
Maŕıa Alpuente, Santiago Escobar, Moreno Falaschi (Eds.)

Automated Specification and

Verification of Web Sites

First International Workshop, WWV’05

March 14-15, 2005. Valencia, Spain

Dpto. de Sistemas Informáticos y Computación

Universidad Politécnica de Valencia

Preface

This report contains the pre-proceedings of the International Workshop on Au-
tomated Specification and Verification of Web Sites (WWV’05), held in Va-
lencia (Spain) during March 14-15, 2005. WWV’05 provided a common fo-
rum for researchers from the communities of Rule-based programming, Auto-
mated Software Engineering, and Web-oriented research, in order to facilitate
the cross-fertilization and the advancement of hybrid methods that combine
the three areas. This workshop is part of the activities of the EU-India project
ALA/95/23/2003/077-054.

The Program Committee of WWV’05 collected three reviews for each paper
and held an electronic discussion during February 2005. Finally, the Program
Committee selected 10 regular papers, 2 position papers, and 6 system descrip-
tions or works in progress. In addition to the selected papers, the scientific pro-
gram included two invited lectures by Anthony Finkelstein from the University
College London, UK, and Shriram Krishnamurthi from Brown University, USA.
We would like to thank them for having accepted our invitation.

We would also like to thank all the members of the Program Committee and
all the referees for their careful work in the review and selection process. Many
thanks to all authors who submitted papers and to all conference participants.
We gratefully acknowledge all the institutions and corporations who have sup-
ported this event. Finally, we express our gratitude to all members of the local
Organizing Committee whose work has made the workshop possible.

Valencia Maŕıa Alpuente, Santiago Escobar, Moreno Falaschi
March 2005 WWV’05 Editors

IV

Organization

Program Committee

Maŕıa Alpuente Technical University of Valencia, Spain
Sarat Babu CDAC Hyderabad, India
Demis Ballis University of Udine, Italy
Gilles Barthe INRIA Sophia-Antipolis, France
Thierry Despeyroux INRIA Sophia-Antipolis, France
Wolfgang Emmerich University College London, UK
Santiago Escobar Technical University of Valencia, Spain
Moreno Falaschi University of Siena, Italy
Maŕıa del Mar Gallardo Technical University of Málaga, Spain
Furio Honsell University of Udine, Italy
Giorgio Levi University of Pisa, Italy
Jan Maluszynski Linköping University, Sweden
Massimo Marchiori MIT Lab for Computer Science, USA
Tiziana Margaria University of Göttingen, Germany

Organizing Committee

Maŕıa Alpuente
Demis Ballis
Santiago Escobar
Vicent Estruch

Cèsar Ferri
Javier Garćıa-Vivó
José Hernández
Salvador Lucas

Javier Oliver
Maŕıa José Ramı́rez
Josep Silva
Alicia Villanueva

Additional Referees

Antonio Cisternino
Marco Comini
Paolo Coppola
Fabio Gadducci
Luca di Gaspero
Martin Karusseit
Marina Lenisa

Salvador Lucas
Vincenzo Della Mea
Pedro Merino
Stefano Mizzaro
Ulf Nilsson
Mariela Pavlova
Harald Raffelt

Anne-Marie Vercoustre
Ivan Scagnetto
Francesca Scozzari
Laura Semini
Angelo Troina
Alicia Villanueva
Mariemma I. Yague

Sponsoring Institutions

Departamento de Sistemas Informáticos y Computación (DSIC)
Universidad Politécnica de Valencia (UPV)
Generalitat Valenciana
Ministerio de Ciencia y Tecnoloǵıa
CologNET: A Network of Excellence in Computational Logic
EU-India Economic Cross-Cultural Programme

VI

Table of Contents

Invited Talks

Business Data Validation: lessons from practice . 1
Anthony Finkelstein (University College London - UK)

Web Verification: Perspective and Challenges . 3
Shriram Krishnamurthi (Brown University - USA)

Formal Models for describing and reasoning about
Web Sites

Feature-based Modelling of a Complex, Online-Reconfigurable Decision
Support Service . 9
Martin Karusseit (Universität Dortmund - Germany) and Tiziana
Margaria (Universität Göttingen - Germany)

Generating commercial web applications from precise requirements and
formal specifications . 27
David Crocker (Escher Technologies Ltd. - UK) and John H. Warren
(Precision Design Technology Ltd. - UK)

What Kind of Verification of Formal Navigation Modelling for Reliable
and Usable Web Applications? . 33
Marco Winckler, Eric Barboni, Philippe Palanque, and Christelle
Farenc (University Paul Sabatier - France)

How Recent is a Web Document? . 37
Bo Hu, Florian Lauck, and Jan Scheffczyk (Universität der Bundeswehr
München - Germany)

Testing, Validation and Categorization of Web Sites

Validating Scripted Web-Pages . 55
Roger G Stone (Loughborough University - UK)

Testing web applications in practice . 65
Javier Jesús Gutierrez Rodŕıguez, Maŕıa José Escalona Cuaresma,
Manuel Mej́ıa Risoto, and Jesus Torres Valderrama (University of
Seville - Spain)

Web Categorisation Using Distance-Based Decision Trees 77
Vicent Estruch, Cesar Ferri, Jose Hernández-Orallo and M. Jose
Ramı́rez-Quintana (Technical University of Valencia - Spain)

Accessibility Evaluation

Web Accessibility Evaluation Tools: a survey and some improvements . . . 83

Vicente Luque-Centeno, Carlos Delgado-Kloos, Jesús Arias-Fisteus
and Luis Álvarez-Álvarez (Carlos III University of Madrid - Spain)

Automated Web Site Accessibility Evaluation . 97

Shadi Abou-Zahra (World Wide Web Consortium - France)

XML transformation and optimization

Context Sequence Matching for XML . 103

Temur Kutsia (Johannes Kepler University - Austria)

Slicing XML Documents . 121

Josep Silva (Technical University of Valencia - Spain)

Rule-based approaches to Web site analysis and
verification

A Language for Verification and Manipulation of Web Documents 127

Luigi Liquori (INRIA - France), Furio Honsell (University of Udine -
Italy), and Rekha Redamalla (Birla Science Center - India)

Anchoring modularity in HTML . 139

Claude Kirchner (INRIA & LORIA - France), Hélène Kirchner (CNRS
& LORIA - France), and Anderson Santana (INRIA & LORIA -
France)

A Rewriting-based system for Web site Verification . 153

Demis Ballis (University of Udine - Italy) and Javier Garćıa-Vivó
(Technical University of Valencia - Spain)

Rewriting-based navigation of Web sites . 157

Salvador Lucas (Technical University of Valencia - Spain)

Model-checking and Static Analysis applied to the
Web

Modeling Web Applications by the Multiple Levels of Integrity Policy . . . 161

Gianluca Amato (Università degli Studi “G. d Annunzio” - Italy),
Massimo Coppola, Stefania Gnesi (CNR Pisa - Italy), Francesca
Scozzari, and Laura Semini (Università di Pisa - Italy)

Verification of Web Services with Timed Automata . 177

Gregorio Diaz, Juan-José Pardo, Maŕıa-Emilia Cambronero, Valent́ın
Valero and Fernando Cuartero (Universidad de Castilla-La Mancha -
Spain)

VIII

Improving the Quality of Web-based Enterprise Applications with
Extended Static Checking: A Case Study . 193
Frédéric Rioux and Patrice Chalin (Concordia University - Canada)

Author Index . 207

IX

X

Business Data Validation: lessons from practice

Anthony Finkelstein

University College London
Department of Computer Science

Gower Street
London WC1E 6BT, UK

Abstract. All modern businesses store many kinds of data distributed
throughout their organization. Data is in different formats and has com-
plex interdependencies (customer records, invoices, financial trade de-
tails, sales figures, compliance filings, etc.) Inconsistent data in poorly
integrated systems, human errors in manual exception processes, the fail-
ure to comply with industry standards and the inability to enforce busi-
ness rules create operational errors and large, daily losses for business. By
checking complex, distributed data against business rules, reference data
and industry standards, solutions for data intensive businesses are pro-
vided which allow companies to (i) validate the integrity of data across
repositories in scattered locations, (ii) draw distributed information to-
gether, and (iii) focus knowledge quickly and efficiently on the job in
hand.

2

WWV 2005 Preliminary Version

Web Verification:
Perspective and Challenges

Shriram Krishnamurthi 1

Computer Science Department
Brown University

Providence, RI, USA

Abstract

The Web poses novel and interesting problems for both programming language
design and verification—and their intersection. This paper provides a personal
outline of one thread of work on this topic.

Key words: Web applications, temporal verification, access
control, program analysis

1 What is a Web Site?

The term “Web site” contains a hidden ambiguity. Is a site a static entity,
to be viewed as a program source, or is it a dynamic entity, to be viewed
through the lens of user behavior? This distinction significantly impacts what
it means to analyze and verify a Web site. All the traditional trade-offs be-
tween static and dynamic analyses apply: a static analysis can quantify over
all program behaviors, but will usually be less specific; a dynamic analysis
can only offer guarantees relative to the behaviors it has examined, but the
additional contextual information can often yield more informative answers.
This distinction potentially matters more on the Web, due to the nature of
Web interactions.

2 Web Interactions

In a console or even a gui application, a user cannot choose to go back or
forward, to clone a window and submit responses from both clones, and so on.
These user interaction capabilities distinguish Web applications from many
other kinds of interactive programs. Indeed, many Web sites are notorious for

1 This work is partially funded by NSF grants CCR-0305949 and CCF-0447509.

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Krishnamurthi

their poor handling of such interactions. For instance, on some travel Web
sites, viewing the list of hotels, viewing one choice in a new window, examining
a second in another new window, then switching back to make a reservation
for the first hotel, will result in a reservation at the second hotel [5].

A Web application must not only be sensitive to the possibility of these
actions, it must often detect them without help from the browser (which
does not report every user action). Furthermore, the availability of rendering
platforms is likely to spark innovation, meaning the set of browsers—and,
consequently, of interaction behaviors—will grow over time. This makes Web
site analysis especially exciting and challenging.

3 Web Verification

My work has focused on static analyses of Web programs. Specifically, I have
studied Web applications from two complementary perspectives. All this work
has been driven by a desire to build a robust application that has value in its
own right, in addition to serving as a generator of research problems.

3.1 A Driving Application

The concrete application is Continue [7,9], a Web-based application for con-
ference paper management. Continue is similar in spirit to several programs
in this genre (though it has had considerably more investment into its user
interface quality), so familiarity with one of those applications is sufficient for
understanding it at a high level. It has several useful features not found in
many other conference applications, covering soliciting sub-reviews, helping
chairs with assignments, and changing user identity. My goal is to create an
application that is not only usable, but has also been verified along as many
dimensions as necessary for sufficient reliability. After all, when a community
has the creation of papers—as an expression of research—as a primary goal,
the safe handling of those papers should be considered mission-critical!

3.2 Temporal Behavior

Web applications must satisfy many temporal specifications. For instance,
on a travel reservation site, a user expects that the hotel they reserve is the
same hotel that they selected—even if they chose to investigate other hotels
along the way. In a virtual bookstore, a user might have a “shopping cart”
into which they place their selections. They—or, at least, the store!—would
want that every book placed in the cart is purchased upon final check-out.
(In fact, the actual property would be more subtle: the books purchased
must be all those that were placed in the cart and not subsequently removed,
creating an additional level of temporal quantification.) There are several
similar expectations of “reasonable” behavior in Continue.

4

Krishnamurthi

The statement of temporal properties naturally suggests the use of a model
checker [1]. This proves to be somewhat complex in practice. A naive use of
model checking will not, for instance, capture some of the interaction-induced
errors mentioned in section 2. Why not? Because the natural model that one
would construct from the Web application fails to capture the many behaviors
that users can perform through the browser; colloquially speaking, nowhere
in the source code of a Web application does it say, “Here the user clicks the
Back button”.

The problem of building accurate models is further hampered by the prob-
lem of accounting for the many kinds of Web interactions. Not only do
browsers offer a plethora of choices, even the popular browsers have differ-
ent feature sets—and this doesn’t account for the possibility of additional
features in the future.

To support the many interaction features of browsers, we employ prior
work that presents a core model of Web interactions [5]. This model presents
a small set of Web primitives that are sufficient for modeling all the known
Web interaction forms, and should cover many new ones as well. Given this
abstraction, we have been studying the problem of building a model checker
that can handle the subtleties of the Web [10]. Note that this is not a model
checker only for Web-specific interactions, but rather one that will also account
for Web interactions: that is, if the program violates a property independently
of any Web interactions, the checker will find those also.

The property language in this work is subtle and, therefore, interesting.
Specifically, properties need to be able to refer to elements of Web pages. To
index these elements, we refrain both from parsing html (a thankless activ-
ity!) and from using static distance coordinates (which would be too brittle).
Instead, we expect the developer to tag individual page elements using Cas-
cading Style Sheet (css) tags. These are not only part of most developers’
vocabulary, often the developer has already tagged interesting page elements
to highlight visually. While such ideas are not scientifically deep, I believe
they are essential for successfully deploying formal methods.

3.3 Information Safety and Visibility

Verifying a program for temporal behavior isn’t enough. In a conference server,
it is at least as important to ensure both the safety and availability of informa-
tion: e.g., program committee members can see reviews they should see, and
can’t see ones that they shouldn’t. These properties generally fall under the
rubric of access control. Once we discovered actual information access bugs
in Continue (which have since been fixed!), we embarked on a study of access
control policy specification and verification.

Access control has gained fresh popularity owing to the widespread avail-
ability of information on the Web. In particular, because many Web appli-
cations are interfaces over databases and provide the same data in different

5

Krishnamurthi

circumstances to different users, access control has increasingly become role-

based. Industrial standards such as xacml [3], which are effectively rule-based
languages, are being employed to describe—and their evaluation engines are
being used to enforce—such policies.

Our work in this area [2] has focused on two problems for a restricted
(but nevertheless useful) subset of xacml. First, naturally, is the question of
whether a policy meets some set of properties; this is the traditional verifica-
tion question. The second is more intriguing. Given the simplicity of these
policy languages, it is easy to patch problems and quickly check that the
new policy does what it was intended—on a specific input. The patch may,
however, have both exposed private data, or made necessary information un-
available. This danger is exacerbated by the declarative nature of these policy
languages, for changes can have very non-local impact. As a result, a simple
syntactic difference is no longer sufficient; users require some form of semantic

differencing. This is the second problem our work addresses.

It is worth noting that the problems surrounding information access—
especially the danger of leakage—make a compelling case for static analyses:
no reviewer wants to hear that their confidential comments were leaked due to
a lack of good test cases. Wading through false positives is certainly onerous;
to be effective, this cost must be kept minimal. Nevertheless, this is an instance
where the universally quantified guarantees that a static analysis can provide
are worth reasonable costs.

4 The Structure of Web Programs

Focusing on Web programs (as static entities) raises an interesting subtlety. To
obey the stateless nature of the Web, the structure of Web applications has
traditionally been “inverted”, resembling programs written in continuation-
passing style [4,8,12]. Furthermore, important information is communicated
using hidden fields and other channels that are traditionally ignored by static
analyses. A traditional static analysis would, therefore, approximate a great
deal of the important information (particularly the values referred to in prop-
erties). The resulting models would simply not be useful for further analysis.

Not surprisingly, the same problems that affect analyses also plague devel-
opers. There has thus recently been a trend towards using continuation-based
primitives in the source program, which can be handled either by a specialized
server [6,12] or on a traditional server after compilation [11]. This means, for
instance, that lexical bindings remain as such in the source, rather than be-
ing transformed into hidden fields or other external storage. By avoiding this
program inversion, this form of source program is therefore a better input to
an existing program analysis.

6

Krishnamurthi

5 Some Research Problems

There are numerous open research problems in this area. What follows is only
a small and eclectic sampling.

Some of the most interesting ones have to do with access control. For
instance, most of the access control verification work deals solely with the
policy. But to be truly effective, it must also take into account the program’s
behavior relative to the policy. (In an extreme case, if an application were to
rigorously consult a policy engine but always ignore its response, no amount of
policy verification would be useful. While this particular behavior may appear
extreme, it is not inconceivable during testing, and a lack of good test suites
will fail to uncover all the places where this prototype failed to grow from a
script into a program.)

Access control policies also need to address the temporal behavior of these
applications. While some research has studied temporal policies, it is un-
clear how well these results apply to the less structured world of the Web,
where a program potentially has several entry points and users can engage in
complicated interactions that the program cannot prevent.

One other important aspect of Web applications is that they are increas-
ingly no longer “on the Web”. A growing number of Web sites now make
extensive use of client-side scripting languages, especially JavaScript, to imple-
ment numerous user operations. In particular, whereas the use of JavaScript
tended to be limited to echoing browser operations or performing consistency
checks before transmitting data over the wire, now a non-trivial part of the
application source is downloaded with the page. This creates a challenge and
opportunity for cross-language analyses.

Acknowledgments

I thank the several co-authors with whom I’ve had the pleasure of conducting
this research. I especially thank Pete Hopkins, who helped transform Continue

from a very good prototype into a true product. Even his bugs are more
interesting than most people’s programs.

References

[1] Clarke, E., O. Grumberg and D. Peled, “Model Checking,” MIT Press, 2000.

[2] Fisler, K., S. Krishnamurthi, L. A. Meyerovich and M. C. Tschantz, Verification
and change-impact analysis of access-control policies, in: International
Conference on Software Engineering, 2005.

[3] Godik, S. and T. M. (editors), eXtensible Access Control Markup Language,
version 1.1 (2003).

7

Krishnamurthi

[4] Graham, P., Beating the averages (2001),
http://www.paulgraham.com/avg.html.

[5] Graunke, P. T., R. B. Findler, S. Krishnamurthi and M. Felleisen, Modeling Web
interactions, in: European Symposium on Programming, 2003, pp. 238–252.

[6] Graunke, P. T., S. Krishnamurthi, S. van der Hoeven and M. Felleisen,
Programming the Web with high-level programming languages, in: European
Symposium on Programming, 2001, pp. 122–136.

[7] Hopkins, P. W., Enabling complex UI in Web applications with
send/suspend/dispatch, in: Scheme Workshop, 2003.

[8] Hughes, J., Generalising monads to arrows, Science of Computer Programming
37 (2000), pp. 67–111.

[9] Krishnamurthi, S., The Continue server, in: Symposium on the Practical
Aspects of Declarative Languages, 2003, pp. 2–16.

[10] Licata, D. R. and S. Krishnamurthi, Verifying interactive Web programs, in:
IEEE International Symposium on Automated Software Engineering, 2004, pp.
164–173.

[11] Matthews, J., R. B. Findler, P. T. Graunke, S. Krishnamurthi and M. Felleisen,
Automatically restructuring programs for the Web, Automated Software
Engineering: An International Journal (2003).

[12] Queinnec, C., The influence of browsers on evaluators or, continuations
to program web servers, in: ACM SIGPLAN International Conference on
Functional Programming, 2000, pp. 23–33.

8

WWV 2005 Preliminary Version

Feature-based Modelling
of a Complex, Online-Reconfigurable

Decision Support Service

Martin Karusseit and Tiziana Margaria 1,2

Universität Göttingen, Germany and Universität Dortmund, Germany

Abstract

In this paper, we show how the concepts of components, features and services are
used today in the Online Conference System (OCS) in order to marry the modelling
of functionally complex, online reconfigurable internet services at the application
level with the needs of a model-driven development amenable to analyze and verify
the models. Characteristic of the approach is the coarse-grained approach to mod-
elling and design of features and services, which guarantees the scalability to capture
large complex systems. The interplay of the different features and components is
realized via a coordination- based approach, which is an easily understandable mod-
elling paradigm of system-wide business processes, and thus adequate for the needs
of industrial application developers.

1 Features as Modelling Entities

The concrete application scenario considered in this paper is an example of de-
veloping complex, collaborative, online reconfigurable internet services. Such
services combine heterogeneous architectures with black/grey-box implemen-
tation, which is one of the typical difficulties of large, incrementally developed
systems, in particular concerning the continuous redesign and modifications
arising during the lifetime of the systems [21]. In order to provide an un-
derstandable and manageable high-level model of the system, we design the
whole application by defining and enforcing entities of complex behavior called
features, which are superposed on a base system and coordinated within the
system under development. The challenge is precisely how to handle this
superposition and coordination in an understandable, well partitioned, and
manageable way.

