t1, . . . , tn〉 and abbreviated
by t. When convenient, we also treat t as the set of its components. As for the
case of trees, a term t is said to be partial if t = s[⊥], and t is total otherwise.
We denote by Var(t) the set of variables occurring in t. Besides, a term is said
to be ground iff it is variable-free. The size of a term t is the number of function
symbols occurring in t.

A sentence φ is an arbitrary first-order formula built with Σ. In our case,
the only predicate symbol is ==. Thus atomic formulas are true, false, strict
equations t1 == t2 or negated equations ¬t1 == t2. Being r = 〈r1, . . . , rn〉 and
s = 〈s1, . . . , sn〉, the expression r == s abbreviates r1 == s1 ∧ . . . ∧ rn == sn

and ¬r == s abbreviates the disjunction of negated equations ¬r1 == s1 ∨
. . . ∨ ¬rn == sn. Sentences may use propositional connectives (¬,∧,∨,→,↔)
and quantifiers (∃,∀). The symbol Q stands for both kinds of quantifiers. The
set Free(φ) of free variables of φ is defined as usual. If Free(φ) = ∅, φ is closed.
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φQ denotes the Q-closure of φ, and φQ\w denotes the sentence Qv φ, where
v = Free(φ) \ w.

Now we recall some semantics of first order logic. An interpretation A is a
carrier set A together with interpretations for the symbols in Σ. Given A, an
assignment σ maps variables to values in A. A models φ, written A |= φ, if φσ
is true (according to standard rules for truth-valuation) in A for any assignment
σ (σ is irrelevant if φ is closed).

A theory T is a set of closed sentences. A is a model of T , written A |= T ,
if A |= φ for each φ ∈ T . A formula φ is a logical consequence of T , written
T |= φ, if A |= φ whenever A |= T . This notation extends naturally to sets Φ
of formulas. A sentence φ is satisfiable (or solvable) in T , if T |= φ∃. A theory
T is complete iff for any closed sentence φ either T |= φ or T |= ¬φ holds. The
theory TA of A is the set of all closed φ such that A |= φ. Note that TA is always
complete. A complete axiomatization of A is a theory S ⊆ TA such that S |= TA
(or, equivalently, S is a complete theory and A |= S). Usually one is interested
in recursive axiomatizations where the property ‘φ ∈ S’ is decidable.

Given two sentences φ1 and φ2, a transformation rule φ1 7→ φ2 replaces
any occurrence of φ1 in a formula (module variable renaming) with φ2. The
application of a transformation rule R to φ1 yielding φ2 is denoted by φ1

R
; φ2.

A transformation rule R is said to be correct in a theory T iff for any two formulas
φ1 and φ2 such that φ1

R
; φ2 we have that φ1 and φ2 are logically equivalent in

T , i.e., T |= φ1 ↔ φ2.

3 Strict Equality

Strict equality is a particular case of classical equality where, besides being
syntactically equal, two terms have to be finite and total to be strictly equal.

Definition 1 (Strict equality). Two trees t1 and t2 are strictly equal, denoted
by t1 == t2, iff t1 and t2 are the same finite and total tree. ut

Strict equality allows us to characterize the subset of IT consisting of finite
and total trees: x is a finite and total tree ⇐⇒ x == x.

In Figure 1, we propose an axiomatization of infinite trees with strict equal-
ity, which is similar, but not equal, to the one of finite trees with equality given in
[11]. The main difference comes from the fact that strict equality is not reflexive:
non-finite/non-total trees are not strictly equal to themselves. Due to this prop-
erty, ⊥ and the remaining function symbols in FΣ have a different treatment.
The strict equality theory of infinite trees consisting of A1 −A6 is denoted by
E . It is easy to see, by direct inspection, that IT |= E . However, whether or
not E is a complete theory (and, therefore, a complete axiomatization of == for
IT ) is not a trivial question. It will be proved by means of a decision procedure
based on some equivalences under E used as transformation rules for quanti-
fier elimination. The following property, which can be seen as a weak version of
reflexivity, is logical consequence of E .
Proposition 1. E |= ∀x ( x == x ↔ ∃y x == y ) ut
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(A1) For every f ∈ Σ such that f 6= ⊥

∀x ∀y ( f(x) == f(y) ↔ x == y )

(A2) For every f, g ∈ Σ such that f 6= g

∀x ∀y ¬f(x) == g(y)

(A3) For every term t[x] except x such that y = Var(t[x]) \ {x}

∀x ∀y ¬x == t[x]

(A4)
∀x ¬x == ⊥

(A5) Symmetry
∀x ∀y ( x == y → y == x )

(A6) Transitivity

∀x ∀y ∀z ( ¬x == y ∨ ¬y == z ∨ x == z )

Fig. 1. Axiomatization of Infinite Trees with Strict Equality

3.1 Transformation Rules

In Figure 2, we summarize the transformation rules that are used in Section 4 for
providing a decision method for E . Note that some conditions in the rules, like
the ones in rule R, are not necessary for correctness. Instead, those conditions
serve to discard the application of some rules when there exist more suitable
ones. Next, we prove that the transformation rules in Figure 2 are correct.

Theorem 1. The transformation rules in Figure 2 are correct in E. ut

4 A Decision Method for Strict Equality

In this section, we prove that the theory of strict equality is decidable by pro-
viding an algorithm that transforms any initial constraint into an equivalent
disjunction of formulas in solved form. This algorithm is based on the well-
known technique of quantifier elimination, as the algorithms proposed in [6, 11]
for the equality theory. As in the above cited works, we distinguish two cases
depending on whether the signature is finite or infinite. In the case of infinite
signatures, E is already a decidable theory. However, for dealing with finite sig-
natures, we have to adapt the Domain Closure Axiom (see [13]) to the case of
strict equality in order to obtain a decidable theory. In the next subsections,
we first provide a decision algorithm for the case of infinite signatures and then
adapt that algorithm for finite ones.
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Bottom
(B1) x == t[⊥] 7→ false
(B2) ¬x == t[⊥] 7→ true

Non-finite trees

(NFT1) ¬x == x ∧ ¬r == s[x] 7→ ¬x == x
(NFT2) ¬x == x ∧ r == s[x] 7→ false
(NFT3) ∀y ¬x == y 7→ ¬x == x

Finite trees
(FT) x == x ∧ r == s[x] 7→ r == s[x]

Decomposition

(D1) f(r1, . . . , rn) == f(s1, . . . , sn) 7→ r1 == s1 ∧ . . . ∧ rn == sn

(D2) ¬f(r1, . . . , rn) == f(s1, . . . , sn) 7→ ¬r1 == s1 ∨ . . . ∨ ¬rn == sn

Clash
(C1) f(r1, . . . , rm) == g(s1, . . . , sn) 7→ false if f 6= g
(C2) ¬f(r1, . . . , rm) == g(s1, . . . , sn) 7→ true if f 6= g

Occur-check
(O1) x == t[x] 7→ false if x 6= t[x]
(O2) ¬x == t[x] 7→ true if x 6= t[x]

Replacement

(R) x == t ∧ ϕ[x] 7→ x == t ∧ ϕ[x← t] if t is total and x 6∈ Var(t)

Existential quantification elimination

(EE1) ∃w ( w == w ∧ ϕ ) 7→ ϕ if w 6∈ Var(ϕ)
(EE2) ∃w ( w == t ∧ ϕ ) 7→ x == x ∧ ϕ if t is total, x = Var(t)

and w 6∈ Var(t) ∪ Var(ϕ)
(EE3) ∃w ( ¬w == w ∧ ϕ ) 7→ ϕ if w 6∈ Var(ϕ)

Existential quantification introduction

(EI) r == s[x] 7→ ∃w ( x == w ∧ r == s[x← w] )

Universal quantification elimination

(UE) ∀y (¬y == t ∨ ϕ) 7→ ¬x == x ∨ ϕ[y ← t] if t is total, x = Var(t)
and y 6∈ Var(t)

Tautology
(T) ϕ 7→ ϕ ∧ ( x == x ∨ ¬x == x )

Split

(S) ¬∃w∃z ( x == t[w] ∧ ϕ[w · z] ) 7→ ¬∃w ( x == t[w] )∨
∃w(x == t[w] ∧ ¬∃z ϕ[w · z] )

Fig. 2. Transformation Rules
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4.1 Infinite Signatures

In order to provide a decision algorithm, we first define a solved form for infinite
signatures, called basic formula. Then, we show that two basic Boolean opera-
tions —conjunction and negation— can be performed on basic formulas. And,
finally, we describe the decision algorithm.