1 eMail:martin.karusseit@cs.uni-dortmund.de
2 eMail:margaria@cs.uni-goettingen.de

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Karusseit and Margaria

In our applications the user-level flow of control is of central importance:
this level is realized via coordination graphs, called in our environment Service
Logic Graphs (SLGs). They establish a specific modelling level which allows
a direct modelling of these control aspects on their own, at the feature level,
without being overwhelmed by more detailed implementation concerns like,
e.g., data structures, architectures, deadlocks, and load balancing. These
concerns are hidden from the application logic designer and are taken care of
at a different level, during the object-oriented, component-based development
of the single functionalities (which may well have a global impact on the
system), capturing individual user-level requirements. Particularly well-suited
for our approach are therefore applications where the user-level flow of control
frequently needs adaptation or updating, as it is the case when addressing
user-specific workflows or situation-specific processes. Besides the design of
a number of internet services, typically role-based, client-server applications
like the Online Conference Service [10,12] that we are here using as a running
illustrative example, we have also successfully addressed the modelling and
test of (web-enabled) CTI applications, as presented in [4].

Our understanding of the feature concept can be well explained along
the similarities and differences wrt. the definitions of feature and of feature-
oriented description given in the literature. We learned to appreciate the
concept and the use of features in the context of Intelligent Networks [6,7,20],
but our notion of features is more general than e.g. what defined in [3], in
order to also capture a more general class of services like online, financial,
monitoring, reporting, and intelligence services:

Definition 1.1 [Feature]

(i) A feature is a piece of (optional) functionality built on top of a base system.
(ii) It is monotonic, in the sense that each feature extends the base system by an

increment of functionality.
(iii) The description of each feature may consider or require other features, addi-

tionally to the base system.
(iv) It is defined from an external point of view, i.e., by the viewpoint of users

and/or providers of services.
(v) Its granularity is determined by marketing or provisioning purposes.

Differently from the IN setting, where the base system was the switch, offer-
ing POTS functionality, and the features were comparatively small extensions
of that behaviour, we have (e.g. in CSCW-oriented internet services like the
OCS) a lean base service, that deals with session, user, and role-rights man-
agement, and a rich collection of features.

In the traditional telephony setting, features are understood as modifiers
of the base service [3], which are basically executed sequentially,each of them
departing and returning to the base service (the so called ”daisy” or sequential
model of execution [16]). In web-based applications, the proportion between
base system and features is more extreme: web services have a minimal skele-
ton service, and are almost completely constituted by features.

10

Karusseit and Margaria

The literature is rich of approaches for the modelling and verification
of such feature-based systems: for example, advanced compositional model
checking techniques have been proposed in [9,2], which deal efficiently with
the specification of properties of feature-based systems. Their goal is to be
able to partition both the functionality and also the requirements, and to
achieve automatic property composition at checking time.

In order to account for complex evolutions of services, we allow a multi-
level organization of features, whereby more specialistic features are built upon
the availability of other, more basic, functionalities.

In order to keep this structure manageable and the behaviours easily un-
derstandable, we restrict us to monotonic features, which are guaranteed to
add behaviour. Restricting behaviour, which is also done via features in other
contexts (e.g. in a feature-based design in [5]) and similarly in aspect-oriented
design [8]), is done in an orthogonal way in our setting, via constraints at the
requirements level. Redefinition of behaviour via features, which is considered
e.g. in [5], with a clear influence of object-oriented design practices, is not al-
lowed in our setting. Attempts to define and analyze interactions in presence
of redefining features have clearly shown that it is very hard to deal with such
a feature model, and that it is preferable to avoid it.

Additionally, we distinguish between features as implementations and prop-
erties of feature behaviours. Both together yield the feature-oriented descrip-
tion of services enforced in our work.

Definition 1.2 [Feature-oriented Description]

(i) A feature-oriented service description of a complex service specifies the be-
haviours of a base system and a set of optional features.

(ii) The behaviour of each feature and of the base system are given by means of
Service Logic Graphs (SLGs) [7].

(iii) The realization of each SLG bases on a library of reusable components called
Service Independent Building-Blocks (SIBs).

(iv) The feature-oriented service description includes also a set of abstract require-

ments that ensure that the intended purposes are met.

(v) Interactions between features are regulated explicitely and are usually ex-
pressed via constraints.

(vi) Any feature composition is allowed that does not violate the constraints.

In contrast to the proposal by [3], we distinguish the description of the feature’s
behaviour from that of the legal use of a feature. Restrictions of behaviours
are in fact expressed at a different level, i.e. at the requirements level (via
temporal logic constraints), and they are part of an aspect-oriented description
of properties that we want to be able to check automatically, using formal
verification methods.

In the following Sections, we first introduce our concrete example: the Online
Conference Service (OCS) (Sect. 2), subsequently we describe in detail the

11

Karusseit and Margaria

adopted feature-oriented description technique and illustrate the interplay of
the described concepts in Sect. 3 using a specific portion of the OCS. Finally
Sect. 4 contains our conclusions.

2 Application: The Online Conference Service (OCS)

The OCS (Online Conference Service) (see [10,11] for a description of the ser-
vice and of its method of development) proactively helps Authors, Program
Committee Chairs, Program Committee Members, and Reviewers to coop-
erate efficiently during their collaborative handling of the composition of a
conference program. It is customizable and flexibly reconfigurable online at
any time for each role, for each conference, and for each user. The OCS has
been successfully used for over 35 computer science conferences, and many of
the ETAPS Conferences. In 2004 and 2005 it served them all, with 6 instances
of the service running in parallel.

The service’s capabilities are grouped in features, which are assigned to
specific roles. In the OCS, a single user may cover many roles (e.g., PC Mem-
bers may submit papers and thus be simultaneously Authors), and can switch
between them at any time during a working session. A fine granular roles and
rights management system takes care of the adequate administration of the
context, role and user-specific permissions and restrictions. The roles coop-
erate during the lifetime of a PC’s operations and use the OCS capabilities,
which are provisioned at the feature level. Through the cooperation of its fea-
tures, the OCS provides timely, transparent, and secure handling of the papers
and of the related submission, review, report and decision management tasks.

2.1 Feature Description

Features are assigned to the roles, and can be fine-granularly tuned for conferen-
ce-specific policies. E.g., some conferences practice blind reviewing, meaning
that certain fields of the article submission form are not published to the re-
viewers and secret between Author and PC Chair. In this paper we focus on
the principal features and on the discussion of their implications for feature-
based service development. The following features are illustrative of the size
and granularity adopted in the OCS, while the full collection is shown in Fig. 2.

Article Management: Over 30% of the service activity consistently con-
cerns this feature. The central page corresponding to this feature is the Article
overview page (Fig. 1(bottom)), which also contains links to activities like re-
port submission or paper delegation that go beyond just providing access to the
article and article managements pages.

Delegation Management: here the PC Chair delegates papers to ap-
propriate PC Members and it supports PC members in their dialogue with
their subreviewers. It manages the PC Members and Reviewers tasklists. The
delegation process is iterative as PC members/subreviewers might refuse a

12

Karusseit and Margaria

Roles

Top level

Features

Subfeatures

Fig. 1. Role-based Feature Management in the OCS

task, e.g., due to conflicts of interest and/or lack of expertise.

Role Management: it allows the PC Chair to define, modify, reconfigure,
cancel roles at any time during the OCS operation. These capabilities are
very powerful, and they are responsible for our need of checking the rights at
runtime. Fig. 1(top) shows the fine granular feature-based definition of the
article management for the role PC Chair. These capabilities also exceed a
typical RBAC role-based access implementation [15]: this way, there is no
fixed role definition, in particular there is no role hierarchy: it is almost never
the case that a role includes and/or monotonically extends the capabilities of
”underlying” roles. On the contrary, different roles are prevalently orthogonal
to each other in the sense that they bring different access rights.

Setup Management: it enables the responsible administrator and/or the
PC Chair to configure the service before it goes public. It also allows online re-
configurations (e.g. setting global deadlines, assigning further responsibilities,
establishing newsgroups) while the service is running.

As shown in Fig. 1, the features interact: by configuring differently the
role PC Member (Feature Role Management, Fig. 1(top)) a PC Chair can at
any moment grant and revoke coarse and fine granular access rights to the
whole Article Management feature (or to portions of it) to single users or to
user groups. We address the challenge to guarantee that these dynamically
defined possible service behaviours obey all our requirements.

13

Karusseit and Margaria

2.2 Property Description

Security and confidentiality precautions have been taken to ensure proper han-
dling of privacy and intellectual property sensitive information. In particular,

• the service can be accessed only by registered users,

• users can freely register only for the role Author,

• the roles Reviewer, PC Member, PC Chair are sensitive, and conferred to
users by the administrator only,

• users in sensitive roles are granted well-defined access rights to paper infor-
mation,

• users in sensitive roles agree to treat all data they access within the service
as confidential.

We need to be able to check these service-wide properties in a service ar-
chitecture organized in a hierarchical feature structure. The following sections
explain how the needs of the development of internet services like the OCS
are taken care of by our application development environment.

3 Designing the OCS as a Feature Based System

As characteristic for the application development by means of our Agent Build-
ing Center (ABC) framework [11,18], the application definition layer is struc-
tured by means of a hierarchical use of features, which are realized in terms of
components and (possibly nested) macros, each with its own SLG. Concretely,
the ABC supports at the component level

• a basic granularity of components in term of SIBs which offer atomic func-
tionalities and are organized in application-specific collections. These build-
ing blocks are identified on a functional basis, understandable to application
experts, and usually encompass a number of ‘classical’ programming units
(be they procedures, classes, modules, or functions).

• and a structuring mechanism via macros, which allow developers to build
higher-order components that can be consistently reused as if they were
basic components. Consistency is in fact a central concern in terms of
analyzability and diagnosis via model checking - as explained in Sect. 3.4.

Application development consists then of the behaviour-oriented combination
of SIBs and macros at a coarse-granular level.

The design of the OCS, a complex application whose SLG has currently
approximately 2500 nodes and 3500 edges, reflects the typical feature-based
organization of the application logic in the ABC [11]. As shown in Fig. 2, the
global, application-level SLG is quite simple:

• it contains at the top level the logic for the service initialization (init-service)
and the base service, which is a skeleton service that provides generic inter-

14

Karusseit and Margaria

Fig. 2. The Application SLG of the OCS: Base and Public Service, and Features

net login and session management services, and the public functionalities
(those accessible without being a registered user), and

• it coordinates the calls to and the interferences between the single features.

As we have seen in the feature description, features influence each other, thus
one of the aims of service validation via model checking and testing is exactly
the discovery and control of the so called feature interactions.

3.1 Feature-based Design

As shown in Fig. 2, each feature is implemented as a macro, thus it has an own
Service Logic Graph that defines all the services and the behaviours possible
under that feature. Fig. 3 shows, e.g. the SLG that implements the Article
Management top-level feature. Top-level features typically provide a number
of services to the users. In the case of the OCS, the depicted version offers
in addition to the Article, Delegation, and Setup Management features already
briefly introduced in Sect. 2 also services for the management of Roles, Users,
and Staff, as well as e.g. a feature for performing the PC Members’ Bidding for
papers. This structure becomes immediately evident through the SLG, and it
is also explicitly made publicly available over the GUI, as we can see in the

15

Karusseit and Margaria

„Article“ Feature SLG
Sub-Features

…

Fig. 3. SLG of the Article Management Feature: Hierarchical Feature Structure

Create
Newsgroup

CVSCreateConnection
SIB Specification

SIBs…

Fig. 4. SIB Occurrences in a SLG, and SIB Specification

navigation bar on the left side of the screen shots of Fig. 1.

Fig. A.1 (in Appendix) shows an excerpt of the features and subfeatures
of the OCS. We see that several subfeatures occur in more than one feature,
thus can be accessed under a variety of conditions. Altogether, the OCS has
over 100 features. New releases of the OCS usually do not touch the basis
service but involve the addition or major redesign of top-level features.

16

Karusseit and Margaria

3.2 Hierarchy of Features

According to the needs of the application, features can be structured in finer-
granular (sub-)features, which are themselves also implemented by means of
SLGs. Similar to the structure at the application level, the SLG of the Article
Management feature, shown in Fig. 3,

• contains itself a workflow, here quite simple since it provides only navigation
capabilities, and

• coordinates the calls to and the interferences among a number of finer gran-
ular features, which can be themselves substructured according to the same
mechanisms.

In our example, the Article Management feature deals both with the manage-
ment of articles, as evident from subfeatures like SubmitArticle, ModifyArticle,
SubmitFinalArticleVersion, and with article-related tasks that reside in other
features, like Reportlist or DelegateArticle, which are part of the features Role
and Delegation respectively.

To illustrate a complete top-down SLG-based refinement structure, we
examine the SubmitArticle subfeature, reported in Fig. 5, which is technically
again implemented as a macro. We reach in this SLG the refinement level
where the actual business logic is described: embedded in the context of several
checks and of error-handling logic,

(i) the ShowSubmitArticle SIB prepares and displays the webpage for the
submission action,

(ii) ShowConfirmArticle allows the user to confirm the submission after check-
ing the correctness of the metadata (like title, article, authors, abstract),

(iii) then the actual upload in the database and in the CVS versioning system
is performed, and finally

(iv) the ShowSubmitArticleAcknowledgement SIB notifies the submitter of the
successful execution.

The SLG also makes use of three macros, CVS Checkin, mail notification, and
CreateNewsgroup (see Fig. 4). These macros embed reusable pieces of business
logic which are relevant to the application designers, but not to the users.
Accordingly, they do not deserve the status of a feature.

In the ABC, features are enabled and published to the end-users on their
finer granularity, according to a complex, personalized role-right-context man-
agement. As an example, only users with a PC Chair role are able to submit
articles in the name of another user. The design of the sub-structure of fea-
tures is driven exactly by the needs of distinguishing behaviours according to
different contexts. Sub-features in fact usually arise by refinement of features
as a consequence of the refinement of the configuration features and of the role-
rights management system. This way we enable a very precise fine-tuning of
the access to sensitive information and to protected actions.

17

Karusseit and Margaria

Macros

„Submit Article“ SLG

Fig. 5. A Hierarchical Macro: The Submit Article Feature

3.3 Organizing the User/Role Management

Once an internet service is online, it is continuously navigated in parallel by a
cohort of agents that execute its global service logic on behalf of a user, within
the limits imposed by the roles/rights of the user they are associated with.

The SLG of an application defines the space of potential behaviours that
agents can assume, and each agent’s behaviour is defined implicitly as the
currently valid projection onto this potential, filtered via

(i) the roles-and-rights management system, which defines dynamic, recon-
figurable projections on the behaviours defined in the SLG, and

(ii) the current global status of the application, including the data space, the
configuration, and certain event- and time-dependent permissions.

18

Karusseit and Margaria

This has consequences on the design of the user and role management, and
on its interaction with the feature-based model of the service functionality.
From the point of view of the user and role management, features are seen as
a collection of functionalities of the service which can be switched on and off
for single roles and for single users. The service functionalities have unique
names, whose naming scheme is quite simple:

F-<FeatureCategory>-<SubfeatureID>.<Filter>

• The FeatureCategory is the name of a feature at the modelling level, im-
plemented as an own SLG in the service,

• The SubfeatureID specifies a subfeature of the feature at the modelling
level, that is implemented either as an own SLG in the service, or as a
functionality of a SIB.

• The Filter suffix is optional and allows steering the fine granular right
management: it restricts the access at runtime to the capabilities of the
business objects underlying the features.

The user and role management are themselves implemented by means of fea-
tures: Roles and Users, as seen in Fig. 1 are typically accessible to the Ad-
ministrator and the PC Chair.

From the User/Role management’s point of view, the Article Management
feature is itself managed in the FeatureCategory ART. The right to submit an
article in the OCS is called permission F-ART-03: the single permissions of a
FeatureCategory are numbered, thus uniquely named. In case of access to the
subfeature SubmitArticle (see Fig. 1(top)), it is first checked whether the
calling agent (implemented as a process) is granted the permission F-ART-03.
Only then the access is allowed.

Some subfeatures, like the permission to read an article (F-ART-05), have
finer granular variants which are administered through filters. The permis-
sion F-ART-05 says that the subservice that provides access to the content
of a submission can be executed, but it does not specify on which arti-
cles. This is managed through filters, which distinguish the access only to
the own articles (F-ART-05.own), only to the ones the user should review
(F-ART-05.delegated) or to all the articles (F-ART-05.all).

This User/Role management mechanism exploits these fine granular per-
missions to create at need personalized views, limiting e.g. for a user the scope
of access to certain resources (documents or functionalities). A role is defined
via a set of permissions, and it is reconfigurable online at any time by users
which have the corresponding rights on the feature Roles. This concerns the
modification of the current roles, but also the definition of new roles (e.g. to
deal with exceptional cases. An example of exception elegantly dealt with
this way was the definition of a Substitute PC Chair role, where a PC member
acted as PC Chair for articles submitted by the PC Chair to the conference
he was chairing, which should obviously be treated completely independently.

19

Karusseit and Margaria

This way we grant a very high flexibility of the service usage.

3.4 Model Checking-Based High-Level Validation

The correctness and consistency of the application design enjoys fully auto-
matic support: throughout the behavior-oriented development process, the
ABC offers access to mechanisms for the verification of libraries of constraints
by means of model checking. The model checker individually checks hundreds
of typically very small and application- and purpose-specific constraints over
the flow graph structure. This allows concise and comprehensible diagnostic
information in case of a constraint violation since the feedback is provided on
the SLG, i.e. at the application level rather than on the code.

The ABC contains an iterative model checker based on the techniques
of [17], recently extended to a game based model checker [14]: it is optimized
for dealing with the large numbers of constraints which are characteristic for
our approach, in order to allow verification in real time. Concretely, the
algorithm verifies whether a given model (a flattened SLG, where the hier-
archy information in form of macros has been expanded) satisfies properties
expressed in a user friendly, natural language-like macro language [13]. In-
ternally, the logic is mapped to the modal mu-calculus with parameterized
atomic propositions and modalities.

Example 1. The general OCS policies already mentioned in Sect. 3 as well as
conference-specific policies inherently define a loose specification of the service
at the service logic level, which can be directly formulated as properties of the
OCS in our model checking logic. For example, the access control policy is a
primary source of constraints like “A user can modify the defined roles only
after having successfully registered as Administrator”, expressed as

¬(modify-roles) unless user-login [Role=Admin]

as a global constraint on the SLG of the whole application. This example
illustrates the slightly indirect way of expressing the intended constraint. It
says,“A user cannot modify the defined roles unless (s)he has successfully reg-
istered as Administrator”. Additionally the example shows a parameterized
atomic proposition: user-login [Role=Admin] is parameterized in the possible
roles a user might have, and [Role=Admin] does not only require a user-login
to appear, but also that the role matches, in this case administrator.

All the properties mentioned earlier in Sect. 2 are requirements expressible
in this logic, and they are instances of the classes of safety and consistency
requirements identified in [1] to be characteristic of Computer Supported Col-
laborative Work platforms. Being able to automatically verify such properties
via model checking is a clear advantage of the ABC, and it is essential in
applications like the OCS where the role-dependency is much more dynamic
than in standard RBAC applications.

A previous version of the OCS, which was not organized in features, had

20

Karusseit and Margaria

been already checked wrt. temporal logic properties like the one above [19]
This global approach became impractical due to the growing size of the web
service, to the increased importance of the Setup feature, which allows almost
complete reconfigurability at any time, and to the transition to distributed
development and maintenance, which are distributed feature-wise within a
team of people. At this point, it became central to be able to partition also the
verification feature-wise. This allows us e.g. to keep the properties readable,
since we do not need to add large numbers of conjuncts just to isolate specific
portions of the global graph, very often coincident with the features.

Meanwhile we use a slightly enhanced variant of CTL, where we have both
forward and backward modalities. This is common e.g. in program analysis,
and turns out to be useful also in our application. Examples of such operator
pairs are AF F (φ) and AF B(φ), the well known always finally forward and
backward CTL operators. We use often also until operators, useful to describe
”layered” regions of properties: ASU F (φ, ψ) (resp. AWU F (φ, ψ)) mean φ

strong forward-until ψ (resp. φ weak forward-until or unless ψ). Thereby, the
primed SIB names, like ’ShowFrameSetFiles, are the atomic propositions of the
logic. Given the large alphabet of SIB and branch names it is convenient to
use edge modalities with sets, as e.g. in [∼ {ok}]φ, meaning that φ is true in
each successor state reachable via an edge not labelled ok.

Apart from a number of simpler constraints that just enforce some forward
or backward sequence of SIBs (useful e.g. in conjunction with macros, to en-
force a certain well-formedness of reusal), most properties express reachability
or a certain loose ordering of functionalities.