Definition 2. A basic formula for the variables x is either true, false or a con-
straint ∃w c(x,w) such that

c(x,w) =
∧

x1∈x1

¬x1 == x1 ∧ x2 == t ∧
∧

wi∈w

ni∧
j=1

(¬wi == sij)∀\w

where − x = x1 ∪ x2 and x1 ∩ x2 = ∅,
− w = Var(t) and x ∩ w = ∅,
− if sij is a variable, then sij ∈ w, otherwise sij is total, wi 6∈ Var(sij)

and Var(sij) ∩ x = ∅ for every wi ∈ w and 1 ≤ j ≤ ni.
A formula is in basic normal form if it is of the form Qy ϕ[x · y] where ϕ is a
disjunction of basic formulas for x · y. ut

Example 1. Let {a/0, g/1, f/2} ⊂ FΣ and x = {x1, x2, x3} ⊂ V. The sentences
∃w ( ¬x1 == x1∧x2 = g(w1)∧x3 == g(w2)∧¬w1 == w2∧∀v ¬w2 == f(a, v) ),
( ¬x1 == x1 ∧ ¬x2 == x2 ∧ ¬x3 == x3 ) and true are basic formulas for x. ut

First, we will show that the notion of basic formula is a solved form.

Theorem 2. Let Σ be an infinite signature. Any basic formula different from
false is satisfiable in E. ut

Then, we describe the transformation of any universally quantified disjunc-
tion of negated equations into an equivalent disjunction of basic formulas.

Proposition 2. Any universally quantified disjunction of negated equations

∀v ( ¬w1 == t1 ∨ ¬w2 == t2 ∨ . . . ∨ ¬wn == tn )

where wi 6∈ v for each 1 ≤ i ≤ n can be transformed into an equivalent disjunction
of basic formulas for the variables x = Var(t1, . . . , tn) \ v. ut

Using the above transformation, we now describe the implementation of the
Boolean operations conjunction and negation on basic formulas.

Proposition 3. A conjunction of disjunctions of basic formulas for x can be
transformed into an equivalent disjunction of basic formulas for x. ut

In the next example, we show the transformation of a conjunction of two basic
formulas into an equivalent disjunction of basic formulas for the same variables.
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Example 2. Let {a/0, g/1, f/2} ⊂ FΣ and x = {x1, x2, x3} ⊂ V. The conjunction
of basic formulas for x ϕ1 = ∃w1 c1(x,w1) ∧ ∃w2 c2(x,w2) where

c1(x,w1) = ¬x1 == x1 ∧ x2 == w1
1 ∧ x3 == g(w1

2) ∧ ∀v ¬w1
1 == f(a, v)

c2(x,w2) = ¬x1 == x1 ∧ ¬x2 == x2 ∧ x3 == f(w2
1, w

2
2) ∧ ¬w2

1 == w2
2

is unsatisfiable since x2 == w1
1 ∧ ¬x2 == x2 is reduced to false by NFT2. On

the contrary, the conjunction ϕ2 = ∃w1 c1(x,w1) ∧ ∃w3 c3(x,w3) where

c3(x,w3) = ¬x1 == x1 ∧ x2 == f(w3
1, w

3
2) ∧ x3 == w3

1 ∧ ∀v ¬w3
2 == g(v)

is transformed in the following way. Since σ = mgu(w1
1 · g(w1

2), f(w3
1, w

3
2) ·w3

1) =
{w1

1 ← f(g(w1
2), w

3
2), w

3
1 ← g(w1

2)}, ϕ2 is transformed into

∃w1
2 · w3

2 ( ¬x1 == x1 ∧ x2 == f(g(w1
2), w

3
2) ∧ x3 == g(w1

2) ∧
∀v ¬f(g(w1

2), w
3
2) == f(a, v) ∧ ∀v ¬w3

2 == g(v) ).

Then, the negated equation ∀v ¬f(g(w1
2), w

3
2) == f(a, v) is reduced to true

using rules D2 and C2. Thus, the resulting basic formula is

∃w1
2 ·w3

2 (¬x1 == x1∧x2 == f(g(w1
2), w

3
2)∧x3 == g(w1

2)∧∀v ¬w3
2 == g(v)). ut

Proposition 4. A negated disjunction of basic formulas for the variables x can
be transformed into an equivalent disjunction of basic formulas for x. ut

Example 3. Let {a/0, f/2} ⊂ FΣ and x = {x1, x2} ⊂ V. The negated basic
formula for the variables x

ϕ = ¬∃w ( ¬x1 == x1 ∧ x2 == f(w, a) ∧ ∀v ¬w == f(a, v) )

is transformed as follows. First, ϕ is trivially equivalent to

( x1 == x1 ) ∨ ¬∃w ( x2 == f(w, a) ∧ ∀v ¬w == f(a, v) )

where ( x1 == x1 ) is transformed into the following basic formulas for x

∃w1 ( ¬x2 == x2 ∧ x1 == w1 ) ∨ ∃w2 · w3 ( x1 == w2 ∧ x2 == w3 )

using T, EI, R and FT. Besides, the remaining subformula is transformed into

¬∃w ( x2 == f(w, a) ) ∨ ∃w ( x2 == f(w, a) ∧ ¬∀v ¬w == f(a, v) )

using the rule S. The constraint ¬∃w ( x2 == f(w, a) ) is transformed into

( ¬x1 == x1 ∧ ¬x2 == x2 ) ∨
∃w4 ( ¬x1 == x1 ∧ x2 == w4 ∧ ∀v ¬w4 == f(v, a) ) ∨
∃w5 ( ¬x2 == x2 ∧ x1 == w5 ) ∨
∃w6 · w7 ( x1 == w6 ∧ x2 == w7 ∧ ∀v ¬w7 == f(v, a) )
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(EE4) ∃w ( v == v ∧
n̂

i=1

(¬si == ti)
∀\w ∧ ϕ ) 7→ ϕ

if w ∩ Var(ϕ) = ∅, v ⊆ w, si 6= ti, w ∩ Var(si, ti) 6= ∅ and either
si (resp. ti) is not a variable or si ∈ w (resp. ti ∈ w) for each 1 ≤ i ≤ n

Fig. 3. Existential Quantification Elimination: Infinite Signatures

using T, EI, R and NFT1. Finally, ∃w ( x2 == f(w, a)∧¬∀v ¬w == f(a, v) ) ≡
∃w ( x2 == f(w, a) ∧ ∃v w == f(a, v) ) is transformed into

∃w8 ( ¬x1 == x1 ∧ x2 == f(f(a,w8), a) ) ∨
∃w9 · w10 ( x1 == w9 ∧ x2 == f(f(a,w10), a) )

using rules R, EE2 and FT on w, and T and EI on x1. ut

Next, we show that the elimination of the innermost block of quantifiers is
correct in E when it is existential. For this purpose, we introduce the trans-
formation rule in Figure 3, which allows to eliminate existential variables only
occurring in a conjunction of (universally quantified) negated equations. In the
next proposition, we prove the correctness of EE4.

Proposition 5. Let Σ be an infinite signature. The transformation rule EE4

is correct in E. ut

The elimination of the innermost block of existential quantifiers is used in
the decision algorithm given in Figure 4.

Theorem 3. Let Σ be an infinite signature, ∃w a(x · y, w · z) a basic formula
for the variables x · y of the form

∃w · z (
∧

x1∈x1

¬x1 == x1 ∧
∧

y1∈y1

¬y1 == y1 ∧ x2 == t ∧ y2 == r ∧ ϕ ∧ ψ )

where − w = Var(t) and z = Var(r) \ w,
− ϕ is a finite conjunction of negated equations such that Free(ϕ) ⊆ w,
− ψ =

∧n
i=1(¬vi == si)∀\w·z and (vi ∪ Var(si)) ∩ z 6= ∅ for 1 ≤ i ≤ n.

The formulas ∃y [ ∃w a(x · y, w · z) ] and ∃w a′(x,w) where

a′(x,w) =
∧

x1∈x1

¬x1 == x1 ∧ x2 == t ∧ ϕ

are equivalent in E. ut

Example 4. Let {a/0, g/1, f/2} ⊂ FΣ . The formulas

∃y [ ∃w1 · w2 ( x == g(w1) ∧ y == f(w2, a) ∧ ¬w1 == a ∧
¬w1 == w2 ∧ ∀v ¬w2 == f(a, v) ) ]

and ∃w1 ( x == g(w1) ∧ ¬w1 == a ) are equivalent in E . ut
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Given any constraint ϕ with free variables x0:

(Step 1) Transform ϕ into prenex disjunctive normal form:

Q1x
1 . . . Qnx

n
m_

i=1

ψi

(Step 2) For each 1 ≤ i ≤ m, transform ψi into a disjunction of basic
formulas for the variables x = x0 · x1 · . . . · xn as follows:
(a) Apply rules B1, B2, NFT1, NFT2, NFT3, FT, D1, D2, C1,

C2, O1 and O2. When none of the previous rules is applicable,
the resulting formula is a disjunction of constraints of the form

ψ′i =

o1̂

j=1

vj == rj ∧
o2̂

j=o1+1

¬vj == rj

where vi is a variable, rj is total and vj 6∈ Var(rj) for each
1 ≤ j ≤ o2.

(b) For each conjunct ψ′i that results from (a) and each variable
x ∈ x:
• If x = vj for some 1 ≤ j ≤ o1, then apply R on x.
• If x 6= vk for every 1 ≤ j ≤ o1 and x ∈ Var(rk) for some

1 ≤ k ≤ o1, then apply EI and R on x.
• If x 6= vj and x 6∈ Var(rj) for every 1 ≤ j ≤ o1, then apply

T on x and goto (a).
The resulting formula is already in basic normal form:

Q1x
1 . . . Qnx

n
m′_
i=1

∃wi ai(x,w
i)

(Step 3) Iteratively eliminate the innermost block of consecutive ex-
istential/universal quantifiers Qnx

n:

(i) If Qn = ∃, then Q1x
1 . . . Qn−1x

n−1 Wm′

i=1 ∃x
n · wi ai(x,w

i) is
equivalent to

Q1x
1 . . . Qn−1x

n−1
m′_
i=1

∃w′i a′i(x′, w′i)

where x′ = x0 · . . . · xn−1 (see Theorem 3).
(ii) If Qn = ∀, then use double negation

Q1x
1 . . .¬∃xn ¬

m′_
i=1

∃wi ai(x,w
i)

and apply (i). Negation on basic formulas is used before and
after the elimination of the innermost block of quantifiers.

Fig. 4. A Decision Method for Strict Equality
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The algorithm described in Figure 4 is illustrated in the next example.
Roughly speaking, we first transform the input constraint into an equivalent
formula in basic normal form. Then, we proceed to iteratively eliminate the in-
nermost block of quantifiers Qix

i. By Theorem 3, the elimination of Qix
i is

trivial when Qi is existential. However, when Qi is universal, we have to use
double negation to turn Qi into existential. This process requires to negate the
matrix of the formula and to transform it into an equivalent disjunction of basic
formulas for the same variables before and after the elimination of Qi.

Example 5. Let {a/0, g/1, f/2} ⊂ FΣ and x = {x1, x2} ⊂ V. The constraint

∀x [ ( f(x1, a) == f(g(x2), x2) ∧ ¬g(x2) == g(g(x1)) ) ∨
f(x1, x2) == f(x2, x1) ]

is already in prenex disjunctive normal form, thus Step 1 is not applicable. In
Step 2, the formula is first transformed into

∀x [ ( x1 == g(x2) ∧ x2 == a ∧ ¬x2 == g(x1) ) ∨ x1 == x2 ]

using D1 and D2. Next, the formula is transformed into basic normal form

∀x [ ( x1 == g(a) ∧ x2 == a ) ∨ ∃w ( x1 == w ∧ x2 == w ) ]

using rules R, C2 and EI. Next, in Step 3, we proceed to eliminate the in-
nermost block of quantifiers, which is universal (case (ii)). Thus, using double
negation, we obtain

¬∃x [ ¬( x1 == g(a) ∧ x2 == a ) ∧ ¬∃w ( x1 == w ∧ x2 == w ) ]

that is transformed into

¬∃x [ ( ¬x1 == x1 ∧ ¬x2 == x2 ) ∨ ∃w ( ¬x1 == x1 ∧ x2 == w ) ∨
∃w ( ¬x2 == x2 ∧ x1 == w ∧ ¬w == g(a) ) ∨
∃w ( x1 == w1 ∧ x2 == w2 ∧ ¬w1 == g(a) ∧ ¬w1 == w2 ) ∨
( ¬x2 == x2 ∧ x1 == g(a) ) ∨
∃w ( x1 == g(a) ∧ x2 == w ∧ ¬w == a ∧ ¬w == g(a) ) ]

by negation and conjunction of basic formulas. Then, the block of quantifiers ∃x
can be eliminated and we obtain ¬ [ true ], which is trivially equivalent to false
after simplifying negation. ut

4.2 Finite Signatures

As pointed out in [11] with respect to equality, E is not a decidable theory in
the case of finite signatures. Further, note that the normal form provided in
Definition 2 is not solved for finite signatures. This arises from the fact that
a finite conjunction of universally quantified negated equations on a variable
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(A7) Domain Closure Axiom or DCA

∀x ( ¬x == x ∨
_

f∈FΣ

∃w x == f(w) )

Fig. 5. Axiomatization of Infinite Trees with Strict Equality (contd.)

w may be unsatisfiable if only finite and total trees can be assigned to w. For
example, being FΣ = {a/0, g/1}, we have that the constraint

∃w ( x == w ∧ ¬w == a ∧ ∀v ¬w == g(v) )

is unsatisfiable although ∃w ( ¬w == a ∧ ∀v ¬w == g(v) ) is satisfiable.
Roughly speaking, the question is that all the function symbols of the signa-

ture can be used in a constraint. To solve this problem, we adapt the Domain
Closure Axiom introduced in [13] to the case of strict equality (see Figure 5),
which prevents the existence of isolated finite and total trees in the algebra. Note
that A7 does not provide any information about non-finite/non-total trees. The
theory that results from the union of E and A7 is denoted by E?.

Existential Quantification Elimination

(EE5) ∃w ( v == v ∧
n̂

i=1

¬si == ti ∧ ϕ ) 7→ ϕ

if w ∩ Var(ϕ) = ∅, v ⊆ w, si 6= ti and w ∩ Var(si, ti) = ∅ for 1 ≤ i ≤ n

Explosion

(E) ϕ[x] 7→ ϕ[x] ∧ [ ¬x == x ∨
_

f∈FΣ

∃w x == f(w) ]

Fig. 6. Transformation Rules: Finite Signatures

Next, we show that E? is a decidable theory. For this purpose, we adapt all the
definitions and results in Subsection 4.1 to the case of finite signatures. Besides,
we add the new transformation rule E (see Figure 6) whose correctness directly
follows from Axiom A7. This new rule allows for the elimination of universal
quantification. Finally, regarding the elimination of existential quantifiers, we
replace the rule EE4, which is not correct in the case of finite signatures, with
EE5 (see Figure 6). Next, we show that both rules are correct in E?.

Proposition 6. Let Σ be an finite signature. The transformation rule EE5 is
correct in E?. ut

Proposition 7. The rule Explosion (E) is correct in E?. ut
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The use of E for eliminating universal quantification is necessary because our
notion of solved form for finite signatures is free of universal variables.

Definition 3. A basic formula for the variables x is either true, false or a con-
straint ∃w c(x,w) such that

c(x,w) =
∧

x1∈x1

¬x1 == x1 ∧ x2 == t ∧
∧

wi∈w

ni∧
j=1

¬wi == sij

where − x = x1 ∪ x2 and x1 ∩ x2 = ∅,
− w = Var(t) and x ∩ w = ∅,
− if sij is a variable, then sij 6= wi, otherwise sij is total, Var(sij) ⊆ w
− and wi 6∈ Var(sij) for every wi ∈ w and 1 ≤ j ≤ ni.