Example 2. In the ForgottenPwd feature, e.g., we would like that once the
page with the form for answering the private question has been shown (done by
the SIB ShowFrameSetFiles), the user-entered data should always be checked
for correctness and completeness SIB CheckReqParam 3 . This is expressed as
′ShowFrameSetF iles => [{ok}]AF F (′CheckReqParam)

Example 3. Once this parameter check fails, the user should return to the
page with the input form. The SIB CheckReqParam is in this case exited along
the branch missing or exists empty:
′CheckReqParam => [{missing, exists empty}]AF F (′ShowFrameSetF iles)

Example 4. The password question should only be shown once a valid e-mail
address has been input. The constraint
′ShowPwdQuestion =>

(AF B(′CheckEmailAddr) ∧AWU B(∼′ CheckEmailAddr, ![{successful}]!T))

meaning that every occurrence of ShowPwdQuestion is preceded by a Check-
EmailAddr) and that that CheckEmailAddr) has been exited along a successful

3 We would like to ensure this before forwarding the data to the persistency layer.

21

Karusseit and Margaria

branch. Here we rely on the uniqueness of the successful edge within the
feature. In the general case we would need additional constraints like

AG F (< {successful} > T =>′ CheckEmailAddr)

to delimit the scope more precisely.

Example 5. The notification page that an e-mail with the new password has
been sent should not be shown before it was really sent out without an explicit
acknowledgement by the user:
′Service2CallContext => ASU F (′ShowPwdAck,′ SendMimeMessage)

Here we see that, as soon as the service logic becomes a bit more complex,
the intuitiveness of the constraints is also quickly impaired: in order to check
properties of the service logic, we need to refer to technical SIBs like Ser-
vice2CallContext. We also see that sometimes the ”minimality” of constraints
is not obvious: here we use until instead of next because in the graph there
are self-loops.

An example of non satisfied constraints concerned the treatment of back
browse branches in some areas of the OCS like the Report management feature,
where several successive modifications of forms are possible in sequence. In
order to check the existence and correctness of these (quite large) loops, we
have decided to model the navigation structure of these OCS portions at the
SLG level. However, due to the reusal of previously available subfeatures,
some of the navigation options were still implemented at the GUI level, thus
we were able to detect e.g. a number of missing back branches in the SLG.
This was not a functional error, but an inconsistency in the modelling style.

4 Conclusions

We are not aware of any feature-based design approach similar in its intent
to our goals, in particular concerning the simplicity at the modelling level.
The closest approaches we know of typically require far more knowledge at
the application level (at least programming expertise) and/or lack systematic
support by means of formal methods, and therefore are inadequate for the
scenarios and users we address.

The impact of our approach on the efficiency of the design and docu-
mentation has been proven dramatic in industrial application scenarios: our
industrial partners reported a performance gain in time-to-market of the ap-
plications of a factor between 3 and 5. The reason for the reported gain was
in particular the early error detection, due to the tightened involvement of the
application expert into the development cycle. More generally, we see the cur-
rent approach as an instance of Model Driven Application Development, where
heterogeneous models allow the individual, but interdependent modelling of
complementary aspects. And indeed, features constitute a specific category of

22

Karusseit and Margaria

such aspects, adequate for the structuring of complex applications according
to complementary views and to support elegant and powerful approaches to
proving correctness and compatibility of complex behaviours.

References

[1] T. Ahmed, A. Tripathi: Static Verification of Security Requirements in Role

Based CSCW Systems, Proc. 8th Symp. on Access Control Models and
Technologies, Como (I), ACM Press, pp.196-203, 2003.

[2] C. Blundell, K. Fisler, S. Krishnamurthi, P. Van Hentenryck: Parameterized

Interfaces for Open System Verification of Product Lines Proc. ASE 2004, IEEE
International Symposium on Automated Software Engineering.

[3] J. Bredereke: On Feature Orientation and Requirements Encapsulation, volume
”Components, Features, and Agents”, LNCS 2975, 2004, Springer Verlag.

[4] A. Hagerer, T. Margaria, O. Niese, B. Steffen, G. Brune, H.-D. Ide: An Efficient

Regression Testing of CTI Systems: Testing a complex Call-Center Solution,
Annual Review of Communic., Vol. 55, Int. Engin. Consortium, Chicago, 2001.

[5] H. Harris, M. Ryan: Theoretical Foundations of Updating Systems. ASE 2003,
18th IEEE Int. Conf. on Aut. Software Engineering, IEEE-CS Press, 2003.

[6] ITU: General recommendations on telephone switching and signaling intelligent

network: Introduction to intelligent network capability set 1, Recommendation
Q.1211, Telecommunication Standardization Sector of ITU, Geneva, Mar. 1993.

[7] ITU-T: Recommendation Q.1203. ”Intelligent Network - Global Functional

Plane Architecture”, Oct. 1992.

[8] S. Katz, Y. Gil: Aspects and Superimpositions, Proc.ECOOP 1999, LNCS
N.1743, Springer Verlag.

[9] H.C. Li, S. Krishnamurthi, K. Fisler: Verifying Cross-Cutting Features as Open

Systems, Proc. FSE-10, ACM SIGSOFT Int. Symp. on the Foundations of
Software Engineering, 2002.

[10] B. Lindner, T. Margaria, B. Steffen: Ein personalisierter Internetdienst für

wissenschaftliche Begutachtungsprozesse, GI-VOI-BITKOM-OCG-TeleTrusT
Konferenz Elektronische Geschäfts-prozesse (eBusiness Processes), Universität
Klagenfurt, September 2001, http://syssec.uni-klu.ac.at/EBP2001/ .

[11] T. Margaria: Components, Features, and Agents in the ABC, in ”Components,
Features, and Agents”, LNCS 2975, pp.154-174, 2004, Springer Verlag.

[12] T. Margaria, M. Karusseit: Community Usage of the Online Conference Service:

an Experience Report from three CS Conferences, 2nd IFIP Conf. on ”e-
commerce, e-business, e-government” (I3E 2002), Lisboa (P), Oct. 2002, in
”Towards the Knowledge Society”, Kluwer, pp.497-511.

23

Karusseit and Margaria

[13] T. Margaria, B. Steffen: Lightweight Coarse-grained Coordination: A Scalable

System-Level Approach, in STTT, Int. Journal on Software Tools for Technology
Transfer, Vol.5, N.2-3, pp. 107 - 123, Springer-Verlag, March 2004.

[14] M. Müller-Olm, H. Yoo: MetaGame: An Animation Tool for Model-Checking

Games, Proc. TACAS 2004, LNCS 2988, pp. 163-167, 2004, Springer Verlag.

[15] R. Sandhu, E. Coyne, H. Feinstein, C. Youman: Role-Based Access Control

Models, IEEE Computer, 29(2):38-47, Feb. 1996.

[16] M. Shaw, D. Garlan: Software Architecture: Perspectives on an Emerging

Discipline, Prentice-Hall, 1996.

[17] B. Steffen, A. Claßen, M. Klein, J. Knoop, T. Margaria: The Fixpoint Analysis

Machine, (invited paper) CONCUR’95, Pittsburgh (USA), August 1995, LNCS
962, Springer Verlag.

[18] B. Steffen, T. Margaria: METAFrame in Practice: Intelligent Network Service

Design, In Correct System Design – Issues, Methods and Perspectives, LNCS
1710, Springer Verlag, 1999, pp. 390-415.

[19] B. Steffen, T. Margaria, V. Braun: Coarse Granular Model Checking in Practice,
Proc.8th Intern. SPIN Workshop on Model Checking Software, satellite to ICSE
2001, Toronto (Canada), May 2001, LNCS 2057, pp. 304-312, Springer Verlag.

[20] B. Steffen, T. Margaria, V. Braun, N. Kalt: Hierarchical service definition,
Annual Rev. of Communication, IEC, Chicago, 1997, pp. 847-856.

[21] H. Weber: Continuous Engineering of Information and Communication

Infrastructures, Proc. Int. Conf. on Fundamental Approaches to Software
Engineering (FASE’99), Amsterdam, LNCS N. 1577, Springer Verlag, pp. 22-29.

24

Karusseit and Margaria

A Hierarchical Feature Structure

Fig. A.1. Hierarchical Feature Structure and Feature Reusal

25

WWV 2005 Preliminary Version

Generating commercial web applications from
precise requirements and formal specifications

David Crocker 1

Escher Technologies Ltd.

Aldershot, United Kingdom

John H. Warren 2

Precision Design Technology Ltd.

Maidenhead, United Kingdom

Abstract

We present a new model-based approach that we are using to build commercial web-
based applications. The user requirements together with a data model are formally
specified in a graphical notation using the CREATIV toolset. The specification may
be checked by animation before being automatically translated to Perfect notation.
The Perfect Developer toolset uses automated reasoning to generate formal proofs
of correctness. It then generates C++ or Java code which, in conjunction with
an application framework also written in Perfect, forms the complete application
including the HTML user interface. The whole process provides a rapid turnaround
from new requirements to a formally-verified application.

Key words: formal specification, formal verification, web
applications

1 Introduction

A recent survey of 1027 information technology projects [1] found that only
12.7% were deemed successful. Poor requirements were considered to be a
contributory factor in 76% of the failing projects. These figures indicate that
a better approach to IT system development is needed and that any new
approach must include better definition of requirements. We present such an
approach.

1 Email: dcrocker@eschertech.com
2 Email: john.warren@precisiondesign.co.uk

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Crocker and Warren

2 Defining Requirements with CREATIV

One important specification dichotomy is that while user understanding re-
quires the use of natural language, correctness requires the precision of a
mathematical approach. The CREATIV approach offers an improved process
for requirement specification that aids user understanding by using natural
language while ensuring consistency and functional correctness by using con-
cealed mathematical logic.

The underlying approach is model-based and axiomatic [2]. A proof in an
axiomatic theory is a finite sequence of statements in the theory in which each
statement either is an axiom or derives from an earlier statement by applying
a rule of reasoning. The CREATIV reasoning process uses five axioms and
one rule of inference, which reads informally as: IF a candidate entry satisfies
its preconditions THEN add the entry to the specification AND include the
consequential closure that results from its addition. The tool imposes some
of the preconditions and the application itself imposes others. The reasoning
occurs in a metamodel that represents the requirements process, represented
in first order predicate calculus; the metamodel construction is also axiomatic,
and uses identical axioms and rules of reasoning.

Starting from the axioms and the rule of inference, we can prove a succes-
sion of theorems at a very low level. There are several hundred such theorems,
which are used as lemmas to support higher level proofs. We then present the
reasoning system, specified in its own notation, for proof in exactly the same
way. We can then present the application specification similarly. This layered
organisation of the approach has an important advantage: we can express
reasoning about specification behaviour (animation) as one more layer in the
reasoning process and one that uses the same approach and rule of inference.

The tool can translate a correct specification into other languages, such
as Perfect or Z, because there is one well-defined meaning associated with
each theorem. When we translate into Perfect, which has its own more pow-
erful theorem prover, we can also generate a large number of hypotheses, by
rule, that express properties that the application code should possess. Users
may also state further hypotheses, arising from their own knowledge. We ex-
pect all these hypotheses to be provable; proof failures almost always indicate
important specification errors.

Translation to Perfect also allows immediate generation of Java or C++, so
the production of web-based systems can be automated once the specification
is complete. We guarantee that any proven property will be present in the
generated system.

In order to construct a specification using this approach, it is necessary to
construct the business model (diagram) and the supporting information (text).
While analysts can enter information in any order, it is usual to develop a part
of the diagram first, then to add the supporting text, using form-filling dia-
logues, and finally to check this partial specification or model. Analysts can

28

Crocker and Warren

Fig. 1. Library model

then correct any errors and extend the partial model by repeating the above
process. The CREATIV workbench supports this process and retains all the
entered material in an underlying database. Analysts can make new entries
in the database and change or delete existing entries. At user request, the
workbench checks that all the entered facts are provable and self-consistent,
by translating the database content into a formal notation, attempting math-
ematical proof, and reporting any proof failures. Since this is at user request,
specifications can be temporarily inconsistent during their development; this
makes those constructs that involve iteration and circularity easier to define.

We define a specification as an assembly of five structured collections of
information; of these, three contain the data, functions, and events of the
application. Of the other two, concepts conjoin data, function, logic, and
event material to provide a view of the data within a class; constraints (or
business rules) establish how data moves between processes within the system.
Each constraint defines a data flow line, the specific data transfer (defined by
one or more predicates), and the type of flow that occurs. Each destination
concept includes a logical expression that must be satisfied before any flow
can occur.

Each collection (data, function, event, concept, and constraint) contains
one or more relational tabulations of facts relevant to the requirement spec-
ification. The entry of these facts constitutes the specification process. The
CREATIV specification workbench guides users through this entry process
with no reference to any mathematical notation. The totality of this informa-
tion allows the derivation of a formal specification that will support detailed
reasoning. In particular, we can predict the behaviour of the specification to
arbitrary sequences of input data; this not only allows users to test the correct-
ness of the specification but also provides acceptance test data and expected
results.

29

Crocker and Warren

The notation is similar to the Business Activity Diagram of UML but
provides more detail. An example is shown in Fig. 1, which represents a
lending library. The library acquires books (concepts that accept external
events are marked with an input arrow), each entered as title added to stock.
For each such entry, the L05 constraint transfers selected attribute values to
represent available stock, that is, items available for loan. We similarly enter
each current member, who must be traceable if he is to borrow books, though
in this case there is no consequential inference. The L12 broken line indicates
read-only access to this data.

Any person can make a borrowing request for any book but only members
can borrow books (L12) and members can only borrow available books (L09).
Requests by non-members are unsatisfiable, as are requests for non-present
books. If the logic “L09 AND L12” is satisfied (both values are true) then
the borrowing request is accepted. An entry is added to current loan to reflect
the loan (L15) and as a further consequence, the item is deleted from avail-

able stock (L04), indicating that the item is no longer available. The dashed
line indicates a logical inversion.

Upon completion of the loan, the borrower returns the book and this event
is entered in returned item. Provided that the entry matches a borrowed item
(as required by L24), the matching entry is deleted from current loan (L14)
and reinstated in available stock (L04), since the deletion is now inverted.
If we enter a small number of books and members, we can test the model
specification by submitting borrowing request and returned item events (both
sound and faulty).

This simple model is inadequate as a library model; but because it is easy
to understand, it is easy to enquire about its deficiencies. For example: how do
we limit the number of loans to one borrower? How do we represent members
who leave the library?

The CREATIV tool can reason about the model to verify that the spec-
ification is self-consistent. Next, we can animate the specification in order
to demonstrate the behaviour of the model to users of the proposed system,
allowing specification correctness to be tested. It is entirely usual for initial
versions of a specification to contain errors; the analyst corrects these until
the users agree the correctness of the specified behaviour.

Documentation is generated automatically, by direct deduction from the
specification facts. We can produce a structured English specification, UML
documentation such as interaction diagrams, and various additional elements
such as checklists and tabulations.

3 Generating and Verifying the Application with Per-

fect Developer

Perfect Developer [3], [4] is an object-oriented formal tool which provides for
the definition of state-based specifications and related functional requirements.

30

Crocker and Warren

It also has facilities for manual or automatic refinement to a lower-level spec-
ification, from which C++ or Java code can be generated. Included is an
automated reasoning engine which attempts to prove that the specifications
are complete and consistent, the specifications meet the requirements, and the
refinements preserve the observable behaviour apart from resource usage.

The Perfect specifications generated by CREATIV are designed to work in
conjunction with an application framework that has been written directly in
Perfect. These specifications include a model of the relational database tables
needed to represent the data, and a large number of operations specifying how
the state is to be changed in response to various events. Also generated is a
partial data dictionary, for use in generating HTML screens to interact with
the user.

The application framework provides the base classes from which classes in
the CREATIV-generated specification are derived. It automates the gener-
ation of HTML pages for user interaction and the parsing of returned form
data. A small supporting library allows it to be built as a web application
using the CGI interface. We have not yet made much effort to achieve full
formal verification of the framework, so at present only 92% of the 1108 proof
obligations that it gives rise to are discharged automatically. Most of the fail-
ures relate to proof obligations from library components used to perform file
I/O and match regular expressions, rather than from the framework itself.

4 Case Study

As a commercial example of this approach, we have specified part of a web-
enabled database system for a UK government department. We have currently
specified about 10% of the system; this appears as 1340 specification clauses
and translates at present to 35,799 lines of Perfect. The subsequent code gen-
eration produces 62,224 lines of Java. Perfect Developer also generates 9,819
proof obligations relating to the CREATIV-generated files, all of which are
proven automatically. The entire generation process (axiomatic specification
proof, translation to Perfect, and construction of Java code) takes less than
30 minutes on a laptop machine of modest speed (750 MHz). Complete proof
by Perfect Developer of the generated obligations requires about 4 hours 20
minutes on the same machine (averaging about 1.6 seconds per proof).

5 Related Work

Automatic code generation for large parts of web applications from semi-
formal or informal specifications (such as UML) is widely used. An approach
to the construction of web applications from formal specifications is outlined
in [5]. The use of formal specifications for testing web applications has been
proposed by a number of authors including [6].

31

Crocker and Warren

6 Conclusions and Further Work

We have shown that it is possible and practical formally to specify and verify
a substantial part of a web-based commercial application, and to generate
code from the specifications. We contend that the generated system is inher-
ently immune to buffer overflow attacks. This will be proven formally when
we achieve complete verification of the application framework and associated
library.

There are some limitations to the present version of the workbench. Both
reasoning systems are founded on predicate calculus and are unable to reason
about temporal properties, non-functional properties or concurrency. CRE-
ATIV uses the relational model for information storage; this may not be the
best representation for some applications.

In the future we intend to specify formally a subset of the W3C HTML 4.01
definition in Perfect. This will allow us to prove not only that the application
always generates well-formed HTML pages, but also that the system is immune
to cross-site scripting attacks.

References

[1] Taylor A, IT Projects Sink or Swim. In “BCS Review 2001”, British Computer
Society. Available at
http://www.bcs.org/review/2001/articles/itservices/projects.htm.

[2] Warren J.H and Oldman R.D, A Rigorous Specification Technique for High

Quality Software. In “Proceedings of the Twelfth Safety-Critical Systems
Symposium” (ed. F.Redmill and T.Anderson) 43-65, Springer-Verlag (London)
(2004). ISBN 1-85233-800-8.

[3] Crocker D, Safe Object-Oriented Software: The Verified Design-By-Contract

Paradigm. In “Proceedings of the Twelfth Safety-Critical Systems Symposium”
(ed. F.Redmill and T.Anderson) 19-41, Springer-Verlag (London) (2004). ISBN
1-85233-800-8 (also available via http://www.eschertech.com).

[4] Crocker D and Carlton J, A High Productivity Tool for Formally Verified

Software Development. To be published in the International Journal of Software
Tools for Technology Transfer, Special Section on Formal Methods 2003.

[5] Fons J, Pelechano V et al., Extending an OO Method to Develop Web

Applications. The Twelfth International World Wide Web Conference,
Budapest, Hungary.
At http://www2003.org/cdrom/papers/poster/p329/p329-fons.htm.

[6] Xiaoping Jia and Hongming Liu, Rigorous and Automatic Testing of Web

Applications.
At http://jordan.cs.depaul.edu/research/web-test-paper.htm.

32

WWV 2005 Preliminary Version

What Kind of Verification of Formal
Navigation Modelling for Reliable and Usable

Web Applications?

Marco Winckler 1 Eric Barboni 2 Philippe Palanque 3

Christelle Farenc 4

LIIHS-IRIT
University Paul Sabatier

Toulouse, France

Abstract

In this paper we introduce briefly a notation dedicated to model navigation of Web
applications and some strategies that we plan to employ to assess models built with
such as a notation. Our aim with this kind of evaluation is to ensure (prior to
implementation) that important users tasks can (or cannot) be performed with the
system under construction.

Key words: Model-based Web developpement, Model-based
verification, Formal description techniques, Usability evaluation.

1 Navigation modeling with the SWC notation

Model-based design is a relatively recent field over the Web but it is growing
fast due the demanding need of modelling support to build more and more
complex Web applications [7]. In recent years, some models for the develop-
ment of Web applications have been proposed such as the OO-H method [5]
and the WebML approach [3]. These models may increase productivity but
they often lead to ambiguous descriptions of requirements or impose a par-
ticular kind of implementation. However, even if more appropriate modelling
techniques exist, the use of modelling methods alone it is not enough to en-
sure the usability and reliability of Web applications. For web applications,
usability evaluation is not only important for identifying problems in the early

1 Email: winckler@irit.fr
2 Email: barboni@irit.fr
3 Email: palanque@irit.fr
4 Email: farenc@irit.fr

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Winckler, Barboni, Farenc and Palanque

phases of the development process but also for managing the frequent updates
performed over web applications.