A formula is in basic normal form if it is of the form Qy ϕ[x · y] where ϕ is a
disjunction of basic formulas for x · y. ut

As in the case of infinite signatures, the above notion of basic formula is a
solved form.

Theorem 4. Let Σ be a finite signature. Any basic formula different from false
is satisfiable in E?. ut

Note that the syntactical form provided in Definition 3 is a particular case
of the one in Definition 2. The only difference is that universal quantification is
not allowed in the case of finite signatures. Further, there exists a very simple
transformation using E from formulas as defined in Definition 2 into formulas
as defined above.

Proposition 8. Let Σ be a finite signature. Any constraint of the form

ϕ =
∧

wi∈w

ni∧
j=1

(¬wi == sij)∀\w

can be transformed into an equivalent disjunction of basic formulas for w. ut
Being ∃w c(x,w) a formula as described in Definition 2, the conjunction of

negated equations in c(x,w) is transformed into a disjunction of basic formulas
w as shown in Proposition 8. Then, the whole formula is transformed into an
equivalent disjunction of basic formulas for x using R, EE2 and FT. This result
allows us to easily adapt Propositions 3 and 4 to the case of finite signatures.

Example 6. Let FΣ = {a/0, g/1, f/2} and x = {x1, x2} ⊂ V. The constraint

∃w ( ¬x1 == x1 ∧ x2 == f(w, a) ∧ ∀v ¬w == f(a, v) )

is transformed into a disjunction of basic formulas for x as follows. First, we
transform ∀v ¬w == f(a, v) into a disjunction of basic formulas for w using E:

∀v ¬w == f(a, v) ∧ [ ¬w == w ∨ w == a ∨ ∃z w == g(z) ∨
∃z w == f(z1, z2) ]

≡ ¬w == w ∨ w == a ∨ ∃z w == g(z) ∨ (1)
∃z ( w == f(z1, z2) ∧ ∀v ¬w == f(a, v) )
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The first three subformulas are already basic formulas for w. Regarding the last
one, it is transformed using rules R and D2 as follows

∃z ( w == f(z1, z2) ∧ [ ¬z1 == a ∨ ∀v ¬z2 == v ] )
≡ ∃z ( w == f(z1, z2) ∧ ¬z1 == a ) ∨ (2)
∃z ( w == f(z1, z2) ∧ ∀v ¬z2 == v )

where the second subformula is equivalent to false by rules NFT3 and NFT2.
Thus, ∀v ¬w == f(a, v) has been transformed into the disjunction of basic
formulas for w in (1, 2). Finally, the conjunction of the above disjunction and
¬x1 == x1 ∧ x2 == f(w, a) is transformed into

( ¬x1 == x1 ∧ x2 == f(a, a) ) ∨
∃z ( ¬x1 == x1 ∧ x2 == f(g(z), a) ) ∨
∃z ( ¬x1 == x1 ∧ x2 == f(f(z1, z2), a) ∧ ¬z1 == a )

using rules R, EE1 and NFT2. ut

Finally, in order to be able to apply the algorithm in Figure 4 to the case of
finite signatures, we adapt the result in Theorem 3.

Theorem 5. Let Σ be a finite signature, ∃w a(x · y, w · z) a basic formula for
the variables x · y of the form

∃w · z (
∧

x1∈x1

¬x1 == x1 ∧
∧

y1∈y1

¬y1 == y1 ∧ x2 == t ∧ y2 == r ∧ ϕ ∧ ψ )

where − w = Var(t) and z = Var(r) \ w,
− ϕ is a finite conjunction of negated equations such that Var(ϕ) ⊆ w,
− ψ =

∧n
i=1 ¬vi == si and (vi ∪ Var(si)) ∩ z 6= ∅ for each 1 ≤ i ≤ n.

The formulas ∃y [ ∃w a(x · y, w · z) ] and ∃w a′(x,w) where

a′(x,w) =
∧

x1∈x1

¬x1 == x1 ∧ x2 == t ∧ ϕ

are equivalent in E?. ut

5 Conclusions and Future Work

We have axiomatized the theory of infinite trees with strict equality, denoted by
either E (infinite signatures) or E? (finite signatures). Besides, we have provided
a decision algorithm, which proves that the theory is complete. Our algorithm
follows the proposal in [6] for the equality theory of finite trees. Further, it is
easy to see that the problem of deciding first-order equality constraints of finite
trees can be reduced to the decision problem of the theory of infinite trees with
strict equality: it suffices to restrict the value of every variable x in any formula
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to be a finite and total tree by assertions of the form x == x. Thus, it follows
from the results in [7, 14] that the decision problem of the theory of infinite trees
with strict equality is non-elementary (as lower bound).

Although direct applications of our results have been left out of the focus of
the paper, we foresee some potential uses that will be subject of future work:
Herbrand constraint solvers present in existing functional-logic languages, essen-
tially corresponding to existential constraints, could be enhanced to deal with
more general formulas. Constructive failure [10, 9], the natural counterpart of
constructive negation in the functional logic field, could also take profit of our
methods, specially for the case of programs with extra variables, not considered
in the mentioned papers. For these envisaged continuations of our work it could
be convenient to extend the theory and methods of this paper by adding two
additional predicate symbols: strict disequality (a computable approximation of
negation of strict equality) and true equality.
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10. F. López-Fraguas and J. Sánchez-Hernández. A proof theoretic approach to fail-
ure in functional logic programming. Theory and Practice of Logic Programming,
4(1&2):41–74, 2004.

11. M. J. Maher. Complete axiomatizations of the algebras of finite, rational and
infinite trees. In LICS’1988, pages 348–357. IEEE Computer Society, 1988.

12. S. e. Peyton Jones. Haskell 98 Language and Libraries. The Revised Report. Cam-
bridge Univ. Press, 2003.

13. R. Reiter. On closed world data bases. Logic and Data Bases, pages 55–76, 1978.
14. S. G. Vorobyov. An improved lower bound for the elementary theories of trees.

In M. A. McRobbie and J. K. Slaney, editors, CADE-13, volume 1104 of Lecture
Notes in Computer Science, pages 275–287. Springer-Verlag, 1996.

187





Integrating ILOG CP technology into T OY?
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Abstract. The constraint functional logic programming system T OY
has been using the SICStus Prolog finite domain (FD) constraint solver.
In this work, we show how to integrate the ILOG CP FD constraint solv-
ing technology into this system, with the aim of improving its application
domain and performance. We describe our implementation emphasizing
the synchronization between Herbrand computations in the T OY side
and FD constraint solving in the ILOG CP side. Finally, performance
results are reported and discussed.

1 Introduction

T OY[1] is a system implemented in SICStus Prolog 3.12.8 [10]. Its operational
semantics is based on a lazy narrowing calculus and includes several constraint
domains allowing its cooperation. This system allows Herbrand equality and dise-
quality constraints (managed by the constraint domain H), linear and non-linear
arithmetic constraints over reals (R), finite domain constraints over integers
(FD), and a communication domain (M) which makes possible the cooperation
among H, R and FD. Whereas R as FD rely on the constraint solvers pro-
vided by SICStus Prolog, solving in H and M needs an explicitly management
[3]. T OY offers a wide range of finite domain constraints comparable to many
CLP(FD) systems, using a concrete constraint solving system as one of its com-
ponents [5]. Here, we focus on this particular constraint domain for integrating
a new constraint solving system based on ILOG CP technology.

The generic component architecture of the connection between T OY and its
external FD constraint system is shown to the left of Fig. 1. T OY identifies each
FD constraint during goal solving, and factorizes this (possibly) composed con-
traint into primitive ones, adding new produced variables if necessary [3]. Then,
it posts these primitive constraints to solveFD, which acts as an intermediary
between T OY and the external FD system. solveFD sends the constraints to
this system and collects its computed answers.

? This work has been partially supported by the Spanish projects TIN2005-09207-C03-
03, TIN2008-06622-C03-01, S-0505/TIC/0407 and UCM-BSCH-GR58/08-910502



1.1 T OY with SICStus Prolog: T OY(FDs)

T OY (referred to as T OY(FDs) from now on) has been using the FD con-
straint system provided in the library clpfd of SICStus Prolog, which is ba-
sically composed of a constraint store and solver. The component architecture
of the connection between T OY and SICStus Prolog FD constraint system is
shown in the middle of Fig. 1. Next, we show a basic example for illustrating
the use of the system T OY(FDs) with finite domains constraints.
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Fig. 1. Architectural Components

Example 1. Let’s consider that X is an integer between 5 and 12, Y is an integer
between 2 and 17, X+Y=17 and X-Y=5. It is possible to solve this problem in
T OY(FDs) as shown in the following interactive session:

TOY(FDs)> X #>= 5, X #<= 12, Y #>= 2, Y #<= 17,
X #+ Y == 17, X #- Y == 5

yes
{ 5 # + Y #= X,
X # + Y #= 17,
X in 10..12,
Y in 5..7 }

Elapsed time: 0 ms.
sol.1, more solutions (y/n/d/a) [y]?

no
Elapsed time: 0 ms.

However, the use of the SICStus Prolog FD system has some disadvantages:

– Recent works [2] have proved that its performance can be enhanced, needed
when dealing with complex problems.

– The constraint solver works as a black-box for predefined search processing.
This precludes user-defined interactions for pruning the search tree.

– There are no debugging capabilities allowing, for instance, to derive the
subset of infeasible constraints.
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1.2 ILOG CP to improve T OY
ILOG CP 1.4 [6] is an industrial technology market leader. Its nature is declar-
ative and provides a C++ API to access its libraries. Its constraint solver works
as a glass-box, allowing interactions during the solving process. It also includes
debugging techniques helping the user to discover the unfeasible subset of the
constraints set input. Its wide range of global constraints make possible to for-
mulate different and complex properties. The use of different constraint solvers
for a unique application domain is also allowed. Moreover, libraries for solving
specific, efficient algorithms for complex scheduling problems are provided.

Any ILOG CP 1.4 application isolates objects responsible of modeling the
user problem from objects responsible of solving any concrete model. Following
this idea, the problem is modeled in a generic language, easing the task of ex-
pressing the constraints of the problem. Once the modeling phase is completed,
the model can be solved by one or more different constraint solvers. The solver
extracts all of the modeling objects contained into the model, creating a one-to-
one object translation. This new objects belonging to the solver are semantically
equivalent to the modeling objects, but their internal structure is targeted at the
solver. It is possible to access each object created by the solver through the asso-
ciated object contained into the model. The most paradigmatic tool representing
this philosophy is ILOG OPL Studio [7]. ILOG CP 1.4 includes the library ILOG
Concert 2.6 to provide the necessary interface for connecting models to solvers.
Three libraries are provided for FD constraint solving:

– ILOG Solver 6.6, for generic FD problems solving.
– ILOG Scheduler 6.6, with specific algorithms for solving scheduling problems.
– ILOG Dispatcher 4.6, with specific algorithms for solving routing problems.

As a first approach, we will consider only ILOG Solver 6.6. For this case, any
ILOG CP application needs the following set of ILOG Concert 2.6 and ILOG
Solver 6.6 objects (see [6] for a detailed explanation):

– IloEnv env It manages the memory of any object of the application.
– IloModel model(env) Is the main modeling object. Contains the set of

objects responsible of formulating the FD problem, which are:
• IloIntVarArray vars(env) This vector is intended to make possible to

reference all of the decision variables of the model from a unique object.
Each variable must be created previously by
IloIntVar v(env, int lowerBound, int upperBound).

• IloConstraint c Each IloConstraint involves some IloIntVar of
vars. It can be added directly to the model, without being created pre-
viously.

– IloSolver solver(env) It is the main solving object. It contains an ob-
ject IloGoal goal which specifies the concrete search procedure to be used.
solver main methods are:
• solver.extract(model) Extracts the information contained into model.

For each IloIntVar and IloConstraint contained in model it creates
an associated new IlcIntVar or IlcConstraint object.

• solver.solve(goal) Solves the extracted model.
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2 T OY with ILOG CP: T OY(FDi)

In this section, we explain in detail how to integrate ILOG CP FD technology
into the system T OY (referred to as T OY(FDi) from now on). T OY is im-
plemented in SICStus Prolog while ILOG CP is a technology implemented and
available in C++. So, first we study how to make a connection between T OY
and ILOG CP by connecting SICStus Prolog and C++. Our approach is based
on the integration of a C++ foreign resource into a SICStus Prolog application.
Due to the different nature of both languages, we study the emerging difficulties
to establish a communication between T OY and ILOG CP, as well as the deci-
sions we have made to solve them. Also, an example of the behavior of the new
system T OY(FDi) is shown.

2.1 Connecting SICStus Prolog with C++

It is possible to communicate a SICStus Prolog application with a C++ com-
ponent. This communication is done by mapping a set of linking Prolog facts
(contained in the Prolog application) with a set of C++ functions (defined in
the C++ component). The C++ component needs to be a dynamic library with
a specific internal file structure. SICStus Prolog also defines a set of possible
conversions between Prolog arguments and C++ arguments. Each arguments of
a linking Prolog fact must also indicate if it is either an input argument (sent
to the C++ function) or an output argument (computed by the C++ func-
tion). There is a bidirectional conversion between a Prolog term and the C++
type SP term ref. By invoking SP term ref object methods, C++ functions can
perform the following actions:

– Create and assign Prolog terms.
– Obtain the contents of a Prolog term.
– Compare and unify Prolog terms.

This context supports the necessary conditions to connect T OY and ILOG
CP by making just a few changes in the component architecture of T OY, whose
new structure can be seen on the right hand side of Fig. 1.

- From the point of view of T OY, it is necessary to put a new Prolog fact
in any place of solveFD where a communication with ILOG CP is needed
(posting a new constraint, declaring a new ILOG decision variable, etc.)

- On the other hand, we build a new ILOG CP application which integrates
ILOG Concert 2.6 and ILOG Solver 6.6 libraries. This application contains
instances of the basic modeling and solving objects explained in Section 1.2.
It also includes the set of C++ functions linked to the existing Prolog facts
in solveFD.

Each time solveFD calls any interfaced predicate, first, it turns all Prolog
arguments into C++ arguments. Next, it transfers the program control to the
C++ function, which uses and/or computes them within its body. Once the
C++ function has finished, the execution control comes back to solveFD, which
continues with the evaluation of the next call.
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Creating a SICStus Prolog C++ Foreign Resource
SICStus Prolog needs two files for creating a dynamic library as, for instance

interface.dll, which could be used within a SICStus Prolog application:

– interface.pl Declares the mapping of each Prolog predicate to each C++
function. It groups all of these functions in a unique resource. For example:
foreign(f1,p1(+integer)).
foreign(f2,p2(+term,-term)).
foreign resource(interface,[f1,f2]).

– interface.cpp Includes the C++ functions mapped to Prolog facts. It adds
as many auxiliary functions and libraries as needed. For example:
void f1(long l){...}
void f2(SP term ref t1, SP term ref t2){...}

SICStus Prolog supplies a tool, splfr [9], to create a dynamic library (say
interface.dll), taking as input interface.pl and interface.cpp. The macro
splfr is used as a shortcut to the execution of some compiling and linking com-
mands offered by Microsoft Visual C++ [8]. First of all, taking interface.pl
as input, it creates two new files, interface glue.c and interface glue.h,
which provides the necessary glue code for the SICStus application.

2.2 Communication between T OY and ILOG CP

In this section we explain in detail how to implement T OY(FDi) in such a way
it accepts any T OY(FDs) input goal, including all FD constraints managed
by the existing solveFD in T OY(FDs). Also, T OY(FDi) uses the same goal
solution structure as T OY(FDs) does. To achieve that behavior is necessary to
solve the following difficulties:

– As T OY is a system implemented in SICStus Prolog, in T OY(FDs) the
communication between T OY and its FD technology is quite natural. How-
ever, as ILOG CP is implemented in C++, some glue code is needed to fix
the impedance mismatch problem.

– ILOG CP and SICStus Prolog differ on their notion of solution of a FD
problem.