In order to overcome the limitations of informal models, we have proposed
the StateWebCharts (SWC) [9] notation for describing navigation over Web
application. SWC is a formal notation that extends StateCharts [6] by adding
appropriate semantics for states and transitions, includes notions like dialogue
initiative control and client and transient activities. A detailed description of
this notation can be found in [9]. More generally, Web pages (static or dy-
namically generated) are associated to SWC states. Thus, each state describes
which objects users can see when navigating over the applications. Links are
represented by transitions between states. Data can be transferred from a
state to another through the transitions. Persistent data can be held by a
special kind of state called transient state (see [9] for details).

The operational semantic for a SWC state is: current states and their
containers are visible for users while non-current states are hidden. Users can
only navigate outgoing relationships (represented by the means of transitions
in the model) from current states. When a user selects a transition the system
leaves the source state which becomes inactive letting the target state to be
the next active state in the configuration.

2 Strategies for model-based evaluation of navigation

The purpose of a navigation modelling is to create navigable paths among
units of an information space. Hereafter we present some strategies to evaluate
the usability of models using the set of basic information concerning states,
relationships and events provided by the SWC notation.

Static verification refers to analysis without model execution. Several
methods have been proposed as described in [2] for supporting model-based
evaluation such as model checking (typically used for software testing, it is
used to check intrinsic elements of a model) [8]. This category covers the
following issues: a) Model consistency; b) Unreachable states; c) Dangling
links; d) Redundancy of links; e) Unreachable paths; f) Shortest path; g)
Compulsory path; and h) Data dependency.

The principle of dynamic verification is that the model must be executed
or simulated in order to perform the verification. The simulation, step by
step under the control of the designer, can be used as a kind of walkthrough
method for inspecting both navigation specifications and their corresponding
Web applications. In this case, the designer ’navigates’ the model as a real
user would do. This task can be eased by the appropriated tool support. How-
ever, walkthrough over model is not the unique way for performing dynamic
verification. The navigation models can be accessed to measure the coverage
of a given test suit or a collection of test cases. The test suit consists of a set
of directives which are used by automated tools for inspecting the model [1];
for example: a) every state is visited at least once in some test case; b) every

34

Winckler, Barboni, Farenc and Palanque

relationship from every state is followed at least once; every path in the site
is followed in at least one test case.

The verification of properties is made up by inspecting the models in order
to verify if the model is compatible or not with some predefined behavioural
rules (as we only consider in this paper properties concerned by navigation)
called properties. They can be expressed by using Temporal Logic or any
other abstract declarative formal description technique. Properties can be
very generic/abstract or very concrete such as ”do not allow more than seven
relationships going out from a state”. This kind of property might be verified
automatically over the model and even embedded into editor tools but this
heavily depends on the expressive power of the notation and the complexity
of the models. Until now, only few works [4] have been devoted to verify
ergonomic rules as properties of models.

Assessment of navigation model using user scenarios aims at exploiting two
complementary models and to cross-check their compatibility. Task models are
aimed at describing not only how users perform their task but also when and
why those tasks are performed (in order to achieve which goal). Task models
are typically a result of a detailed specification of functional requirements of
the interface describing user tasks with the application. The basis of such an
assessment is to extract scenarios from tasks models and to play them over
navigation models [10]. Contrarily to other works that analyze navigation
paths, this procedure allows designers comparing navigation paths to real
tasks, which is supposed to give deeper insights about the usability of the web
application’s user interface.

3 Discussion and future work

Several methods have been proposed as described in for supporting model-
based evaluation [8][4][2]. These techniques have been available and usefully
employed for a long time in the field of formal methods for communication
protocols or software engineering. Besides, despite the first paper published
in this field by [8] their actual use for Web applications remains very seldom
and limited.

In this work we have introduced a notation devoted to the navigation
modelling and we have discussed strategies for evaluation of such as models.
The SWC notation provides all the set of basic information concerning states,
relationships and events which is required to deal with the evaluation described
above. The edition of SWC models is supported by the SWCEditor which also
allows the simulation and verification of models. Our ongoing work consists in
developing and integrating analysis tools to our prototype in order to support
a cumbersome and resource demanding manual process.

35

Winckler, Barboni, Farenc and Palanque

References

[1] Beizer, B., “Software testing techniques (2nd ed.),” Van Nostrand Reinhold Co.,
1990.

[2] Campos, J. C. and M. Harrison, Formally verifying interactive systems : a
review, in: Design, Specification and Verification of Interactive Systems ’97
(1997), pp. 109–124.

[3] Ceri, S., P. Fraternali and A. Bongio, Web modeling language (webml):
a modeling language for designing web sites, in: Proceedings of the 9th
international World Wide Web conference on Computer networks : the
international journal of computer and telecommunications netowrking (2000),
pp. 137–157.

[4] Farenc, C., P. Palanque and R. Bastide, Embedding ergonomic rules as generic
requirements in the development process of interactive software., in: INTERACT
99 7th International Conference on Human-Computer Interaction, 1999, pp.
408–416.

[5] Gomez, J., C. Cachero and O. Pastor, Extending a conceptual modelling
approach to web application design, in: CAiSE ’00: Proceedings of the
12th International Conference on Advanced Information Systems Engineering
(2000), pp. 79–93.

[6] Harel, D., Statecharts: A visual formalism for computer system., Sci. Comput.
Program. 8 (1987), pp. 231–274.

[7] Murugesan, S. and Y. Deshpande, editors, “Web Engineering, Software
Engineering and Web Application Development,” Lecture Notes in Computer
Science 2016, Springer, 2001.

[8] Ricca, F. and P. Tonella, Analysis and testing of web applications, in: ICSE
’01: Proceedings of the 23rd International Conference on Software Engineering
(2001), pp. 25–34.

[9] Winckler, M. and P. Palanque, Statewebcharts: A formal description technique
dedicated to navigation modelling of web applications., in: DSV-IS, 2003, pp.
61–76.

[10] Winckler, M., P. Palanque, C. Farenc and M. S. Pimenta, Task-based
assessment of web navigation design, in: TAMODIA ’02: Proceedings of the
First International Workshop on Task Models and Diagrams for User Interface
Design (2002), pp. 161–169.

36

WWV 2005 Preliminary Version

How Recent is a Web Document?

Bo Hu 1

Universität der Bundeswehr München

Department of Business Administration

Munich, Germany

Florian Lauck 2

Universität der Bundeswehr München

Department of Business Administration

Munich, Germany

Jan Scheffczyk 3

Universität der Bundeswehr München

Institute for Software Technology

Munich, Germany

Abstract

One of the most important aspects of a Web document is its up-to-dateness or
recency. Up-to-dateness is particularly relevant to Web documents because they
usually contain content origining from different sources and being refreshed at dif-
ferent dates. Whether a Web document is relevant for a reader depends on the
history of its contents and so-called external factors, i.e., the up-to-dateness of se-
mantically related documents.

In this paper, we approach automatic management of up-to-dateness of Web
documents that are managed by an XML-centric Web content management system.
First, the freshness for a single document is generated, taking into account its change
history. A document metric estimates the distance between different versions of a
document. Second, up-to-dateness of a document is determined based on its own
history and the historical evolutions of semantically related documents.

Key words: Web site management, up-to-dateness, content
management systems, document metric, semantic links

1 Email: bo.hu@unibw.de
2 Email: florian.lauck@unibw.de
3 Email: jan.scheffczyk@unibw.de

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Hu, Lauck, Scheffczyk

1 Introduction

The WWW has been designed for dynamic information from the very begin-
ning [1]. Up-to-dateness 4 is one of the most significant characteristics of Web
documents, because a Web site typically contains numerous Web pages orig-
ining from different sources and evolving at different rates. Unlike books in a
traditional library, Web pages continue to change even after they are initially
published by their authors [2]. In this paper we distinguish between freshness,
which depends on the history of a single document, and up-to-dateness, which
also takes into account semantically related documents.

Many works have explored measures of Web documents “from a search
engine perspective” [18]. It has been found out that usually Web documents
change trivially or in their markup only [6]. On the other hand, news pages
containing “breaking news” change their content frequently and significantly.

This update heterogeneity severely impacts Web content management sys-
tems (WCMS), which should alleviate the continual maintenance of Web doc-
uments. More often than not, WCMS pretend an increased “freshness” of a
Web page that changed gradually only. Worse, this notion of freshness is not
application specific. Changes may be of syntactic or semantic nature. Syn-
tactic changes can reflect editing efforts or improve readability (although the
semantics is not changed). Semantic changes can increase the relevance of a
document to specific purposes. We find related areas for semantic methods in
text classification, retrieval, and summarization [19,13,9,17]. Since the date of
the “last-modifying” is used for filtering and sorting, it is just fair to authors
and readers if the WCMS generates the freshness of a Web document auto-
matically using an algorithm that takes into account the degree of changes
w.r.t. the application at hand.

Due to the importance of Web sites and the increasingly complex and col-
laborative Web publishing process, versioning of Web documents is an essential
feature of WCMS [11]. Since the history of each document is available in such
a system, a history-aware metric of changes can be implemented. This metric
is essential if the freshness of a document should be estimated automatically
or some versions should be vacuumed to free space [5].

In this paper, we present an approach to calculate the freshness of a docu-
ment automatically based on its complete history. An important parameter is
a document metric, which measures how much a document has been changed.
This metric may be of syntactic or semantic nature and can be tuned to spe-
cific applications. We have implemented our approach in our WCMS [10], in
which an XML structure represents a whole Web site, where each leaf stands
for a Web page, containing further XHTML markup. For test purposes we also
have implemented a document metric (based on XML nodes in this context)
to estimate the syntactic distance between two versions of a Web page. By
our metric not only the plain text information but also the XHTML markups

4 Also called “recency” or “freshness.”

38

Hu, Lauck, Scheffczyk

Pattern Change Frequency Change Extent Change Content Usage

News page hourly large text / markup commercial

Home page monthly / yearly small text / markup private

Boards minutely / hourly large text private

Online stores minutely / hourly large text commercial

Enterprise site monthly / yearly small text / markup commercial

WCMS minutely / hourly medium text private / comm.

Table 1
Change patterns for Web documents

are compared to each other. In this way the real human resource usage for a
Web document can be reflected. Although our metric is purely syntactic, we
have achieved surprisingly good results in measuring editing efforts in student
works. Since XSLT pre- and post-processing are involved, the metric can be
easily adapted to special situations for creating and updating the document.
Particularly, we have applied our approach to Chinese Web documents.

Whether a Web document is relevant for a reader depends not only on
the document’s own history but also on so-called external factors, i.e., the
historical evolution of semantically related documents. This proves useful, e.g.,
for news pages that change frequently. In our setting, semantic relations [8,12]
cover aspects like “is translation of,” “provides background information,” “is
essential part of,” or “is recommended reading.” Therefore, we also calculate
the up-to-dateness of a document w.r.t. the historic evolution of semantically
related documents.

The aim of our approach is to provide a language- and topic-independent
algorithm that determines real up-to-dateness of documents in a WCMS. In
addition, old versions of a document without significant contribution to up-
to-dateness of the current version (or any version in the future) might be
vacuumed to free space. The contribution of this paper is a flexible approach
to calculate the up-to-dateness of documents based on their own history and
on the history of semantically related documents. The major enabling factors
are version control and explicit semantic links. The most significant parameter
is a document metric, which can be tuned to specific applications.

From here, we proceed as follows. In Sect. 2 we introduce the running
example for this paper by which we illustrate our approach. We address the
freshness of a single document in Sect. 3. Sect. 4 describes the implementation
of our approach in our XML-centric WCMS. In Sect. 5 we approach up-to-
dateness of a document w.r.t. semantically related documents. We conclude
this paper and sketch directions for future research in Sect. 6.

39

Hu, Lauck, Scheffczyk

Version 1 :
Ukrainians Hit Polls to Elect Presi-

dent

KIEV, Ukraine - Rival candidates Viktor
Yushchenko and Viktor Yanukovych faced
off Sunday in a repeat election triggered
by a fraudulent runoff vote and massive
protests that resulted in an unprecedented
third round in Ukraine’s fiercely waged
presidential contest.
. . .

Version 2 :
Ukraine Elects President in Runoff

Vote

KIEV, Ukraine - Rival candidates Viktor
Yushchenko and Viktor Yanukovych faced
off Sunday in a repeat election triggered
by a fraudulent runoff vote and massive
protests that resulted in an unprecedented
third round in Ukraine’s fiercely waged
presidential contest.
. . .

Version 8 :
Ukraine Holds Presidential Vote a

3rd Time

KIEV, Ukraine - Rival candidates Vik-
tor Yushchenko and Viktor Yanukovych
faced off Sunday in a repeat election that
all sides hoped would resolve Ukraine’s
fiercely waged presdential contest after
fraud wrecked one vote and prompted mas-
sive protests that deeply divided the na-
tion.
. . .

Version 9 :
Exit Polls Give Yushchenko the Pres-

idency

KIEV, Ukraine - Three exit polls pro-
jected Ukrainian opposition leader Viktor
Yushchenko the winner by a command-
ing margin over Prime Minister Viktor
Yanukovych in Sunday’s fiercely fought
presidential rematch.
. . .

Fig. 1. Version history of an article about the Ukrainian President’s Vote

2 News Pages — A Challenge for Up-to-dateness

In order to illustrate the viability of our approach, we introduce this com-
pelling and vivid example, which will be referred to in the following sections.
This running example was taken right out of practice and hence reveals large
actuality. In our experiments we found typical patterns regarding the modi-
fications of Web documents (see Tab. 1). For this paper, we choose the news
page pattern, which is particularly suitable because it is characterized by an
hourly change combined with a large extent of textual alteration. In addition,
news pages show extensive semantic interrelation. The usage of our approach
is not limited to news pages. Up-to-dateness of any document in a WCMS
under version control can be estimated. In a collaborative authoring environ-
ment even the partial contribution of each author to a document section can
be calculated as well.

The President’s Vote in the Ukraine on December, 26 2004 represents a
perfect example within the news page pattern. This day constituted of a
large amount of breaking news worldwide, concerning forecasts, results, back-
ground information, and opinions. Starting hourly from 12.00 CET to 21.00
CET the sources of four different news pages (CNN.com, MSNBC.com, Ya-
hooNews.com, USAToday.com, derstandard.at) were downloaded and saved
to a database, in order to later apply our approach. Each download repre-
sents a different version of a news page. Commercial banners and scripts were
eliminated before using our metric.

40

Hu, Lauck, Scheffczyk

Fig. 1 illustrates the version history of the first paragraph of the Ya-
hooNews.com breaking news Web page about the Ukrainian President’s Vote. 5

Changes between versions range from correcting typos or changing the layout
towards dramatic changes in content. For example, we see a slight change
between versions one and two, whereas between versions eight and nine the
article was rewritten almost completely. Clearly, the freshness of this news
page should represent these facts.

3 Freshness of a Single Document

Up-to-dateness of a document depends on two aspects: its own freshness and
the historical evolution of semantically related documents. In this section,
we only deal with the freshness of a single document, which can be seen as
a document property based on the historical development. Up-to-dateness
w.r.t. semantically related documents is dealt with in Sect. 5.

3.1 Approaching Freshness

For a document with only a single version the freshness is given by the time
t1 at which the document was saved. If a document has multiple versions
1, . . . , n, its freshness t∗ might be expressed as a weighted average time stamp
of all versions:

t∗ :=

n
∑

i=1

ti · ci

n
∑

i=1

ci

where ci, the contribution of the version i to the end version n, is still to be
determined. A common and trivial way is to set

ci =

1 if i = n

0 otherwise

so we have the “last-modified” time stamp, which ignores the contributions of
all past versions.

To take into account the contributions of all versions, one must know how
much a document has been changed from one version to another one, which we
call the distance Di,j between versions i and j of a document. Since all Web
pages are under version control in our WCMS, such distances can be easily
employed. Recall that our approach is parametric in the document metric
D. For example, we can calculate the syntactic distance between two versions
of an XML document by analyzing the modifications of XML nodes using a
so-called XML Diff Language Diffgram. Currently, we achieve surprisingly
good results by simply defining Di,j as the number of necessary XML node

5 URL story.news.yahoo.com/news?tmpl=story&u=/ap/20041226/ap on re eu/ukraine election&e=1&ncid=

41

Hu, Lauck, Scheffczyk

3

21

null
D
0,3

D
2,3

D
1,2

D
0,1

D
1,3

Fig. 2. Distances between different versions of a document

modifications to change the content of version i to that of the version j. For
the moment, we have chosen this simple metric because originally we wanted
to measure the editing effort of students. Moreover, we want to find out
further applications that benefit from such a simple approach already. See
Sect. 4.2 for further details about the implementation. Of course, this simple
metric can be easily replaced by a semantic metric, depending on the specific
application [9,17].

Based on the metric D we find two possible definitions of the contribution
of a given version to the current version of a document. The basic idea is
illustrated in Fig. 2, where nodes represent the versions of a Web document
and edges represent the distance. The empty document, from which the first
version origins, is denoted as null. The contribution of version 2, for example,
may be defined as D1,3 − D2,3 or “how much the distance to the end version
3 has decreased from version 1 to version 2.” Alternatively, the contribution
can be defined as D1,2 or “how much the document has been changed from
version 1 to version 2”. Notice that the contributions of some versions may
be negative in the first case.

In the first case we have

c̄i := Di−1,n − Di,n

where D0,i is the distance between the empty document to version i. Then the
effective freshness of a document with n versions is given by (since Dn,n = 0):

t̄n =

n
P

i=1

ti·(Di−1,n−Di,n)

n
P

i=1

(Di−1,n−Di,n)

=
t1·

n
P

i=1

(Di−1,n−Di,n)+
n

P

i=1

(ti−t1)·(Di−1,n−Di,n)

n
P

i=1

Di−1,n−

n
P

i=1

Di,n

=
t1D0,n+

n
P

i=2

tiDi−1,n−

n−1
P

i=1

ti·Di,n−tnDn,n

D0,n−Dn,n

= t1 +
n∑

i=2
(ti − t1) ·

Di−1,n−Di,n

D0,n

If a document only has a single version (n = 1) the effective freshness is
t1, as expected. Each additional version may increase the effective freshness,

42

Hu, Lauck, Scheffczyk

depending on the time difference between the new version and the first version,
and depending on how much the content has been changed comparing with all

past versions. Using this algorithm when a new version of a Web document is
added to the WCMS, a comparison to each past version must be carried out.
At the moment, we are investigating whether we could relieve this restriction
to the last “x” versions.

In the second case we have

c̃i := Di−1,i.

Then the incremental freshness of a document with n versions is given by:

t̃n =

n
P

i=1

ti(Di−1,i)

n
P

i=1

Di−1,i

=
tnDn−1,n+

n−1
P

i=1

tiDi−1,i

Dn−1,n+
n−1
P

i=1

Di−1,i

=
tn·Dn−1,n+t̃n−1·

n−1
P

i=1

Di−1,i

Dn−1,n+
n−1
P

i=1

Di−1,i

Notice that t̃n can be calculated incrementally using t̃n−1 and the accumu-

lated
n−1
∑

i=1

Di−1,i. If a document only has a single version (n = 1), the incre-

mental freshness yields t1, as expected. Each additional version increases the
incremental freshness, depending on the time difference between the new ver-
sion and the first version, and depending on how much the content has been
changed compared to the previous version. A comparison only to the previous
version is necessary, which reduces computational complexity substantially.

Unfortunately as pointed out by [3]: “. . . resemblance is not transitive,
. . . for instance consecutive versions of a paper might well be ‘roughly the
same’, but version 100 is probably quite different from version 1.” Or in the
reverse case: If extensive changes made to a version have been undone com-
pletely in the following version, no real increase of freshness is achieved whilst
a comparison between the consecutive versions might pretend a significant
increase. Therefore, we expect that t̄n resembles our idea of freshness better
than t̃n at the cost of additional computation.

3.2 Freshness of a News Page

When we apply our metrics to our example news page it turns out that only
the time consuming and complex calculation of the effective freshness t̄n yields
useful results.

For each of the ten versions of the breaking news about the Ukrainian Pres-
ident’s Vote, which we found at YahooNews.com we recorded the last-modified

43

Hu, Lauck, Scheffczyk

Fig. 3. Recorded and calculated time stamps for our example news page

time stamp tn, and calculated the effective freshness t̄n and the incremental
freshness t̃n, discussed in Sect. 3.1. As shown in Fig. 3 the graphs represent-
ing t̄n and t̃n, respectively, are below the graph representing tn. The graph
of t̄n makes a jump towards tn at the ninth version, which is caused by many
changes made to that version. This jump is also visible in the graph of t̃n, but
it does not reveal the significance of the content change.

We did the same test for the top news about the same topic at another
news site 6 . The difference between t̄n and t̃n there is even more significant
since the document has been changed completely many times.

As a matter of fact, if a document has been changed completely the effective
freshness should be set to the last-modified time stamp, as the calculation of
t̄n delivers.