There have been four difficult tasks to achieve in the new system T OY(FDi).
We explain each of them in the next subsections. When we make reference to
any ILOG CP application object, we use the notation of Section 1.2. To this
end, we use model if we refer to the ILOG Concert 2.6 model object, we use
solver if we refer to the ILOG Solver 6.6 generic FD solver, and we use vars
if we refer to the decision variables contained in model.

Managing Decision Variables
The set of FD constraints of a T OY goal involves a set of logic variables

that we denote as ‘FD logic variables’. To model the FD constraint set with
ILOG CP, some points must be taken into account:
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– We need to create as many IloIntVar decision variables as FD logic vari-
ables take part into the FD constraint set. These variables must be added
to model and vars (the former to model the FD problem properly and the
latter to make possible to refer to each variable of the model from a unique
object).

– We must find a bijective relation that associates each FD logic variable of
the T OY goal with each decision variable existing in the ILOG CP vector
vars.

– We model each FD constraint in ILOG CP over the set of decision variables
of the vector vars associated to the set of FD logic variables involved in
that FD constraint.

Whatever way of communication between T OY and ILOG CP, for each FD
logic variable we have three variables:

- The FD logic variable contained in T OY.
- The decision variable modeled as an IloIntVar object in model.
- The specific IlcIntVar object created by solver from its associated
IloIntVar object contained in model.

A first attempt for mapping a FD logic variable to a decision variable of
vars is tried. It intends to manage vars and a SP term ref vector, making
them evolve simultaneously. The elements of the SP term ref vector are in fact
the SP term ref conversion of the FD logic variables. Each time solveFD sends
a new FD constraint to ILOG CP, the associated C++ function will first look for
its FD logic variables into the SP term ref vector. If it can not find any variable,
we can assure that the C++ function is dealing with a new FD logic variable
not treated before. So, the C++ function adds this new FD logic variable to
the SP term ref vector last position, say i. Immediately, a new IloIntVar de-
cision variable is created and added to model and vars[i]. When each FD logic
variable of the FD constraint sent by solveFD is contained at an index of the
SP term ref vector, the FD constraint is modeled over the decision variables of
vars associated to these indexes.

However, this first attempt fails. This is due to the rules which govern the
scope of a SP term ref. When a C++ function containing SP term refs (as
arguments or dynamically created within it) finishes its execution, all these
SP term refs become invalid. Let’s see the next example, where an interface
between the Prolog predicates p1, p2 and p3 and the C++ functions f1, f2 and
f3, resp, is defined. Functions f1 and f2 receive a Prolog term as an argument,
while f3 receives two Prolog terms.

– Let’s call p3 with to occurrences of the logic variable X, as p3(X,X). If we
make SP compare(t1,t2) within f3(SP term ref t1, SP term ref t2)
the result says that both SP term refs are in fact the same Prolog term.

– But, let’s do the call p1(X). We store t1 of f1(SP term ref t1) into a
global vector <SP term ref>. When f1 finishes, the program control comes
back to Prolog. Now, we call p2 with the logic variable X again, p2(X). If
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we make SP compare(t1,t2) within f2(SP term ref t2) between t2 and
the SP term ref stored in the vector during f1, the result says that both
SP term refs are different. There is no doubt that both are in fact the same
Prolog term. The problem is that, when f1 finish, the SP term ref stored
in the vector becomes invalid.

The second and successful attempt relies on the management of the bijective
relation, which is done into the Prolog application by the use of a list of FD
logic variables (referred to as L from now on). We want L to be used in each
solveFD predicate. On one hand SICStus Prolog does not allow global variables.
On the other hand, there is a logic variable Cin [4], which represents a mixed
constraints store and is common to each solveFD predicate. Our plan is to store
any data structure demanded by the communication between T OY and ILOG
CP, specifically L, into Cin. Each time a solveFD predicate manages a new FD
constraint, we can check whether a FD logic variable belongs to L or not by
accessing to it within Cin. Any new FD logic variable is automatically added to
the end of L, say at position i. Here, a new call to the C++ function which creates
a new IloIntVar is done. This function adds this decision variable to model and
vars[i]. Once all FD logic variables of the FD constraint belongs to L, solveFD

determines their indexes, and put them as arguments to the C++ function, which
models the FD constraint by adding to model a new IloConstraint over the
associated positions of vars.

Synchronizing ILOG CP with T OY
T OY can also bind its FD logic variables through an equality constraint in

the Herbrand solver. For example, in the goal TOY(FDi)> X #>= 0, X == 3 the
variable X is bound to the value 3. This is done by the Prolog terms unification
which results from the Herbrand equality constraint X == 3. This unification
is visible at any occurrence of that FD logic variable, particularly the one in
L. This causes an inconsistency between the contents of L and vars. To repair
this lack of synchronization we must send an equality constraint to ILOG CP,
making the mapped decision variable in vars equals to the bound value.

A first attempt tries to synchronize by an event-driven approach. To capture
events, SICStus Prolog provides the module of attributed variables. This mod-
ule assigns attributes to a set of logic variables. Each time an attributed logic
variable is bound, the predicate verify attributes(+Var, +Value, +Goals)
is triggered. We use the attribute fd for each FD logic variable. Thus, each
time the Herbrand solver binds a FD logic variable, verify attributes(+Var,
+Value, +Goals) will automatically call the C++ function which synchronizes
the associated decision variable of vars.

However, this first attempt fails. For this synchronization we need to know
which index does the associated decision variable have in vars. We can only
get this index by looking for the FD logic variable in L. But, unfortunately, the
arguments of verify attributes(+Var, +Value, +Goals) are fixed. SICStus
Prolog does not allow global variables, so there is no way to get access to L.
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A second attempt consists of making the Herbrand solver responsible of call-
ing the C++ synchronization function. But this idea must be rejected, because
there is a basic principle of independency between the different solvers of the
system T OY . Any solution to this problem must respect the idea of solving the
synchronization within solveFD.

The third (and successful) attempt modifies the internal structure of L. Now
it becomes a list of pairs. The first element of each pair contains the FD logic
variable, and the second one contains a flag which determines if the bound FD
logic variable has been synchronized with vars. Thus, while the FD logic variable
is not bound, the value of the flag remains at 0. When the FD logic variable
becomes bound, the value of the flag indicates whether the variable of vars is
synchronized or not.

Each time solveFD sends a new FD constraint to ILOG CP, it must previ-
ously:

– Look for any pair in L (say at position i) whose pattern is [value,0]
– Add to model the new IloConstraint vars[i]==value.
– Change the pair at position i of L by [value,1]

Once there is no pairs with the pattern [value,0] in the list, solveFD is
able to send the new FD constraint. If there are no more FD constraints, the
pairs [value,0] will be synchronized at the end of the T OY goal. This synchro-
nization attempt is clearly inefficient, making it a task to be improved in new
releases of T OY (FDi). Let’s see the next goal:

Toy(FDi)> X #>= 2, X == 1, X1 == 1, X2 == 1, ... , X1000 == 1

The first FD logic variable of the goal is X, which occurs at the first posi-
tion of L and vars. The synchronization of X == 1 as vars[0] == 1 makes the
FD problem infeasible. So, the T OY goal will fail after X == 1, and there is no
need of computing the rest of the goal expressions. However, the first equality
vars[0] == 1 is not computed until the next FD constraint is posted.
As X == 1, X1 == 1, X2 == 1, ... , X1000 == 1 are computed by
Herbrand solver there are no more FD constraints in the goal, so the synchro-
nization will not occur until the end of the goal. The goal will useless compute
a thousand of successful expressions. After that, it synchronizes vars[0] == 1
and fails.

Synchronizing T OY with ILOG CP
ILOG CP can bind variables in vars via the set of C++ functions concerning

the management of FD constraints. This produces a lack of synchronization
between the vector vars and L. To achieve the synchronization, whenever any
of this C++ functions binds to value vars[i], the pair contained at position i
of L must be automatically unified with [value,1].

To this end, solveFD sends L to a C++ function as an input argument, and
puts an output argument to obtain the new state of L computed within the
C++ function. A new global variable of type vector<int,int> must be created
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in ILOG CP. This vector of pairs is cleared at the beginning of each C++
function. Each pair of the vector contains:

– The index i in vars of the decision variable.
– The value that solver has obtained for this variable.

A C++ function manages any new constraint by adding it to model, and
propagates its new FD constraint set. Next, the C++ function accesses to
the contents of the vector<int,int>, to see whether there are any IloIntVar
that has been bound. Using the content of vector<int,int> and L, the C++
function builds the new state of L by unifying as many FD logic variables as
vector<int,int> demands.

The only remaining task to be explained is how to add each pair to the global
vector<int,int>. To do so, we use demons to capture bind events. Thus, a new
demon object IlcDemon RealizeVarBound is created. It concerns on how to
insert each new pair into the vector<int,int>. This demon is triggered by the
propagation of a constraint IlcCheckWhenBound. Each IlcCheckWhenBound con-
straint involves one IloIntVar. This constraint propagates when its IloIntVar
becomes bound. ILOG CP associates a demon to a method of a constraint class.
When the demon is triggered, the method of this constraint class is automati-
cally executed. We associate RealizeVarBound to the method varDemon of the
IlcCheckWhenBound constraint class. This method checks the index in vars of
the bounded IloIntVar and its value, adding both of them as a new pair of
integers to the global vector<int,int>. We summarize how our ILOG CP ap-
plication adds the pairs to the vector<int,int> in the next three steps:

– For each new decision variable IloIntVar added to vars and model, we
impose the constraint IlcCheckWhenBound.

– When this IloIntVar becomes bound, IlcCheckWhenBound propagates, trig-
gering the demon RealizeVarBound.

– RealizeVarBound executes the IlcCheckWhenBound method varDemon,
which adds the pair <index of the variable, value of the variable>
to vector<int,int>.

Solutions in ILOG CP
Any T OY (FDs) solution is expressed in general with constraints (equality,

disequality, FD constraints –including ranges–). Of course, T OY (FDs) accepts
to label FD variables by calling the FD labeling enumeration procedure.

In T OY (FDi), to show the remaining values of the FD logic variables we
access to each IlcIntVar of solver by its associated IloIntVar contained in
model. There are some methods to check the remaining values of these variables.
However, ILOG Solver does not grant access to simplified constraints (i.e., solved
forms). The ILOG philosophy of a solution is to select a value for each decision
variable while satisfying the constraint set. Of course, you can use no search
procedure, obtaining the same structure as in an interval solution, but again
without accessing the simplified constraints. As in our context we have to show
them, we store within Cin a list with the FD constraints (referred to as C from
now on) appearing in the T OY goal.

197



2.3 A T OY(FDi) Example

In this section we detail how goal solving works with the new system T OY(FDi)
over the example 1:

Toy(FDi)> X #>= 5, X #<= 12, Y #>= 2, Y #<= 17,
X #+ Y == 17, X #- Y == 5

We specify how the data structures of solveFD and ILOG CP evolve with each
expression evaluation. On one hand we look at the state of L and C within Cin.
On the other hand we look at the state of vars, model, solver by pointing out
any IloIntVar, IloConstraint, IlcIntVar, IlcConstraint object accessed
through them. For each goal expression any new element added to each data
structure is remarked in boldface. Figure 2 tries to make it clearer:

Fig. 2. TOY (FDi) data structures evolution over FD Constraint expression evaluation

– Figure 2a) represents the internal state of solveFD and ILOG CP data struc-
tures at the end of Toy(FDi)> X #>= 5, X #<= 12 evaluation.

– Figure 2b1) and 2b2) describes which actions must be done for the correct
management of the new FD Constraint Y #>= 2.
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Before evaluating any goal expression, in the solveFD side L=[] and C=[].
In the ILOG CP side model=[], vars=<> and solver=[]. There is also no
IloIntVar, IloConstraint, IlcIntVar, IlcConstraint objects.

– Execution of X #>= 5
The new FD constraint is added to C=[X#>=5]. The new FD logic var is
added to L=[[X,0]]. A new IloIntVar v0 is created and added to vars=<v0>
and model=[v0]. A new IloConstraint c0 is created, involving vars[0]
and the value 5. This IloConstraint c0 is added to model=[v0,c0]. solver
extracts the new state of model and creates a new IlcIntVar v0’ and a new
IlcConstraint c0’. solver=[v0’,c0’]. Its constraint propagation technique
prunes the domain of v0’=5..sup. The state of the solver remains ‘Feasible’.
T OY continues evaluating next goal expression.

– Execution of X #<= 12
C=[X#>=5,X#<=12]. L=[[X,0]]. vars=<v0>. A new IloConstraint c1 is
created involving vars[0] and 12. model=[v0,c0,c1]. solver extracts model
creating IlcConstraint c1’. solver=[v0’,c0’,c1’]. Constraint propagation
prunes v0’=5..12. solver state=‘Feasible’.

– Execution of Y #>= 2
By managing Y#>=2 arguments, solveFD adds L=[[X,0],[Y,0]]. By adding
a new FD Logic Var to L, a new IloIntVar v1 is created and added to
vars=<v0,v1> and model[v0,c0,c1,v1]. There is a correspondence between
Y and v1 because both are at the same position of L and vars respectively.
solveFD adds Y#>=2 to C=[X#>=5,X#<=12,Y#>=2]. The relevant informa-
tion to modeling the FD constraint into ILOG CP is the tuple <1,1,0,2>
which says if the arguments are variables or not and its index/value re-
spectively. Then a new IloConstraint c2 is created involving vars[1] and
the value 2. This IloConstraint c2 is added to model=[v0,c0,c1,v2,c2].
solver extracts the new state of model creating a new IlcIntVar v1’ and
IlcConstraint c2’. solver=[v0’,c0’,c1’,v1’, c2’]. Constraint propagation
prunes v1’=2..sup. solver state=‘Feasible’. After constraint propagation,
the program control comes back to solveFD. It finishes the management
of the FD constraint by storing the new state of L=[[X,0],[Y,0]] and
C=[X#>=5,X#<=12,Y#>=2] into Cin.

– Execution of Y #<= 17
C=[X#>=5,X#<=12,Y#>=2,Y#<=17]. L=[[X,0],[Y,0]]. vars=<v0,v1>. A
new IloConstraint c3 is created involving vars[1] and 12.
model=[v0,c0,c1,v2,c2,c3]. solver extracts model creating IlcConstraint
c3’. solver=[v0’,c0’,c1’,v1’,c2’,c3’]. Constraint propagation prunes
v1’=2..17. solver state=‘Feasible’.

– Execution of X#+Y==17
This expression includes a compound constraint. This constraint must be
decomposed into primitive constraints. In this case: X#+Y== Z, Z==17

- Execution of X#+Y== Z
C=[X#>=5,X#<=12,Y#>=2,Y#<=17,X#+Y== Z].
L=[[X,0],[Y,0],[ Z,0]]. A new IloIntVar v0 is created and added
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to vars=<v0,v1,v2>. A new IloConstraint c4 is created involving
vars[0] and vars[1]. model=[v0,c0,c1,v2,c2,c3,c4]. solver extracts
model creating IlcIntVar v2’ and IlcConstraint c4’.
solver=[v0’,c0’,c1’,v1’,c2’,c3’,v2’,c4’]. Constraint propagation prunes
v2’=7..29. solver state=‘Feasible’.

- Execution of Z==17
T OY sends _Z == 17 to the Herbrand solver. This will bind the variable
_Z to 17, L=[[X,0],[Y,0],[17,0]],
C=[X#>=5,X#<=12,Y#>=2,Y#<=17,X#+Y==17]. However, this value
will not be automatically synchronized with ILOG CP. The synchroniza-
tion will happen before either a new FD constraint is sent or at the end
of the T OY goal.

– Execution of X#-Y==5
This expression is decomposed again into X#-Y==_T, _T==5

- Execution of X#-Y== T
As we have pointed out, before the new FD constraint is sent to ILOG
CP, any pattern [value,0] contained in L at position i will be synchro-
nized with model by adding the new IloConstraint vars[i]==value.
C=[X#>=5,X#<=12,Y#>=2,Y#<=17,X#+Y==17].
L=[[X,0],[Y,0],[17,0]]. A new IloConstraint c5 is created involv-
ing vars[2] and 17.
model=[v0,c0,c1,v2,c2,c3,c4,c5]. solver extracts model creating
IlcConstraint c5’. solver=[v0’,c0’,c1’,v1’,c2’,c3’,v2’,c4’,c5’].
Constraint propagation bounds vars[2] to 17. L=[[X,0],[Y,0],[17,1]].
solver state=‘Feasible’.