4 An Up-to-dateness Aware WCMS

We have implemented our approach into our XML-centric WCMS, which sup-
ports versioning of XML contents [10]. An external sub-system — XMLDiff
[15] including pre- and post-processing — has been set up for the estimation of
distances between the different versions of a Web document and to calculate
the effective freshness. Due to our open architecture, other (semantics based)
document metrics can be easily “plugged in.”

4.1 XML-centric WCMS

The WCMS has been developed by the authors based on Windows Active
Server Pages technology. Its architecture is XML centric regarding information

6 URL derstandard.at/druck/?id=1901315

44

Hu, Lauck, Scheffczyk

i.xml

n.xml

Preprocessing

compare.xsl
Microsoft
XmlDiff

Postprocessing

diffgram.xsl
end

Fig. 4. XMLDiff including pre- and post-processing

processing and data storage. The WCMS uses the Open Source HTML editor
RichTextEdit [7], which provides a WYSIWYG user interface and converts
HTML information into valid XHTML. The WCMS makes available all the
necessary XML data for a Web page and supplies XSLT templates that should
be used for generating HTML information from these data.

When a client requests an HTML page, the WCMS responds with XML
information from the database. An XML-capable browser translates this in-
formation into presentable HTML using the associated XSLT template, which
it fetches from the server in a second request. For non-XML browsers the
XML information can be translated to HTML on the server side as well.

Because of its XML-centric and simple data model on the database layer,
the WCMS is flexible regarding extensions. In most cases, extensions can be
realized by making adaptions in XSLT. Besides the current version of each
Web document all past versions of the same document, their authors, and
“last-modified” time stamps can also be retrieved.

4.2 A Simple Syntactic Document Metric based on XMLDiff

Fig. 4 gives an overview of the sub-system for comparing different versions of
a Web document, i.e., determining the difference Di,n between versions i and
n. The sub-system is implemented in PHP and can be triggered manually.
It retrieves all versions of a given Web document from the WCMS and pre-
processes them via XSLT. This transformation accomplishes several goals.

Firstly, the WCMS holds internal metadata that should not be compared.
For example, there are the URL of the separate image server or the login name
of the current user. Since our WCMS is an experimental system there are even
debugging and profiling entries included. The pre-processing simply removes
these (in this case) superfluous metadata.

Secondly, it takes different effort to add or change different XHTML nodes.
The pre-processing compensates these differences by adding or removing nodes.
For example, a paragraph may have more or less words. During the pre-
processing each word is transformed to a node, such that text modifications
can be detected more exactly. For example, Chinese texts are divided into
single “characters” (see Fig. 5). We do so because Chinese word boundaries

45

Hu, Lauck, Scheffczyk

Fig. 5. Pre-processing Chinese texts

are not marked using white spaces and cannot be detected using traditional
document metrics.

Finally, the HTML editor we use may generate additional entries pretend-
ing more additions or changes. For example, when the width of a table column
has been adjusted, changes might be detected in each row of the table. The
pre-processing suppresses these additional changes.

The pre-processed documents are compared using Microsoft’s XMLDiff
[15], which represents the changes using XDL, a proprietary XML-based lan-
guage for describing differences between two XML documents. XDL Diffgrams
contain information regarding additions, changes, or removals of document
content, or content being moved within the XML tree. During the XSLT
post-processing, the entries in an XDL Diffgram are compiled and the num-
ber of modifications is calculated. Recall that XMLDiff is just a parameter,
similar to other (maybe semantics based) document metrics [13].

4.3 Measuring Editing Effort by a Syntactic Document Metric

Our WCMS represents a realistic testing environment as it is used by students
to write their final theses and term papers and, therefore, contains many
different documents. In order to examine our approach, we have tested our
syntactic metric on several students’ works as well as on generated test cases.
Indeed, this was our original idea. The examined students works were all from
the area of business administration. Henceforward, they were characterized
by a relatively similar structure especially concerning the relation of text to
non-text parts, e.g., tables, links, and pictures.

To be able to draw general conclusions based on the empirical results of
the examined students works, the main focus lay on several test cases that

46

Hu, Lauck, Scheffczyk

have been generated. The purpose of these tests was to determine whether
the efforts in writing corresponded to the effective change estimated by our
metric. The test cases have been generated based upon the variety of different
functions available in the built-in text editor RichTextEdit. To cover the whole
process of document writing with all its components, the work on objects (e.g.,
tables, links, or pictures) and the document style was taken into account.
XMLDiff distinguishes four kinds of changes (additions, changes, removals,
and moving of nodes) within its comparison between the two XML files, so
these different types of changes were tested.

Each test case represented a different action, which was derived from the
combination of a function with one of the four possible changes (e.g., “add
table” or “delete picture”). The average time to perform each action (e.g.,
delete a picture) was measured using a stopwatch in several independent runs
to receive the temporary effort. In the next step the metric was applied on a
document where this specific action had been realized and the resulting value
(XML node) was related to the average temporary effort measured.

Our metric calculates with nodes, each word representing an individual
node. If new words have been added to a document, our metric presents these
changes throughout its result, which is a figure of nodes. For text writing (add
text), each node measured by our metric corresponds to 1.92 seconds of real
editing effort. Since removing a single word or an associated group of words
represents little real time effort only (by average 2 seconds per removal), this
action is treated by the system as a single node, which leads to the average
figure of 2 seconds per node for text removal. The real editing effort of all
different actions, using objects like tables, pictures etc. were analyzed, too,
and expressed by the average value of real time effort per node. These values
ranged from 2 to 6 seconds per node. In the students works, objects like tables
or pictures were relatively rare in relation to the text parts. Therefore, the
small deviation of these values from the values of text creation (1.92 seconds)
and text removal (2 seconds) have almost no impact on the overall real editing
effort of a whole document.

By using this easily adjustable XML-centric system including the pre- and
post-processing, the influence of each action and object could be treated and,
therefore, lead to a discretional adjustment of the real editing effort value. In
dependence on the application area of the text (e.g., business administration
or computer science) or the individual author, by using the real editing effort
statistics, the real time effort could be personalized or altered w.r.t. the type
of text.

5 Determining Up-to-dateness of Multiple Documents

Web pages do not exist on their own. Instead, they are semantically related to
each other. Due to these semantic relations, changes in the up-to-dateness of
one Web page “somehow” influences the up-to-dateness of related Web pages.

47

Hu, Lauck, Scheffczyk

Breaking News

Essential

Part of

Today’s News

Essential

Part of

News Chronical

Background

Information

Ukrainian History

Essential

Part of

Interview

Essential

Part of

Background

Information

Fig. 6. Semantic structure of our example Web site

Consider our running example again: Our breaking news page is hosted
at YahooNews.com, which also contains interviews and background informa-
tion. For the purposes of this paper, suppose that there are an interview and
an historical article about the Ukraine at YahooNews.com revealing further
background information. In addition, the breaking news page and the inter-
view are part of a “Today’s News” summary, which itself is part of a news
chronical. Of course, the historical article is part of the chronical, too.

5.1 Semantic Relations

Clearly, we would expect that up-to-dateness of the chronical is influenced by
the up-to-dateness of the breaking news page. This is because the chronical
is (indirectly) semantically related to the breaking news page.

We use the hypertext model as basis for representing semantic relations,
similarly to [8]. Semantic relations are represented via semantic links, which
are treated as first-class entities connecting source documents with target doc-
uments. A semantic link can connect multiple source documents to multiple
target documents. 7 The semantic structure of a Web site (see Fig. 6) is
represented through a bipartite graph, where ellipses represent documents
and rectangles represent semantic links. Source and target documents, re-

7 Notice that this is different from embedded links in HTML pages. Treating links as first-
class entities gives us much more flexibility, because it supports multiple link structures on
the same documents without altering the documents themselves.

48

Hu, Lauck, Scheffczyk

spectively, of a semantic link are denoted by directed edges. Our idea is to
propagate changes in the up-to-dateness of the source documents to the target
documents. The example contains bidirectional links only; our approach is,
however, independent of link arity.

Currently, semantic links are added by hand. Often, they are in reverse
direction to the usual link structures in Web pages; e.g., the “Today’s News”
page links to the breaking news page and the interview. In the future, we plan
to derive semantic links, e.g., based on embedded HTML links or semantic
similarity via latent semantic linking techniques [14].

Semantic links are typed by the number of source and target documents,
respectively. A semantic link of type τn,m has n source documents and m

target documents. 8 This type is associated to an up-to-dateness propagation
function Jτn,mK : R

n → R
m, which given up-to-dateness changes in the source

documents calculates up-to-dateness changes of the target documents. On an
update of a source document d, we can propagate its up-to-dateness changes
along the edges of the semantic graph. Notice that we can reach a target
document d′ at different paths origining from d, each of which may require to
change the up-to-dateness of d′ differently. Also, circles in the semantic graph
are quite usual for Web sites and are, therefore, permitted in our setting.

5.2 Propagating Up-to-dateness Changes

Consider that a document d has been updated to such an extent that its
freshness changes. Then we immediately update d’s up-to-dateness according
to the change of its freshness, which naturally determines d’s up-to-dateness
change ∆(d). Up-to-dateness changes of other documents are set to zero.
Our propagation algorithm traverses the semantic graph, where it regards d

as root. Each edge that has been traversed is marked as “processed.” Each
document node is marked as “processed” if all incoming edges have been
marked as “processed.” That way we avoid running into circles. We traverse
the semantic graph as follows:

• Processing a document node d:
If all incoming edges are marked as “processed,” then update d’s up-to-
dateness according to its up-to-dateness change ∆(d), and process all seman-
tic links emanating from d and mark their edges as “processed.” Otherwise,
process any semantic link targeting d whose edge has not been processed
already. Processing a semantic link will update d’s up-to-dateness change
∆(d) and return to d to further process incoming links or emanating links.

• Processing a semantic link node l of type τn,m:
First, process all source documents of l that have not been processed al-
ready and mark their edges as “processed.” Processing these documents

8 Due to the simplicity of our example document metric D, we do not need to further type
source and target documents. Of course, this may change if we employ a more sophisticated
document metric.

49

Hu, Lauck, Scheffczyk

1
1

2

3

45

6

78
9

14
15

16

17

18

10

1112

13

2

5

4

3

update

Fig. 7. Up-to-dateness propagation of our example breaking news page

will determine their up-to-dateness changes. Second, apply l’s update func-
tion Jτn,mK to the up-to-dateness changes ∆(di) of the source documents
di (i ∈ {1, . . . , n}). This results in m up-to-dateness changes ∆l(d

′

j) for
the target documents d′

j (j ∈ {1, . . . ,m}). Update the (already calculated)
up-to-dateness changes ∆(d′

j) of the target documents d′

j to the maximum
of ∆l(d

′

j) and ∆(d′

j). Third, process all target documents d′

j of l and mark
their edges as “processed.”

Our algorithm is non-deterministic because we do not make any assump-
tions about the order in which nodes are processed. Since up-to-dateness
changes are updated to the maximum, however, our algorithm always yields
the same result, no matter in which order nodes are processed. 9 Notice that
up-to-dateness resembles freshness of “lonely” documents, which are not se-
mantically related to other documents, and as long as no semantically related
document has been changed. Otherwise, the up-to-dateness of a document
may differ from its freshness.

5.3 Propagating Up-to-dateness of our Example Web Site

For example, consider an update of our example breaking news page. Fig. 7
shows a possible traversal of our algorithm through our example Web site. El-
lipses, rectangles, and edges represent the semantic graph as shown in Fig. 6.
“Background Information” links are marked grey, in order to distinguish them
from “Essential Part of” links. Dotted arrows show how our algorithm tra-
verses the graph; they are numbered according to the order in which nodes are
processed. Document nodes are numbered according to the order in which they
are marked as “processed;” i.e., the order in which their new up-to-dateness
is determined.

9 Instead of the maximum, any commutative and associative function can be used here.

50

Hu, Lauck, Scheffczyk

From version eight to nine the effective freshness of the breaking news page
jumps up by five hours (see Fig 3). Given the up-to-dateness propagation
functions

JBackground InformationK(src) = src · 0.5 JEssential Part ofK(src) = src · 0.2

our algorithm yields the following up-to-dateness changes:

∆(Breaking News) = 5.0 hrs ∆(Interview) = 2.5 hrs

∆(Today’s News) = 1.0 hrs ∆(Ukrainian History) = 2.5 hrs

∆(News Chronical) = 0.5 hrs

That is the up-to-dateness of the chronical increases by half an hour.

6 Conclusions and Outlook

This paper describes our approach towards automatic management of up-
to-dateness of documents that are managed by an XML-centric WCMS. We
introduce two measures: the freshness of a document is based on its own his-
tory only; the up-to-dateness of a document also employs semantic relations to
other documents. Freshness of a multiversioned Web document is calculated
w.r.t. a document metric, which detects changes between document versions.
Currently we use a syntactic metric based on the modifications of XML-nodes,
which roughly reflects editing effort. Due to our open architecture, this metric
can be easily replaced by an application-specific semantic metric. Since pre-
and post-processing using XSLT are included, the document metric can be
easily adapted to different human-machine-interfaces (HMI) or user groups.
Up-to-dateness is based on semantic relations between documents. Changes
in up-to-dateness are propagated along these relations.

In the future, we plan to extend our WCMS by recording the document
process time automatically. Not only in this way more data on the real ef-
fort for document processing by different users should be collected for further
validations of the document metrics. We believe that such metrics are a key
success factor for managing document processes as one of the crucial parts of
business process management (BPM). We also want to learn more document
authoring patterns for which content management systems and collaborative
authoring systems can be optimized. Monitoring the deviation between fresh-
ness and up-to-dateness of a document might also contribute to authoring
patterns. For comparing XML documents we consider to use other tools like
[4] and metrics that are based on the semantics of documents like [13,14].
Also, we will implement a plug-in mechanism into our WCMS that supports
easy integration of user-defined document metrics. For easier maintenance we
currently stick to a central WCMS. It would be interesting to see how our ap-
proach scales to distributed Web sites, which use persistent URLs to address
Web documents.

51

Hu, Lauck, Scheffczyk

In addition, we plan to integrate our up-to-dateness approach with au-
tomated consistency management as offered by CDET [20] or xlinkit [16].
Clearly, up-to-dateness changes give rise to consistency constraints based on
semantic links. For example, consider a German translation of our breaking
news page, which should be as up to date as the English original.

In summary, we think that our approach provides a good basis to manage
real up-to-dateness of Web documents beyond the simple “last-modifying”
time stamp, which has proven insufficient for many purposes.

References

[1] T. Berners-Lee. Information management: A proposal, 1989.
www.w3.org/History/1989/proposal.html.

[2] B. E. Brewington and G. Cybenko. How dynamic is the Web? In Proc. of the

9th Int. World Wide Web Conf., Amsterdam, The Netherlands, 2000. W3C.

[3] A. Broder, S. Glassman, M. Manasse, and G. Zweig. Syntactic clustering of the
Web. In Proc. of the 6th Int. World Wide Web Conf., pages 391–404, Santa
Clara, CA, 1997. W3C.

[4] G. Cobena, S. Abiteboul, and A. Marian. Detecting changes in XML
documents. In Proc. of the 18th Int. Conf. on Data Engineering, San Jose,
CA, 2002. IEEE CS Press.

[5] C. Dyreson, H.-L. Lin, and Y. Wang. Managing versions of Web documents
in a transaction-time Web server. In Proc. of the 13th Int. World Wide Web

Conf., pages 422–432, New York, NY, 2004. W3C.

[6] D. Fetterly, M. Manasse, M. Najork, and J. Wiener. A large-scale study of the
evolution of Web pages. In Proc. of the 12th Int. World Wide Web Conf., pages
669–678, Budapest, Hungary, 2003. W3C.

[7] A. France et al. RichTextEdit, 2003. www.richtext.org.uk/.

[8] S. C. Gupta, T. N. Nguyen, and E. V. Munson. The software concordance: Using
a uniform document model to integrate program analysis and hypermedia. In
Proc. of 10th Asia-Pacific Software Engineering Conf., pages 164 – 173, Chiang
Mai, Thailand, 2003. IEEE CS Press.

[9] J. Hand. Feasibility of using citations as document summaries. PhD thesis,
Drexel University, 2003.

[10] B. Hu and F. Lauck. Prototype of a Web and XML based collaborative
authoring system. In Proc. of the Int. Conf. on Computing, Communications

and Control Technologies, volume IV, pages 79–84, Austin, TX, 2004. IIIS.

[11] A. Kirby, P. Rayson, T. Rodden, I. Sommerville, and A. Dix. Versioning the
Web. In 7th Int. Wkshp. on Software Configuration Management, pages 163–
173, Boston, MA, 1997.

52

Hu, Lauck, Scheffczyk

[12] B. Krieg-Brückner, A. Lindow, C. Lüth, A. Mahnke, and G. Russell. Semantic
interrelation of documents via an ontology. In DeLFI 2004: Die e-Learning

Fachtagung Informatik, Tagung der Fachgruppe e-Learning der Gesellschaft für

Informatik e.V., pages 271–282. Gesellschaft für Informatik e.V., 2004.

[13] N. Littlestone. Learning quickly when irrelevant attributes are abound: A new
linear threshold algorithm. Machine Learning, 2:285–318, 1988.

[14] A. Macedo, M. Pimentel, and J. Guerrero. Latent semantic linking over
homogeneous repositories. In Proc. of the 2001 ACM Symp. on Document

engineering, pages 144–151, Atlanta, GA, 2001. ACM Press.

[15] Microsoft Corp. XMLDiff 1.0. apps.gotdotnet.com/xmltools/xmldiff/, 2002.

[16] C. Nentwich, L. Capra, W. Emmerich, and A. Finkelstein. xlinkit: a consistency
checking and smart link generation service. ACM Trans. Inter. Tech., 2(2):151–
185, 2002.

[17] K. Nigam and M. Hurst. Towards a robust metric of opinion. In AAAI

Spring Symposium on Exploring Attitude and Affect in Text: Theories and

Applications, Palo Alto, CA, 2004. Stanford University.

[18] A. Ntoulas, J. Cho, and C. Olston. What’s new on the Web? the evolution of
the Web from a search engine perspective. In Proc. of the 13th Int. World-Wide

Web Conf., pages 1–12, New York, NY, 2004. W3C.

[19] G. Salton and M. J. McGill. Introduction to Modern Information Retrieval.
McGraw-Hill, Inc., 1986.

[20] J. Scheffczyk, U. M. Borghoff, P. Rödig, and L. Schmitz. Managing inconsistent
repositories via prioritized repairs. In Proc. of the 2004 ACM Symp. on

Document Engineering, pages 137–146, Milwaukee, WI, 2004. ACM Press. see
also www2-data.informatik.unibw-muenchen.de/cde.html.

53

WWV 2005 Preliminary Version

Validating Scripted Web-Pages

Dr R G Stone 1

Department of Computer Science

Loughborough University

Leicestershire, LE11 3TU, England

Abstract

The validation of XML documents against a DTD is well understood and tools ex-
ist to accomplish this task. But the problem considered here is the validation of
a generator of XML documents. The desired outcome is to establish for a partic-
ular generator that it is incapable of producing invalid output. Many (X)HTML
web pages are generated from a document containing embedded scripts written in
languages such as PHP. Existing tools can validate any particular instance of the
XHTML generated from the document. Howevere there is no tool for validating the
document itself, guaranteeing that all instances that might be generated are valid.

A prototype validating tool for scripted-documents has been developed which uses
a notation developed to capture the generalised output from the document and a
systematically augmented DTD.

Key words: VALIDATION, XHTML, WML, PHP, DTD.

1 Introduction

The validation of a static web-page against a DTD can be achieved by cer-
tain browsers (e.g. Internet Explorer[1]), by web-based services (such as that
offered by W3C[2], WDG[3]) and by commercial products (such as the CSE
HTML Validator[4]).

The problem of validating generators of web pages has been tackled by var-
ious researchers by constructing controlled environments where invalid output
is not possible[5,6,7]. This has been done by controlled macro substitution or
by the design and use of a special purpose language. This solves the problem
neatly for those able and willing to adopt a new strategy but has nothing to of-
fer for the legacy problem which is addressed here. Millions of web documents
exist, scripted using languages like PHP[8], which are capable of generating

1 Email: R.G.Stone@lboro.ac.uk

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Stone

different XML pages each time they are browsed but there is no method by
which the source document itself can be validated.

For presentation the examples used will be of PHP generating WML but
the techniques used apply equally well to other scripting languages and other
XML compliant languages, notably XHTML.