As there is no more patterns [value,0] in L, solveFD is now able to
manage the constraint X#-Y==_T. So the new FD constraint is added to
C=[X#>=5,X#<=12,Y#>=2,Y#<=17,X#+Y==17,X#-Y== T].
L=[[X,0],[Y,0],[17,1],[ T,0]]. A new IloIntVar v0 is created and
added to vars=<v0,v1,v2,v3>. model=[v0,c0,c1,v2,c2,c3,c4,c5,v3]. A
new IloConstraint c6 is created involving vars[0] and vars[1].
model=[v0,c0,c1,v2,c2,c3,c4,c5,v3,c6].solver extracts model creating
IlcIntVar v3’ and IlcConstraint c6’.
solver=[v0’,c0’,c1’,v1’,c2’,c3’,v2’,c4’,c5’,v3’,c6’].
Constraint propagation prunes v0’=6..12, v1’=5..11’, v3’=1..7.
solver state=‘Feasible’.

- Execution of T==5
T OY sends _T == 5 to the Herbrand solver. This will bind the variable
_T to 5, making L=[[X,0],[Y,0],[17,1],[5,0]],
C=[X#>=5,X#<=12,Y#>=2,Y#<=17,X#+Y==17,X#-Y==5].
Again, the synchronization will happen before either a new FD con-
straint is sent or at the end of the T OY goal.

– The T OY goal is almost finished. To completely finish the goal computation
we synchronize the pairs L with the pattern [value,0].
C=[X#>=5,X#<=12,Y#>=2,Y#<=17,X#+Y==17].
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L=[[X,0],[Y,0],[17,1],[5,0]]. A new IloConstraint c7 is created in-
volving vars[3] and 5. model=[v0,c0,c1,v2,c2,c3,c4,c5,v3,c6,c7]. solver ex-
tracts model creating IlcConstraint c7’.
solver=[v0’,c0’,c1’,v1’,c2’,c3’,v2’,c4’,c5’,v3’,c6’,c7’]. Constraint propagation
bounds vars[3] to 5, v0’=10..12, v1’=5..7’. L=[[X,0],[Y,0],[17,1],[5,1]].
solver state=‘Feasible’.
After this synchronization, the T OY goal is completely finished. It shows
as the computed answer the set of non-ground FD constraints of C as well
as the (unbound) variables of L. For each of these variables, T OY shows its
domain. These values are obtained from the IlcIntVar contained in solver
through the associated IloIntVar contained in model. Each decision variable
of model is accessed through its position of vars.

yes
{ X #+ Y #= 17,
X #- Y #= 5,
X in 10..12,
Y in 5..7 }

Elapsed time: 16 ms.
sol.1, more solutions (y/n/d/a) [y]?

no
Elapsed time: 0 ms.

3 Measuring Performance

In this section we use two test parametric, scalable (on n) benchmark programs
which model systems of linear equations A ∗ X = b. Each system has n inde-
pendent equations with n variables [X1,...,Xn] whose domains are {1..n}.
Each system has a unique integer solution. The matrix A takes the value i on
its diagonal coefficients Ai,i and the value 1 for the rest of them.

Both benchmark programs have been run in a machine with an Intel Dual
Core 2.4Ghz processor and 4GB RAM memory. The SO used is Windows XP
SP3. The SICStus Prolog version used is 3.12.8. The ILOG CP application used
is ILOG CP 1.4, with ILOG Concert 2.6 and ILOG Solver 6.6 libraries. Microsoft
Visual C++ 6.0. tools are used for compiling and linking the application.

We show performance results (expressed in miliseconds) for the following
systems: both T OY(FDs) and T OY(FDi) just described, and also for a C++
program directly modelling the problems using the ILOG CP libraries (denoted
by FDs, FDi and ILOG in the tables, respectively). The latter will help us in
analysing the overhead due to T OY implementation of lazy narrowing.

For each benchmark, we show three instances of n: 4, 12 and 15 variables. In
each case, we present results for two labeling strategies: a static search procedure
which selects the variables in the textual order they occur in the program, and
the dynamic search procedure ‘first fail’ (denoted by ff), which selects first the
variable with minimum domain size. For a given variable, both of them selects
first the minimum value in its domain.
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Also, we show the speedups of T OY(FDi) with respect to T OY(FDs) and
ILOG CP respectively. Specifically, we denote as:

– (a) to the speedup of T OY(FDi) with respect to T OY(FDs) using the
static search procedure to solve the problem.

– (b) to the speedup of T OY(FDi) with respect to T OY(FDs) using the ‘first
fail’ search procedure.

– (c) to the speedup of T OY(FDi) with respect to ILOG CP C++ program
using the static search procedure.

– (d) to the speedup of T OY(FDi) with respect to ILOG CP C++ program
using the ‘first fail’ search procedure.

The benchmarks programs are:

– The solution [X1,...,Xn] holds: ∀i ∈ {1 . . . n} Xi = i. Performance mea-
surement gives the following results:

n FDs FDsff FDi FDiff ILOG ILOGff (a) (b) (c) (d)
4 0 15 0 0 15 15 1.0 - 0 0
12 31 1.750 156 516 15 281 5.0 0.29 10.4 1.83
15 297 299,312 423 67,376 63 20,578 1.42 0.22 6.7 3.27

For this first benchmark, T OY(FDi) takes more time than T OY(FDs) for
solving with the static search procedure, but less time for the dynamic search
procedure. The solving time difference between them grows as we increase
the number of variables for the benchmarks. Looking at how the domains of
the variables evolve after the initial constraint propagation, we can conclude
that the structure of the solution for this first benchmark fits quite well into
the static search procedure, while it is dramatically harmful to the dynamic
search procedure. This help us to realize that, for problems where the needed
exploration to obtain the solution is really small, then T OY(FDi) is slower
than T OY(FDs). This is because of the time involved in the communication
between the Prolog implementation of T OY(FDi) and ILOG CP. However,
as the nodes needed to be explored increase slightly, this waste of time is
balanced, making T OY(FDi) more efficient than T OY(FDs).

– The solution [X1, ,Xn] holds: ∀i ∈ {1..n} Xi = n − (i − 1). Performance
measurement gives the following results:

n FDs FDsff FDi FDiff ILOG ILOGff (a) (b) (c) (d)
4 16 16 16 31 31 15 1.0 1.93 0.51 2.06
12 531 250 437 126 109 63 0.83 0.50 4 2
15 15,563 21,968 13,937 3,406 843 1,765 0.90 0.16 16.53 1.93

The above conclusions are clearly confirmed in this second benchmark, where
T OY(FDi) is faster than T OY(FDs) for both search procedures. In this case,
the structure of the solution is dramatically harmful for the static strategy, while
it behaves better for the dynamic strategy. In the former, T OY(FDi) takes
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slightly less solving time than T OY(FDs). In any case, these measurements
point out that our first approach to integrate the ILOG CP technology into
T OY(FDi) is encouraging, but also that the management of the additional
data structures used for the interface should be optimized.

4 Conclusions and Future Work

In this work, we have studied how to integrate the FD ILOG CP technology
into the system T OY. We have shown that this technology offers some advan-
tages over the existing system T OY based on the FD technology of SICStus
Prolog. We have described in detail our implementation, showing that the ap-
plication architecture of T OY and ILOG CP are hard to integrate in terms of
a correct communication between them. We have shown by means of two scal-
able benchmarks that the new system T OY(FDi) is faster than T OY(FDs)
as the benchmark increases its size. However, we have concluded that there is
a performance penalization due to the management of the data structures that
make possible the connection of T OY with its new FD component. Therefore,
optimizing this management will be the target of our immediate future work.
In addition, backtracking management will be covered in a next work, together
with an extended set of benchmarks. Another subject of interest is to test other
constraint libraries, as Gecode [11].
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