2 Embedded Scripting

A web-page containing server-side scripting must have the script executed be-
fore being passed to the browser. There are several server-side scripting lan-
guages (PHP[8], ASP[9], Perl[10], etc.). At its simplest, a server-side scripting
language generates its output by echo or print commands. The scripted ele-
ments are often embedded among the marked-up text so the code to generate
a minimal WML page using PHP could look like this

<wml>

<?php

echo "<card>";

echo "</card>";

?>

</wml>

In this and subsequent examples, the required <?xml ...> header and the
<!DOCTYPE wml ...> header lines are omitted for brevity. Also note that
PHP code is written inside ‘brackets’ which can be written

<?php ... ?>

and which can, in certain circumstances, be abbreviated to

<? ... ?>

3 Validation against a DTD

The context of this paper is where a script is used to deliver a page that is
valid XML according to a Document Type Definition (DTD)[11]. A DTD
describes the tags that can be used, their attributes and the content that the
tags enclose. As an example, a simplified extract of the WML DTD[12] can
be shown as

<!ELEMENT wml (card+)>

<!ELEMENT card (p*)>

<!ELEMENT p (#PCDATA)*>

This DTD notation can be read as follows. For a document to be a valid
WML document there must be a single wml element which must contain at
least one (+) card element. Each card element may contain zero or more
(*) paragraph elements (p). Finally each paragraph element may contain an

56

Stone

arbitrary amount of ‘Parsed Character Data’ (meaning anything that is not
a tagged element). The part of the DTD which defines attribute structure is
not shown. The output of the script in the previous section would be

<wml><card></card></wml>

and this would therefore be acceptable and be taken to be exercising the right
to have no paragraph elements (p).

4 Informal Validation of Scripted Web-Pages

Here is an example of a PHP script which contains a structured statement (a
loop)

<wml>

<card>

<?

while($i<$limit){

echo "<p>";

...

echo "</p>";

$i++;

}

?>

</card>

</wml>

We might argue informally that, whatever the value of $limit, the result
of this script is valid WML because the while-loop, when executed, will always
generate paragraph tags (<p>, </p>) in pairs and that the <card> tag accepts
any number of such pairs (including none).

A more formal way of approaching this is to capture the output of the
script using the star notation borrowed from regular expressions

<wml> <card> (<p> ... </p>)* </card> </wml>

This may be read as describing the output as a wml tag containing a card
tag which in turn contains zero or more paragraph tags. It is this output
expression which is ‘checked’ against the WML DTD. The wml element con-
tains exactly one card element (1 or more is allowed) and the card element
contains zero or more paragraph elements (zero or more allowed). The idea
of using regular expression notation to capture the generalised output from a
script is developed further in what follows. However the notation is converted
into XML style so that the result can still be validated by a DTD obtained
by augmenting the original with extra rules. Hence

<wml> <card> (<p>...</p>)* </card> </wml>

will become

57

Stone

<wml> <card> <p list0> <p>...</p> </p list0> </card> </wml>

Other invented tags like <p_list0> will eventually be needed and they will
be referred to as meta-tags.

5 Generalised Output and Augmenting the DTD

A system is envisaged in which the scripted web-page is passed through a
processor to obtain the generalised output expression and the generalised out-
put expression is then validated against a DTD which has been obtained by
augmenting the original DTD with rules involving the meta-tags. The various
repetition and selection control structures in the scripting language will re-
quire appropriate meta-tags to describe their contribution to the generalised
output expression. These are summarised in Table 1. The correspondence
with the regular expression operators used in the DTD which is shown in the
same table will provide the insight into how the DTD should be augmented
to accept the meta-tags.

Continuing the example in the previous section, if a scripted while loop
has produced

<p list0> <p>...</p> </p list0>

the DTD will need to be augmented to accept this as a replacement for

<p>...</p> <p>...</p> ... <p>...</p>

For this example it would be sufficient to replace all occurrences of p* in the
DTD with (p*|p_list0) and to add the definition

<!ELEMENT p_list0 (p)>

Concept RegExp Program Control Example Code Meta-tag

0,1,2,... * while loop while()... <t_list0>

1,2,3,... + repeat loop do...while() <t_list1>

option ? short conditional if()... <t_option>

choice | long conditional if()...else... <t_choices>

Table 1
A table of correspondences between regular expression operators, program control

structures and meta-tags

However only the simplest case has been considered so far where a sequence
of literal paragraph elements has been created entirely by a simple while loop.
In the more general case a script may be written to generate a sequence of
paragraph elements using any mixture of literal tags, loops and conditionals.

58

Stone

The following example is more realistic as it creates a sequence of paragraph
elements via a sequence involving literals, a loop and a conditional:

<wml>

<card>

<?

echo "<p>...</p>";

while(...){

echo "<p>...</p>";

}

if(...)echo "<p>...</p>";

?>

</card>

</wml>

In this case the generalised output expression will look like

<wml>

<card>

<p>...</p>

<p_list0>

<p>...</p>

</p_list0>

<p_option>

<p>...</p>

</p_option>

</card>

</wml>

To express this generality the entity p0 is introduced so that p∗ in the
DTD is replaced by (%p0;)∗ with the definition

<!ENTITY % p0 (p|p_list0|p_list1|p_option|p_choices) >

Under this definition (%p0;)∗ means a sequence of zero or more elements each
of which contributes zero or more paragraph elements.

This rule must be repeated for all tags (t), so that wherevert∗ occurs in
the DTD it is to be replaced by %t.star; under the definitions

<!ENTITY % t.star (%t0;)* >

<!ENTITY % t0 (t|t_list0|t_list1|t_option|t_choices) >

Note that in (...|t|...)*, where the * applies to various alternatives includ-
ing t, the t should also be replaced by the entity %t0.

6 The Augmented DTD

All of the changes to the DTD so far have been motivated by the occurrence
of ‘zero or more’ tagged elements, including meta-tagged elements, in the
output expression which are validated by substituting occurrences of t∗ in

59

Stone

the DTD. Obviously it now remains to look at what other parts of the DTD
might need augmenting. Repeat loops with their signature output of ‘one or
more’ can be captured by the meta-tag t list1 and would be expected to cause
substitutions for t+ within the DTD. Short conditionals (no else part) with
their signature ‘optional’ output can be captured by the meta-tag t option

and would be expected to cause substitutions for t? within the DTD. Long
conditionals (with an else part) have a signature ‘alternative’ output and can
be captured by the meta-tags t choices and t choice like this

<t_choices><t_choice>...this...</t_choice>

<t_choice>...or this...</t_choice></t_choices>

A long conditional would be expected to cause substitutions for any unadorned
instances of t (that is an occurrence of t in the absence of any of the operators
‘*’,‘+’,‘?’) because alternative choices for a single tag t are being offered.

The substitution for t+ in the DTD is more complicated than for t∗ be-
cause it is necessary to ensure that at least one element with tag t is present.
Before considering the substitution in detail, compare the following four entity
definitions:

(i) Zero or more occurrences of elements t, t0 (presented earlier)

<!ENTITY % t0 (t|t_list0|t_list1|t_option|t_choices)>

(ii) One or more occurrences of elements t, t1

<!ENTITY % t1 (t|t_choices|t_list1)>

(iii) Zero or one occurrences of element t, t01

<!ENTITY % t01 (t|t_option|t_choices) >

(iv) Exactly one element t, t11

<!ENTITY % t11 (t|t_choices)>

It is now possible to replace t+ by the entity t.plus under the definition

<!ENTITY % t.plus ((t_option|t_list0)*, %t1; , %t.star;) >

This can be read as defining t.plus to be zero or more elements that cannot be
relied upon to contain a t tag, followed by an element which definitely contains
at least one t tag, followed by zero or more elements which will contribute zero
or more t tags.

The substitution for t? in the DTD is the entity t01 with the definition
already given. The substitution for t is the entity t11 with the definition
already given.

The substitutions to be made to the DTD are summarised in Table 2. To
support these substitutions there are the new entities t_star, t_plus, t0, t1,
t01 and t11 to be added as defined above and finally the new element rules
describing the derived tags t list0, t list1, t option, t choices and t choice for
each tag t.

60

Stone

DTD phrase replacement

t∗ %t.star;

(...|t|...)∗ (...|%t0; |...)∗

t+ %t.plus;

(...|t|...)+ (...|%t1; |...)+

t? %t01;

t %t11;

Table 2
An table of replacements to be made in the DTD

<!ELEMENT t_list0 %t.star; >

<!ELEMENT t_list1 %t.plus; >

<!ELEMENT t_option %t01; >

<!ELEMENT t_choices (t_choice,t_choice) >

<!ELEMENT t_choice %t11; >

Note that the augmentation rules do not alter the meaning of the DTD
when no meta-tags are present. For example if t∗ is replaced by t0∗ and t0 is
defined to be (t|t list0|t list1|t option|t choices) then, in the situation where
no meta-tags (t list0, t list1, t option, t choices) are present, the substitution
degenerates back to t∗.

In the prototype the process of augmenting the DTD is handled by a
prolog program which reads the original DTD, generates the extra ELEMENT
definitions and ENTITY definitions and outputs the augmented DTD. This is
made easier in SWI-prolog[15] by using a pre-written module[16] to read the
DTD.

7 The Script Processor

Earlier it was stated that the script validation system was constructed of
two parts. The first part has to process the script, introduce the meta-tags
and generate the generalised output expression. The second part validates the
output expression against an augmented DTD. In the prototype the first part,
the script processor, has itself been split into two stages. The script processor
first generates an output expression using general meta-tags like list0, list1,
option and choices. A second stage inspects the output of the first and inserts
the correct tags to change these to specific meta-tags like p list0, card option.

In the current implementation the first stage of the script processor is
written in C using LEX[13] and YACC[14] to parse the script and this stage

61

Stone

produces an output expression containing general meta-tags. For example

<wml> <card> <list0> <p>...</p> </list0> </card> </wml>

The second stage is written in prolog and produces specific meta-tags, for
example

<wml> <card> <p list0> <p>...</p> </p list0> </card> </wml>

8 Current implementation

The current implementation for PHP scripts producing WML and XHTML
works perfectly well on a large class of scripts. However, if it fails to validate a
script, it is not necessarily the case that the script is capable of emitting invalid
output. The weak point is the first stage where the meta-tags are inserted.
The problem lies with assuming that a control structure in the script language
will generate a complete tagged structure capable of being described by the
meta-tags. This does not always happen. An example to illustrate this would
be

echo "<p>";

echo "0";

while(...){

echo "</p>";

echo "<p>";

echo "1";

}

echo "</p>";

For any particular execution this script will result in a sequence like

<p> 0 </p> <p> 1 </p> <p> 1 </p> <p> 1 ... </p>

which is valid. However it will be given the following meta-tags

<p> 0 <list0> </p> <p> 1 </list0> </p>

This expression, in which the tags are not properly nested, fails the second
stage of the process (replacing general meta-tags with specific meta-tags) be-
cause the input stage assumes that the input is well-formed XML.

Work has begun to introduce an extra middle stage into the processor
which uses rules along the lines of

ab(cab)*c => abc(abc)* => (abc)+

so that the example above can be manipulated to

<p> 0 </p> <list0> <p> 1 </p> </list0>

The problem with this is that the starting expression is not valid XML
precisely because the tags are not properly nested, so that the expression
cannot be read and manipulated as an XML document. This means that the

62

Stone

manipulation has to be done by treating the expression merely as a linear
mixture of starting tags, ending tags and non tag elements. This makes the
processing harder but not intractable.

A more serious problem exists with the current code which replaces general
meta-tags with specific meta-tags. At present, if the processor meets a opening
<list0> tag it checks all the top-level tags up to the closing </list0> tag
expecting them all to be of the same type (t say) so that the general tag
<list0> can be changed to <t_list0>. This will not always be the case as
in the following example

echo "<p>";

while(...){

echo "...";

echo "
";

}

echo "</p>";

The processor is presented with

<list0>...
</list0>

and cannot find a tag name t to change <list0> to <t_list0>. There are
potential solutions to this. One is that with reference to the DTD it may be
possible to change the scope of the <list0> tags thus:

<list0>...</list0> <list0>
</list0>

Although this changes the meaning of the expression, if the DTD contains a
rule along the lines of

<!ELEMENT p (...|ul|...|br|...)* >

the change will not alter the validity of the expression and so the validity
check on the new expression will obtain the desired result. In practice it has
been possible in many cases like this for the programmer to circumvent the
issue by adding an enclosing or <div> tag within the loop.

A further problem lies with the simplicity of the first stage of the processor.
Because it is largely syntactic in nature it does not, and cannot, actually
execute the script language. This means that if the script generates any tags
by any other method than printing literals (for example by constructing them
by string concatenation or obtaining them as part of a database lookup) then
these tags will not be represented in the generalised output and consequently
these tags will not be validated.

9 Summary

The concept of validating a scripted web-page rather than its output is thought
to be novel and potentially very useful, at least for the large number of legacy
sites which use this technology. A method has been found to validate such

63

Stone

scripts which depends on processing the script to provide a generalised output
expression and then validating this against an augmented DTD. The method
has been prototyped for PHP scripts generating WML and XHTML. The
method is readily applicable to any other combination of procedural scripting
language and XML-based output.

Although the method can validate a large class of scripts it has its limita-
tions. The processor which produces the generalised output expression has to
be able to recognise where the script is generating tags. The current proto-
type requires these to be literal text within an echo/print command and not
‘hidden’ by string manipulation operators or resulting from database lookup.
The current prototype also requires control statements within the script to
generate well-formed XML, although there are plans to extend the processor
to accommodate non well-formed output in situations where special rules can
be applied which are derived from regular expression equivalences.

References

[1] using Internet Explorer as a validator:
http://www.w3schools.com/dtd/dtd validation.asp.

[2] W3C validation service: http://validator.w3.org/.

[3] WDG validation service: http://www.htmlhelp.com/.

[4] CSE validator: http://www.htmlvalidator.com.

[5] JWIG: http://www.brics.dk/JWIG.

[6] CDuce: http://www.cduce.org/.

[7] XDuce: http://xduce.sourceforge.net/.

[8] PHP main web-site: http://www.php.net.

[9] ASP web reference: http://msdn.microsoft.com/asp/.

[10] PERL web reference: http://www.perl.com/.

[11] DTD web reference: http://www.w3schools.com/dtd/default.asp.

[12] WML DTD web reference: http://www.wapforum.org/DTD/wml 1 1.dtd.

[13] LEX, Unix Programmers Manual (see also web reference:
http://dinosaur.compilertools.net/.

[14] YACC, Unix Programmers Manual (see also web reference:
http://dinosaur.compilertools.net/.

[15] SWI-Prolog web reference: http://www.swi-prolog.org/.

[16] SWI-Prolog SGML/XML parser package web reference:
http://www.swi-prolog.org/packages/sgml2pl.html.

64

http://www.w3schools.com/dtd/dtd_validation.asp
http://validator.w3.org/
http://www.htmlhelp.com/
http://www.htmlvalidator.com
http://www.brics.dk/JWIG
http://www.cduce.org/
http://xduce.sourceforge.net/
http://www.php.net
http://msdn.microsoft.com/asp/
http://www.perl.com/
http://www.w3schools.com/dtd/default.asp
http://www.wapforum.org/DTD/wml_1_1.dtd
http://dinosaur.compilertools.net/
http://dinosaur.compilertools.net/
http://www.swi-prolog.org/
http://www.swi-prolog.org/packages/sgml2pl.html

Testing web applications in practice

Javier Jesús Gutiérrez, Maria José Escalona, Manuel Mejías, Jesús Torres

Department of Computer Languages and Systems.
University of Seville.

{javierj, escalona, risoto, jtorres}@lsi.us.es

ABSTRACT

Software testing process is gaining importance at same time that size and complexity of software are

growing. The specifics characteristics of web applications, like client-server architecture, heterogeneous
languages and technologies or massive concurrent access, makes hard adapting classic software testing
practices and strategies to web applications. This work exposes an overview of testing processes and
techniques applied to web development. This work also describes a practical example testing a simple
web application using only open-source tools.

1. INTRODUCTION

Internet gives to developers a new and innovative way to build software. Internet also allows the

access of millions of user to a web application [4]. Thus, problems in a web application can affect to
millions of users, cause many costs to business [2] and destroy a commercial image.

The Business Internet Group of San Francisco undertook a study to capture, assess and quantify the
integrity of web applications on 41 specific web sites. According to the report, of those 41 sites, 28 sites
contained web application failures [14]. Thus, software testing acquires a vital importance in web
application development.

First web applications had a simple design based on static HTML pages. Nowadays, web
applications are much more complex and interactive with dynamic information and customized user
interfaces. Design, support and test modern web applications have many challenges to developers and
software engineers.
 This work is organized as follow. Section 1 defines some basic concepts used in this work, shows the
basic aspects of a client-server web application and introduces software testing process. Section 2
describes a simple web application used as example in this work. Section 3 describes how to make unit
testing over a web application. Section 4 describes how to make integration testing over a web
application. Section 5 resumes conclusions and future work.

1.1. Definitions

A web page is all kind of information that can be displayed into a browser window [2]. A web page
uses to be composed by HTML code, generated statically or dynamically, or by client-side executable
components, like Macromedia Flash modules or Java Applets.

A web site is a group of web pages, where the information of every page is semantically related and
syntactically related by links among them. User access to a web site is made by HTTP requests. Client-
side user interface uses to be a browser program running over a personal computer (PC, Mac, etc.).

A web application is built applying heterogeneous technologies like client-side scripting languages
included into HTML, client-side components like Java applets, server-side scripting languages like PHP
or PERL, server-side components like Java Servlets, web services, databases servers, etc. All these
heterogeneous technologies have to work together, obtaining a multi-user, multiplatform application.

65

1.2. Client-Server Architecture in web applications

Functioning of a web application is similar to classic client-server application with thin client, as
showed in Figure 1. When a user writes a web address in a browser, this one acts like a client, requesting
a file to a server accessible by Internet. Server processes the request and sends the file. Client, at the time
to receive the file, process its content and shows them.

Client Server

Request

Answer

Figure 1. Static web application

First web applications were composed only by static web pages. They have not the possibility to
modify their content depending by date, user, or number of requests. The user always received the same
file with the same information into it. Actually, as showed in Figure 2, it is possible to build web pages
dynamically, changing their information depending of many factors.

Client Server

Request

Answer

Server-side code

Database
server

Figure 2. Dynamic web application..

Client-Server architecture in Figure 2 is the same that Client-Server architecture in Figure 1. Main
different is that the server in figure 2 has two elements, one dedicated to receive requests and answer to
them, and other dedicated to execute web application and generate HTML dynamically.

1.3 An overview of software testing process

Nowadays, test process has became in a vital task in development process of all kind of software
systems [3]. It is needed to make a classification [1] of testing, the moment to apply them and their
objectives before expose how to apply test process to web applications. Table 1 shows this classification.

66

Kinds of
tests

Moment to apply Description

Unit testing. During building of
software system.

Unit testing verifies design and functionality of every component of
the system.

Integration
testing.

During building of
software system.

Integration testing verifies the union among system components
through their interfaces and their functionality.

System
testing.

After building of software
system.

System testing verifies in depth the functionality of the system, as a
black box, checking that all requirements have been implemented in
the correctly.

Implantation
testing.

During production
environment implantation.

Implantation testing verifies the correct function of the system in the
real production environment.

Acceptance
testing.

After software system
implantation.

Acceptance testing verifies that system has all requirements expected
and satisfies the needs of the user.

Regression
testing.

During modify Software
system.

Regression testing verifies that changes in code do not generate
unexpected errors.

Table 1. Testing classification.
Unit and integration testing verifies components of the system. System, implantation and acceptance

testing verifies the entire system as a black box, from different points of view. This word is focused in
unit and integration test only.

1.4. Related work

There are several works describing how to test a web application. For example, Liu [16] considers
each web application component as an object and generates test cases based on data flow between those
objects. Ricca [15] proposes a model based on the Unified Modeling Language (UML), to enable web
application evolution analysis and test case generation. Wu [17] defines a generic analysis model that
characterizes both static and dynamic aspects of web based applications. This technique is based on
identifying atomic elements of dynamic web pages that have static structure and dynamic contents.
Elbaum [18] explores the notion that user session data gathered as users operate web applications can be
successfully employed in the testing of those applications.

This paper does not proposal a new web test model but a set of techniques to test web component.
These techniques can be used in any web test model proposal to implemented test cases. These techniques
can be applied to test both client-side and server-side components and they are useful to put test model in
practice.

2. PRACTICAL CASE

This section describes a simple web application to insert customers in a database. In client-side,

application is composed of three web pages: a form to insert customers, a web page with a message if
insertion was possible and another web page with a message if insertion was not possible. In server-side,
application is composed of a MySQL [8] database server and a PHP [9] insertion script. Figure 3 shows
these components .

67

Client Server

Customers
form MySQL

Insert
customer

Error - Customer
does not stored

Customer
successfully stored

Validation

Figure 3. Insert customer web application components.

Figure 4 shows captures of HTML web pages of the application.

Figure 4. Insert customer form.

Validation code, written in JavaScript and included into HTML form, will verify that none obligatory
field will be empty.

This application stores customers in a MySQL table. SQL code to create customers table are showed
in Figure 5.

CREATE TABLE Customers(Id BIGINT(20)
 UNSIGNED NOT NULL AUTO_INCREMENT
 PRIMARY KEY,
Entity VARCHAR(50) NOT NUL L,
Activity VARCHAR(250) NOT NULL,
Address VARCHAR(50) NOT NULL,
City VARCHAR(50) NOT NULL,
ZIP_Code VARCHAR(10) NOT NULL,
Telephone VARCHAR(50) NOT NULL,
Contact_person VARCHAR(50),
Contact_phone VARCHAR(10),
Observations VARCHAR(250));

Figure 5. Customer SQL code.

68

To test this application, we will write, at first time, a set of unit tests to verify client-side components
and server-side components. At second time, we will write an integration test to verify the correct
working of customer form and insertion script together.

3. UNIT TESTING

Objective of unit testing is to verify the functionality of every component in isolation. To do this, we
are going to divide components in two sets: client-side components (web pages, JavaScript code, etc.) and
server-side components (server-scripts, databases, etc.) [1]. Each component set will have its own testing
strategy and tools. Division in our example web application is showed in Figure 6.

Client Server

Error - Customer
does not stored

Customer
successfully stored

Validation

Customers
form MySQL

Insert
customer

Figure 6. Client side and server side components.

Client-side components are downloaded and executed in client web browser. Server-side
components are executed in server and their results are sent to client. Section 3.1 describes techniques and
tools to test server-side components. Section 3.2 describes techniques and tools to test client-side
components.

3.1. Server-side testing

 The strategy to test server code is similar to strategy to develop unit testing in not-web applications.
Main idea is to write a code fragment to execute the code under test with a set of test values and compares
it result with expected results. In our sample web application we are going to write a test script in PHP.
 There are many open-source tools to make easy and automatist this process. In general, all tools
implements JUnit architecture [11]. A list of xUnit tools can be found in [7]. We have selected PEAR
PHPUnit [13], among all PHP xUnit available.
 The example web application has a function to insert a customer with one expected parameter with a
table with all information about customer. This function returns a value that indicates if the client was or
was not inserted. The prototype of this function is shown in Figure 7. Test case will invoke function in
figure 7 with a test customer and will check result returned.

// $result is TRUE if customer was added into database
// and FALSE if does not.
function insertCustomer($customer)
{
 //...
 return $result;
}

Figure 7. InsertCustomer function prototype.
 The unit test is divided in two actions. These actions are described in Table 4.

69

Step Action Verification
1 To call function “insertCustomer” with a test

customer.
To verify that function result is TRUE.

2 To search test customer inserted in step 1 in
customer database.

To verify that customer exists in database and its values are
equals those values of test customer.

Table 4. Test steps.
 The PHP scripts which implements this unit test is showed in Figure 8. First line includes PHPUnit
libraries which offer functions similar to JUnit.

<?
 include_once('./PHPUnit/PHPUnit.php');
 include_once('./ InsertCustomerFunction .php');

 class InsertCustomerTest extends PHPUnit_TestCase {

 var $ test_cust omer ;
 function testInsert Customer () {
 $this ->PHPUnit_TestCase("testInsertarUnCliente");
 }
 function setUp() {
 $this ->test_customer ['customer'] = " test_customer ";
 $this ->test_customer ['activity'] = " test_activity ";
 $this ->test_customer ['address'] = " test_address ";
 $this ->test_customer [' city '] = " test_city ";
 $this ->test_customer [' ZIP_Code '] = "00000";
 $this ->test_customer [' telephone '] = "000 -00 -00 -00";
 }
 function testInsert ACustomer () {
 $ result = insert Customer ($this ->test_customer);
 $this ->assertTrue($result);
 }
 function test CustomerInserted (){
 $conn = mysql_connect("localhost", "", "")
 mysql_select_db("C ustomer ")
 $sql = "SELECT * FROM Customer WHERE 'custome r' ='".
 $this ->test_customer ['customer']."'";
 $result = mysql_query($sql)
 $ Customer = mysql_fetch_array($resul) ;
 $this ->assertEquals($this ->test_customer ['customer'],
 $ Customer ['customer'], " Different customers .");
 // ...

 mysql_free_result($result);
 }
}
 echo "<HTML> <BODY> <HR>
 Insert Customer Test .
";
 $suite = new PHPUnit_TestSuite("InsertCustomerTest ");
 $result = PHPUnit::run($suite);
 echo $result -> toStrin g();
 echo "<HR>";
?>

Figure 8. InsertCustomer function unit test.
 If “insertCustomer” function has no error, test script will write an output like figure 9. That output
indicates that test was success.

70

Figure 9. Successfully test.

3.2. Client-side testing

 Objectives of client-side components testing are to verify that HTML is correct and compliments
standards [10] and to verify dynamic components into web pages. For example, we will verify that
HTML satisfied HTML 4.01 Transitional standard and the JavaScript validation code in our example web
application. It is important to fulfil HTML standards to guarantee that a web page is correctly visualized
in different browsers.
 Other unit test that can apply to client-side components are to verify that web pages are correctly
visualized in different browsers, verify user interface usability, etc.

3.2.1. HTML web pages testing

 A HTML web page contains the information that will be displayed and a set of tags that indicates
how that information has to be displayed. Thus, we have to test that every web page in our web
application example satisfied HTML standards proposed by W3C consortium. A HTML validation tools
is available at W3C consortium web site [6]. We have used that tool to verify our pages. Results are
resumed in Figure 10.

Validation form has an option to upload a web page to validate. In our example web application, when customer

form is validated, some errors appeared:

Line 107, column 38 : document type does not allow element "BODY" here
<body bgcolor="#FFFFFF" text="#000000" >
Line 108, column 75 : there is no attribute "BORDERCOLOR"
... cellpadding="0" align="left" bordercolor= "#0066FF">

First error is because of before <body> tag must be </head> tag.
 “Bordercolor” attrib is obsolete and does not complaint version 4.0 of HTML specification [10]. Style sheets must

be used to define color.
Once corrected two errors, validation tool shows next message: “This Page Is Valid HTML 4.01 Transitional!”
The other two web pages have no errors.

Figure 10. Insert customers HTML form test.
 To avoid testing of each web page in isolation and uploading pages one by one, we can use an option
to write and URL and let application to verify all HTML pages in that URL. There are also, applications
that connect with W3C web site.

3.2.2. Testing JavaScript code

 The form to insert customers includes JavaScript code to avoid blank fields. It is necessary to test this
code to verify that its functionality is the expected one and it is able to detect all invalid combinations
possible.

71

 Originally, JavaScript code was included into HTML web form. This one makes hard to test it. So,
JavaScript code was refactorized and moved into its own script file called “validate.js”. Illustration 11
shows a fragment of validation code.

function Validador(CustomerForm) {

if (CustomerForm .customer .value == "") {
alert(" Field \"Customer \" is obligatory .");

 CustomerForm .customer .focus();
 return (false);
 }

 //

 return (true);
}

Ilustración 11.Validate.js fragment code.
 Code showed in Illustration 11 notices if an obligatory field is empty. Code displays a message
window, showed in Figure 12 and Figure 13, and sets form focus in empty field.

Figure 12. An error in customers form.

Figure 13. Alert window detail.

 The first strategy to validate JavaScript code is to apply manual testing. Manual testing can be
performed by a worker who will write all combinations possible and who will verifies that JavaScript
code results are the expected results. This is the simplest solution, but worse too. Manual testing requires
dedication in exclusive of one programmer, allows many errors because it is a very repetitive and bored
task, and it is needed to make again all test every time customers form or JavaScript code changes.
 Another strategy is to write a unit test case to test JavaScript code. Unit test case has to verify that
functionality of “validate.js” is the expected functionality when applying a set of values, in the same way

72

that test written in section 3.1. To test “validate.js” in isolation, it is needed to write an object that
represents form. A fragment of that code is showed in Figure 14.

function customer (value) {
 this.value= value ;
 return(this);
}

function CustomerForm (e, a, d, l, c, t) {
 this. customer =new customer (e);
 this. activity =new activity (a);
 this. address =new address (d);
 this. city =new city (l);
 this.postal _code =new postal _code (c);
 this. telephone =new telephone (t);
 return (this);
}

Figure 14. JavaScript object representing customer form.
 A test to verify validation code using the representation of the form is showed in Figure 15.

<SCRIPT LANGUAGE="JavaScript" SRC="validar.js"></SCRIPT>
<SCRIPT LANGUAGE="JavaScript" SRC=" customerForm .js"></SCRIPT>
<SCRIPT LANGUAGE="JavaScript">
 var form= new Cus tomerForm ("","a", ”d", "l", "c", "t");
 if (Validador(form) == false) {
 alert(" Test failed .");
 } else {
 alert(" Test valid .");
 }
</SCRIPT>

Figure 15. Test of form customer JavaScript code.
 It will be possible to write similar tests based on test described in Figure 15, changing the
position of blank field in customer form creation. Test in Figure 15 verifies that function return expected
value. However, this strategy is not good because. Test does not verify that alert message has expected
text or the form focus will be in the empty field. Even more, test stops after executing “alert” instruction,
so manual verification is still needed. Another problem is that test has to be loaded into the browser to be
executed. This strategy has no advantages from manual test strategy. We still need a programmer who
changes the code, execute the test and verifies that alert message is expected message.
 Other strategies to improve JavaScript testing are to use a JavaScript interpreter instead executing test
in a web browser or to use a mouse-record tool. Improvement of JavaScript testability is a future work.
 This same process can also be done to verify other client-side scripts, like VBScript.

4. INTEGRATION TESTING

 Once verified each components of the system with unit tests, it is time to verify that those
components are able to work right among them. This one is the goal of integration tests.
 In a web application, components in client-side communicate with components in server-side using
HTTP protocol, instead of classic messages to methods or functions. This allows a very low coupling but
makes useless classic xUnit tools to develop integration tests.
 There are two main techniques to develop integration testing in a web application to develop tests
that operates application through it HTML web interface. One technique is using stored macros, and
replaying them to make a test. Macros have to be record again when interface or application changes, so
they are not the best option. Another technique is using an API to analyze HTTP communication. This
API allows to write a program that sends HTTP requests and receives and analyzes their answers. This
second technique is more flexible, and allow to test in depth web pages, but they spend more development
time. We are going to write test based on API to test our web example application.

73

 There are many open-source tools that offer APIs to write integration tools. We have chosen
HttpUnit [6] to write an example. HttpUnit it is written in Java, but we will show that it is possible to use
it to test a PHP web application with a HTML user interface.

4.1. Writing an integration test

 HttpUnit can request a web page in the same way than a web client. HttpUnit offers an interface to
ask if received page includes certain elements and to interact with the elements of the page, by example
navigating through a link. This tool offers almost all functionality of a web browser, like cookies control,
header analysis, GET and POSTS, etc.
 In this point, we are going to write a test with HttpUnit. This test will be a Java class that request
customer form and, later, verifies that the web page received has expected elements.
 Test goes to verify:

 1. Connection with server and customer form requesting.
 2. Verify title of received page to test if it is the expected web page.
 3. Verify if web received page contains customer form.
 4. Verify if form includes all expected fields and assign them test values.
 5. Verify if, when pressing add button, web server answers with expected page.

 Figure 16 shows java code of this test.

import net.sourceforge.jwebunit.WebTestCase;
import com.meterware.httpunit.*;
import com.meterware.servletunit.*;
import java.util.*;
import junit.framework.*;

public class Test CustomerForm extends TestCase {
 public Test CustomerForm () {
 super(" Test CustomerForm ");
 }
 public void testInsert Customer ()
 throws Exception
 {
 WebConversation wc = new WebConversation();
 WebResponse resp = wc.getR esponse("http://localhost/CustomForm.htm");
 Assert.assertEquals(resp.getTitle().compareTo(" Customer Form "), 0);
 WebForm form = resp.getFormWithName(" CustomerForm ");
 Assert.assertNotNull(form);
 form.setParameter(" customer ", " test_cus tomer ");
 form.setParameter(" activity ", " test_activity ");
 form.setParameter(" address ", " test_address ");
 form.setParameter(" city ", " test_city ");
 form.setParameter("postal _code ", "00000");
 form.setParameter("tele phone ", "00 -00 -00");
 WebRequest req = form.getRequest("Submit");
 resp = wc.getResponse(req);
 String output = resp.getText();
 Assert.assertEquals(output.indexOf("Error"), -1);
 }
}

Figure 16. Customer form integration test.
 It will be possible to add an additional validation to verify that testing customer inserted is really
stored into database. This validation can check that insertion script works right when it is called from
HTML form, not only when it is directly called.

74

5. CONCLUSIONS

This work shows how it is possible to build a web application and apply it different testing process

with open-source tools only. All techniques exposed in this work can be easily applied to other web
development platforms like ASP.NET or JSP and Servlets. Some of tests showed in this work are
development with Java over a PHP web application, which demonstrates the interoperability among
technologies and languages that web engineering offers.
 All tools used in this work are free for use and download through Internet and, also, their source code
is accessible, even in commercials tools like MySQL (although free for use depends of license of
application).
 We have seen with our examp le web application, that it is very important to separate different
components of a web application, presentation components like HTML and code components like PHP
scripts, to facility testing process. A good separation among components improves development process,
testing process and maintainability.
 Future lines of investigation from this work are to investigate new tools and strategies to test web
user interfaces built with HTML and JavaScript, study with examples the application of this techniques
and practices in other development platforms like .NET and other components, like Flash user interfaces,
and study strategies to test HTML dynamically generated.

REFERENCES

[1] Ash, L. 2003. The Web Testing Companion: The Insider’s Guide to Efficient and Effective Tests. John

Wiley & Sons, Hoboken, USA.
[2] Ye Wu, Jeff Offutt, Xiaochen Du. 2004. Modeling and Testing of Dynamic Aspects of Web

Applicationsy. Submitted for journal publication
[3] M.J. Escalona, M. Mejías, J.J. Gutiérrez, J. Torres. 2004. Métodos de Testing Sobre La Ingeniería De

Requisitos Web de NDT. IADIS WWW/Internet 2.004. 353-360.
[4] Jeff Offutt et-al. 2004. Web Application Bypass Testing. ISSRE '04
[5] Métrica v3. http://www.csi.map.es/csi/metrica3/
[6] HttpUnit. http://httpunit.sourceforge.net/
[7] Herramientas xUnit. http://www.xprogramming.com/software.htm
[8] MySQL. http://www.mysql.com
[9] PHP. http://www.php.net/
[10] HTML 4.01 Specification. http://www.w3.org/TR/html4/
[11] Junit. http://junit.org/
[12]W3C HTML Validator. http://validator.w3.org/
[13] PEAR PHPUnit. http://pear.php.net/package/PHPUnit/
[14] BIGSF. Government Web Application Integrity. The Business Internet Group of San Francisco,

2003.
[15] F. Ricca, P. Tonella. Analysis and testing of web applications. In Proceedings of the 23rd

international conference on Software Engineering. IEEE Computer Society Press, 2001.
[16] S. Chun, J. Outt. Generating test cases for XML-based web application. In Proceedings of the 12th

International Symposium on Software Reliability Engineering, pages 200–209, Hong Kong,
November 2001.

[17] Y. Wu, D. Pan, M.H. Chen. Techniques for testing component-based software. In Proceedings of the
7th IEEE International Conference on Engineering of Complex Computer Systems, pages 15–23,
Skövde, Sweden, June 2001.

[18] M. J. Harrold, M. L. Soa. Selecting data flow integration testing. IEEE Software, 8(2):58–65, March
1991.

75

WWV 2005 Preliminary Version

Web Categorisation Using Distance-Based
Decision Trees

V. Estruch a C. Ferri a J. Hernández-Orallo a

M.J. Ramı́rez-Quintana a

a DSIC, Universidad Politécnica de Valencia, Camino de Vera s/n, Apdo. 22012,
46071 Valencia, Spain. Email: {vestruch, cferri,jorallo,mramirez}@dsic.upv.es.

Abstract

In Web classification, web pages are assigned to pre-defined categories mainly ac-
cording to their content (content mining). However, the structure of the web site
might provide extra information about their category (structure mining). Tradi-
tionally, both approaches have been applied separately, or are dealt with techniques
that do not generate a model, such as Bayesian techniques. Unfortunately, in some
classification contexts, a comprehensible model becomes crucial. Thus, it would
be interesting to apply rule-based techniques (rule learning, decision tree learning)
for the web categorisation task. In this paper we outline how our general-purpose
learning algorithm, the so called distance based decision tree learning algorithm
(DBDT), could be used in web categorisation scenarios. This algorithm differs
from traditional ones in the sense that the splitting criterion is defined by means
of metric conditions (“is nearer than”). This change allows decision trees to handle
structured attributes (lists, graphs, sets, etc.) along with the well-known nominal
and numerical attributes. Generally speaking, these structured attributes will be
employed to represent the content and the structure of the web-site.

1 Introduction

Etzioni [4] defined Web mining as the use of data mining techniques for ex-
tract information from Web documents and services. Given the large amount
of documents available in the Web, one of the most common task performed
on the Web is the classification of documents into one or more categories. For
instance, this is essential in applications that have to catalog news articles,
sort and filter electronic mail, recommend films or music or search information

1 This work has been partially supported by ICT for EU-India Cross Cultural Dissemination
Project ALA/95/23/2003/077-054 and Generalitat Valenciana under grant GV04B/477 and
CICYT under grant TIN 2004-7943-C04-02.

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Estruch, Ferri, Hernández and Raḿırez

about a topic (search engines). Although some authors distinguish classifica-
tion from categorisation 2 , for the sake of simplicity, in this paper we use both
of them as synonyms since a categorisation problem can be solved by several
classifiers. The simplest approach to the categorisation of Web documents is
to take only the textual part of them into account (Text categorisation). The
basic idea is to classify a document as of class c if certain words relevant to
the c definition are present in the document.

However, Web documents are more than just plain text and the informa-
tion contained in other parts like the hyper-links can also be relevant to the
categorisation process. For instance, if we are classifying sports news, a more
accurate classification can be obtained if our classifier considers that a piece
of sports news contains words like team, play or stadium, or contains links to
other sports news. Therefore, recent research solves this problem by merging
ideas from Web content mining and Web structure mining. For instance, [7]
appends the text of the links to the text of the target page. [1] considers the
text of a Web page along with the text and the category of its neighbouring
pages. Some other approaches are able to handle both the text components
in the pages and the links among them, such as [2], [5], or [6].

In this paper, we study how the DBDT approach fits to the web classi-
fication problem. This method allows us to integrate both the Web content
and the Web structure mining in a unique framework by using structured
data types for representing each component or context feature (title, key-
words, text, links, . . .) found in the pages. This evidence is then used by
the DBDT in that the splitting criterion is defined by means of metric condi-
tions (“is nearer than”) and handle structured attributes. We illustrate that
the method is suitable for this kind of application by applying it to a simple
example of Web classification and we briefly discuss about how the metric
conditions can be expressed in an equivalent but more comprehensible form.

The paper is organised as follows. In Section 2 the DBDT algorithm is
outlined. An illustrative example of our approach is shown in Section 3.
Finally, Section 4 presents some conclusions.

2 Distance Based Decision Trees

In [3] we defined a learning method named Distance Based Decision Trees.
This proposal is based on the use of prototypes and distances to define the
partitions for the decision tree. Our decision tree inference strategy is a mod-
ification of the centre splitting method [8] consisting in to compute a set of
attribute prototypes unlike the other one which takes all the attributes into
account. Basically, for each attribute and for each class, a prototype (that
value which minimises the sum of all the distances from it to the others) is
calculated, considering only the values belonging to that attribute and that

2 The classification is the process of inducing a model in that only one class is assigned to
each document, whereas categorisation concerns with the situation in that a document can
belong to more than one class.

78

Estruch, Ferri, Hernández and Raḿırez

class. Once this process is finished, an attribute is chosen in order to split
the data set. The split proceeds by associating every instance to its closest
attribute prototype. The splitting attribute is selected according to some of
the well-known heuristic functions (gain ratio, GINI index, etc). For this pur-
pose, a metric space is associated to every attribute. Note that the fact of
handling all the attributes as whole entity, just as centre splitting does, turns
the comprehensible model extraction into a harder task, even if the involved
attributes are nominal or numerical.

The result of this adaptation of centre splitting is not very different from
classical decision trees (see the algorithm below), when attributes are either
nominal and numeric, but in our case, we are able to deal with data containing
structured attributes such as sets, lists, or trees.

PROCEDURE DBDT(S, m); // Single Attribute Centre Splitting. Learns a decision tree based on attribute distances

INPUT: A training set S as a set of examples of the form: (x1, . . . , xn), n ≥ 1 where every attribute is nominal,

numerical or structured. A metric space is associated to every attribute. m is the maximum # of children per node.

BEGIN

C ← {Class(e) : e ∈ S} // C is the set of existing classes

If |C| < 2 Then RETURN End If

For each attribute xj:

// Computes two (or more) centres for each class using attribute xj

If V alues(xj , S) < 2 Then CONTINUE End If //next iteration

ProtList← Compute Prototypes(xj , S, m, C).

If Size(ProtList) ≤ 1 Then RETURN End If

Splitj ← ∅ // Set of possible splits for attribute xj

For i ← 1 to length(ProtList) // for all the prototypes

Ŝi ← {e ∈ S : i = Attracts(e, ProtList, xj)} // Ŝi contains the examples attracted by prototype i

Splitj = Splitj ∪ Ŝi // We add a new child to this split

i← i + 1;

End For

End For

BestSplit = ArgmaxSplitj
(Optimality(Splitj)) // GainRatio, MDL, ...

For each set Sk in BestSplit

DBDT(Sk, n) // go on with each child

End For

END

The auxiliary functions Attracts and Compute Prototypes are inherent
to the method. In a nutshell, the function Attracts just determines which
prototype is assigned with a new example and, the function Compute Prototypes

obtains a set of prototypes for each attribute.

3 An illustrative example

The previous step, before running the DBDT algorithm, consists of deciding
what sort of data types are going to be used, as well as their associated metric
functions. Let us consider the following example. A user is interested in seek-

79

Estruch, Ferri, Hernández and Raḿırez

ing sports news from the Internet using a search engine. This search engine
must “decide” automatically which available documents fit the search param-
eters. Thus, this task can be addressed as a two class classification problem.
The information, extracted from an HTML document for this purpose, can be
grouped in these three categories:

• Structure: it refers how the pages from a web site are connected one each
others by means of hyper-links. Formally, it is represented as a graph.However,
we will use a simpler approach but it is in its turn a very common proposal
in the graph mining literature: we represent a graph as a set of ordered pairs
where each pair encodes two linked pages. Concretely, each item in the or-
dered pair will store a set of key words. Also, for the sake of brevity, we use
the well-known symmetric difference between sets as a metric function.

• Content: It deals with the information contained in a web page.Traditionally,
this information is represented as a bag or a vector of words. In our ex-
ample, we only consider one attribute, a set, reflecting the whole content
(Content), and we use an adaptation of the symmetric difference between
sets as a metric function.

• Web use: we mean by web use information the information derived from
the HTTP connection to a web server All these data can be encoded by
means of nominal or numerical attributes. For these types we can use the
discrete metric or the absolute value difference, respectively. In our example,
this attribute is referred by Connections and it contains the number of daily
connections.

The next step is to infer a classifier by training a model from a processed
dataset that contains collected information from some web pages, such as
that included in Table 1.

Id. Structure Content Conn. Class

1 {([Olympics,games],[swim]),([swim],[win]), {(Olympics,30),(held,10) 10 No

([Olympics,games],[boxing]) , ([win],[medal])} (summer,40)}

2 {([Olympics,games],[swim]),([swim],[win]), {(Olympics,15),(summer,20) 20 Yes

([win],[medal])} (Athens,40)}

3 {([football],[Europe]),([Europe],[final]), {(football,20),(champion,10)} 40 No

([final],[best,player])}

4 {([football],[match]),([match],[team,players]), {(football,20),(Europe,10), 40 Yes

([football],[referees]),([match],[results])} (champion,12)}

5 {([football],[match]),([match],[team,players]), {(football,20),(Europe,10)} 40 Yes

([match],[scores])}

Table 1
Information from a web server sample repository.

The set {([Olympics,games],[swim]),([swim],[win]),([win],[medal])} in the Structure
attribute is interpreted in the following way. The first component of the list
stands for words “Olympics” and “games” appear as keywords in a web page.
This page links another one which has “swim” as its only key word. The
reasoning is the same for the second and third components of the set.

80

Estruch, Ferri, Hernández and Raḿırez

If we apply the DBDT algorithm (using an accuracy-based heuristic), we
find that the first attribute to be selected, as the first split, is Connection,
being the values 40 (Conn value for the 4th instance) and 10 (Conn value
for the 1st instance) the prototypes for the class “yes” and “no” respectively.
Iterating the process, attributes Structure and Content are used to split the
left and the right first level nodes, respectively. Finally, the new obtained
nodes are pure and the process stops, getting the distance based decision tree
(see figure below 3).

DATA
SET

DATA
SET

Conn. is nearer than Conn. is nearer than

Structure is
nearer than

Content is
nearer than

Pure node Pure node Pure node Pure node
Class: Yes Class: YesClass: No Class: No

a) b)

23 5
4 1

5

23 5
4 1

1 234

Fig. 1. a) Decision tree after the first split. b) Decision tree after finishing the
process.

Id. Structure Content Conn. Class

{([football],[match]),([match],[players]), {(football,30),(held,10) 36 No

([match],[results])} (Europe,7)}

Table 2
Information from a web server sample repository.

Imagine now that a web site described as in Table 2 is stored in the list
along with other web sites which are candidates to be shown to the customer.
Before listing them directly we should classify the we site repository in order to
filter not suitable information. First, we look inside the connection attribute.
As the number of daily connections is closer to 40 than 10, the instance is
hooked up to the left first-level node. Then, we repeat the same process for
the structure attribute, in this case, the structure of this new web site is more
similar to the structure of the fourth instance in the table than the third one.
Then, this instance would be classified as sport news site, and, consequently,
listed to the user.

Currently, we are thincking over how the metric conditions could be ex-
pressed into terms of patterns associated to the metric function (for instance,
belong to could be a pattern for sets) [9], and obtain a transformed (and more
comprehensible) model containing rules as this one: IF the word “football” ap-
pears in Content and the connections {([football],[match]),
([match],[team,players])} are found in Structure THEN this web-site is a sport
media web-site.

3 The numbers correspond to instance id, and the bold numbers stand for the prototype of
each class for a particular partition.

81

Estruch, Ferri, Hernández and Raḿırez

4 Conclusions

In this paper, we have studied the feseability of DBDT proposal to tackle web
categorisation problems. DBDT has been developed in Java (www.dsic.upv.es/
users/elp/soft/) and tested for both, structured and non structured, well-
known classification problems, showing a really interesting performance. For
this reason, we consider that this algorithm could be applied for more concrete
scenarios, such as categorisation web.

References

[1] S. Chakrabarti, B. Dom, and P. Indyk. Enhanced hypertext categorization using
hyperlinks. In SIGMOD Conference, pages 307–318, 1998.

[2] M. Craven and S. Slattery. Relational learning with statistical predicate
invention: Better models for hypertext. Machine Learning, 43(1/2):97–119, 2001.

[3] V. Estruch, C. Ferri, J. Hernández, and M. J. Ramı́rez. Distance-based decision
tree learning for structured data types. Technical report, DSIC,UPV, 2004.

[4] O. Etzioni. The world-wide web: Quagmire or gold mine? Communications of
the ACM, 39(11):65–68, 1996.

[5] Wen-Chen Hu. Webclass: Web document classification using modified decision
trees.

[6] S. Slattery and T. M. Mitchell. Discovering test set regularities in relational
domains. In Proceedings of the Seventeenth International Conference on Machine
Learning (ICML 2000), pages 895–902, 2000.

[7] A. Sun, E.-P. Lim, and W.-K. Ng. Web classification using support vector
machine. In Proceedings of the 4th Int. Workshop on Web Information and
Data Management, pages 96–99, November 2002.

[8] Chris Thornton. Truth from Trash: How Learning Makes Sense. The MIT Press,
Cambridge, Massachusetts, 2000.

[9] J. Hernández V. Estruch, C.Ferri and M.J. Ramı́rez. Identifying generalisation
patterns for distance-based methods. In 19th Internatinal Joint Conference on
AI,IJCAI05, submitted.

82

WWV 2005 Preliminary Version

Web Accessibility Evaluation Tools: a survey
and some improvements

Vicente Luque Centeno Carlos Delgado Kloos
Jesús Arias Fisteus Luis Álvarez Álvarez

Department of Telematic Engineering

Carlos III University of Madrid

vlc@it.uc3m.es

Abstract

Web Content Accessibility Guidelines (WCAG) from W3C consist of a set of
65 checkpoints or specifications that Web pages should accomplish in order to be
accessible to people with disabilities or using alternative browsers. Many of these
65 checkpoints can only be checked by a human operator, thus implying a very high
cost for full evaluation. However, some checkpoints can be automatically evaluated,
thus spotting accessibility barriers in a very effective manner. Well known tools
like Bobby, Tawdis or WebXACT evaluate Web accessibility by using a mixture
of automated, manual and semiautomated evaluations. However, the automation
degree of these Web evaluations is not the same for each of these tools. Since
WCAG are not written in a formalized manner, these evaluators may have different
”interpretations” of what these rules mean. As a result, different evaluation results
might be obtained for a single page depending on which evaluation tool is being
used.

Taking into account that a fully automated Web accessibility evaluation is not
feasible because of the nature of WCAG, this paper evaluates the WCAG coverage
degree of some well known Web accessibility evaluation tools spotting their weak-
nesses and providing a formalized specification for those checkpoints which have
had fewer automation coverage in nowadays’ tools.

Key words: Automated evaluation, WAI, WCAG, Web
Accessibility, Web site evaluators

1. Introduction

Web Content Accessibility Guidelines (WCAG) 1.0 [1] were defined by W3C
as a set of 14 guidelines and 65 checkpoints that Web pages should accomplish
in order to be accessible to people with disabilities, people using alternative
browsers, or even Web agents, as shown at [15]. However, they were defined

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Luque-Centeno et al.

using high level terms not being focused on the underlying HTML format. As
a result many of those checkpoints require human judgement and they don’t
provide an objective criteria to be followed. This implies that it is not possible
to build a fully automated accessibility evaluator based only on cheap-to-be-
evaluated automatically conditions.

In order to fully determine Web accessibility, some semiautomated and
manual checkpoints should also be evaluated. Thus, we can classify check-
points into the four following groups.

(i) Objectively automated rules are clearly defined and clearly specify
a condition that nobody might reject. Checking whether a set of well
defined mandatory elements and attributes are present within the HTML
markup is a typical checkpoint within this category.

(ii) Subjectively automated rules specify fuzzy conditions that can be
automated, but whose particular non-fuzzy interpretation might be ac-
cepted or rejected by different groups of people. Checking whether a text
is too long is a subjective condition since it mentions a condition which is
fuzzy to evaluate. Even though some people might agree that an alterna-
tive text longer than 150 characters might be rejected as too long, some
other people might not think so. For these kind of subjective automat-
able conditions, W3C has defined a set of heuristics [2] that provide some
help.

(iii) Semi-automated rules, which can not be evaluated automatically, but
tool’s assistance can focus user’s interest on relevant markup.

(iv) Manual rules, which require human judgement. Both semi-automated
and manual rules are very expensive to evaluate and should be kept to a
minimum.

2. Comparison of Web Accessibility Evaluation Tools

One main problem of Web Accessibility evaluation tools is that they provide
a poor coverage of WCAG. Their behaviour consists on addressing only a few
accessibility barriers on Web pages, leaving other barriers as unprocessable.
Thus they can not guarantee that accessibility is achieved, but they can guar-
antee that accessibility is faulty whenever a barrier is found. This weakness
of nowadays’ Web accessibility evaluation tools is mostly based on the nature
of how WCAG were specified.

A major problem, however, is that we can easily find different evaluation
results for a page depending on which tool is being used. The problem is
that, while a checkpoint can be automated in one tool, it probably may be
semi-automated or ignored in other tools. Even though considered in both
tools, since each tool has its own interpretation a condition triggered in a tool
may easily not be triggered in other tools.

Several Web Accessibility tools have been evaluated in this article in order

84

Luque-Centeno et al.

to determine their automation coverage of WCAG 1.0, and some formalized
rules are given as a specification (and implementation) for these tools.

2.1. Tools being evaluated

Web accessibility evaluation tools selected for this comparison are Bobby [12],
Tawdis (Taw) [13] and WebXACT [14] (from the same company of Bobby).
We have chosen these because they are well-known and can be used online for
free. We know of no other similar evaluation tools (except Torquemada [18],
which, sadly, is no longer available) that provide such final results without
human intervention.

2.2. Checkpoints Vs Checkpoints’ conditions

WCAG are very heterogeneous. Many of them imply a condition that only hu-
man judgement may evaluate. Some of them imply a set of several lower level
conditions. In order to properly evaluate, we defined the WCAG checkpoints’
conditions, a set of 103 conditions that perform some more detailed evaluation
that the original 65 WCAG conditions. A WCAG condition may imply 1 or
several WCAG checkpoint’s conditions. For example, checkpoint WCAG 4.1
(Clearly identify changes in the natural language) might imply checkpoint’s
conditions WCAG 4.1a (Use xml:lang attribute for pieces of text in a dif-
ferent language within the same document) and WCAG 4.1b (Use hreflang

attribute on links pointing to documents in a different language).

2.3. Automated coverage of checkpoints evaluation

Table 1 indicates how the 65 WCAG checkpoints can be classified into the
categories previously mentioned according to each tool. Both semi-automated
and manual rules imply human evaluation cost, so our interest is focused
on automated rules only. From a total of 14 possible objectively automated
checkpoints, WebXACT detects 5 of them, Bobby only detects 4, and only a
single one is detected by Taw. This means that, at least 14 - 5 = 9 objectively
automatable checkpoints, some of them provided in the following sections, are
not implemented by any analized tool. Subjectively automated rules are used
in these tools as semi-automated, because the user has no ability to specify
preferences for those subjective conditions, thus requiring human intervention.

Table 2 indicates the same as table 1 , but looking at our 103 WCAG check-
points’ conditions. The number of objectively automated is now significantly
increased for WebXACT and Bobby, having 25 and 24 objectively automated
conditions respectively, but this number is still far from the 43 possible con-
ditions that can be evaluated in this category. This implies that at least 43
- 25 = 18 objectively automatable conditions are not fully evaluated by any
of our tools. The rest is only usable for partial evaluation. Taw has a poor
result of 10 rules from a set of 43.

85

Luque-Centeno et al.

Theoretical Bobby Taw WebXACT

Objectively automated 14 4 1 5

Subjectively automated 2 0 0 0

Semi-automated 31 33 20 33

Purely manual 18 28 44 27

Total 65 65 65 65

Table 1
Comparison of automation of WCAG checkpoints

Theoretical Bobby Taw WebXACT

Objectively automated 43 24 10 25

Subjectively automated 11 0 0 0

Semi-automated 21 30 18 30

Purely manual 28 49 75 48

Total 103 103 103 103

Table 2
Comparison of automation of WCAG checkpoints’ conditions

3. Checkpoints having similar behaviours

From tables 1 and 2 , we determine that, even though our tools might have
similar behaviours for some checkpoints, some other checkpoints clearly have
different behaviours. Prior to see differences, table 3 shows some checkpoint
conditions having the same automated behaviour on all evaluated tools. As
expected, the most well known rule 1.1a (provide alt attribute for images),
is within this set. The second column of table 2 provides a formalized XPath
1.0 [3] and XPath 2.0 [4] expression that can be used to address all the HTML
elements breaking the rule within that page. For example, rule for 1.1a ad-
dresses all images that have no alt attribute, rule for 1.1b addresses all image
buttons without an alternative text, rule for 1.1e addresses all framesets not
providing a noframes section, ...

Rule 3.2: Validate document against a public grammar

According to [16], Web accessibility evaluators are not XHTML [7] validators.
None of our selected tools provide support for validation against a well known
DTD or XML Schema, because there are specific tools (like [11]) for this task
and because accessibility is more than only XHTML validation (and because

86

Luque-Centeno et al.

WCAG # Formalized rule Bobby,WebXACT,Taw

1.1a //img/[not(@alt)] Auto Obj.

1.1b //input[@type=”image”][not(@alt)] Auto Obj.

1.1e //frameset[not(noframes)] Auto Obj.

1.5 //area[not(@alt)] Auto Obj.

7.2a //blink Auto Obj.

7.3a //marquee Auto Obj.

13.2b //head[not(title)] Auto Obj.

Table 3
Some rules with same behaviour in automated evaluators

their authors wanted to make accessibility still applyable for non validated
documents). However, we must say that rule 3.2 from WCAG probably guar-
antees more accessibility than any other rule by itself, because several WCAG
rules are partially based on statements that are automatically achieved when-
ever a document is validated against a DTD or XML Schema. In fact, we
have found that, depending on the flavour of XHTML being used, accessibil-
ity might be easier (or more difficult) to be achieved. We have found that
XHTML 2.0 [10] provides more accessibility features than XHTML Basic 1.0
[8], which itself provides more accessibility features than XHTML 1.1 [9].

Examples of WCAG checkpoints achieved when a proper DTD or XML
Schema is chosen and validated against, are:

• Rule 3.3: Use style sheets to control layout and presentation

• Rule 3.6: Mark up lists and list items properly

• Rule 11.2: Avoid deprecated features of W3C technologies

4. Checkpoints having different results

Tables 4 and 5 provide a summary of the most important differences on
WCAG’s coverage in our evaluated tools. Each row corresponds to an (ob-
jectively or subjectively) fully automatable rule. However, WebXACT and
Bobby only provide a fully automated evaluation on rules 4.3, 9.2a-c, 10.4a-d,
10.5, 12.4b and 13.1a, leaving the others as semi-automated or manual, de-
spite they could be fully automated, as depicted in the second column. Rules
marked up as ”Pseudo” refer to rules that detected a problem only under
particular conditions, but could not evaluate with the same accuracy as the
formalized rule.

Table 4 includes W3C-standards-based rules for specifying when to use
the longdesc attribute (rule 1.1c), when heading elements are used properly

87

Luque-Centeno et al.

WCAG # Formalized rule Bobby,WebXACT Taw

1.1c //img[toolong alt(@alt)][not(@longdesc)] Semi Manual

3.5a //h2[not(preceding::h1)] Pseudo Manual

3.5b See fig 1 Pseudo Manual

3.5c See fig 2 Pseudo Manual

3.5d See fig 3 Pseudo Manual

3.5e See fig 4 Pseudo Manual

4.3 //html[not(@xml:lang)] Auto Obj. Manual

6.4a //*[@onmouseover != @onfocus] Semi Manual

6.4b //*[@onmouseout != @onblur] Semi Manual

7.4, 7.5 //meta[@http-equiv=”refresh”] Semi Manual

9.2a //*[@onmousedown != @onkeydown] Auto Obj. Manual

9.2b //*[@onmouseup != @onkeyup] Auto Obj. Manual

9.2c //*[@onclick != @onkeypress] Auto Obj. Manual

10.4a See fig 9 Auto Obj. Manual

10.4b //textarea[normalize-space(text())=””] Auto Obj. Manual

10.4c See fig 10 Auto Obj. Manual

10.4d See fig 11 Auto Obj. Manual

10.5 See fig 12 Auto Obj. Manual

12.4b See fig 16 Auto Obj. Manual

13.1a See fig 17 Auto Obj. Manual

Table 4
Rules with different behaviour in automated evaluators: WebXACT and Bobby

Vs Taw

(rules 3.5), whether document’s idiom is specified (rule 4.3), when keyboard
and mouse dependant handlers are not paired (rules 9.2), and the detection
of form fields having no label (rule 12.4b) or ambiguous links (rule 13.1a),
among others.

Table 5 indicates that frames should have a description (title attribute).
However, neither Bobby nor Taw require so. This is the only improvement we
have found on WebXACT if compared to Bobby.

On the other hand, table 6 shows a sadly common poor behaviour of
all analized tools with respect to fully automatable rules, that, however, are

88

Luque-Centeno et al.

WCAG # Formalized rule WebXACT Bobby,Taw

12.1 //frame[not(@title)] Auto Obj. Manual

Table 5
Rules with different behaviour in automated evaluators: WebXACT Vs Bobby

and Taw

improperly treated as manual or semi-automated.

WCAG # Formalized rule Theory Tools

3.5f See fig 5 Auto Subj. Manual

4.2a See fig 6 Auto Subj. Manual

6.3b //a[starts-with(@href,”javascript:”)] Auto Obj. Manual

6.3b //area[starts-with(@href,”javascript:”)] Auto Obj. Manual

9.4 See fig 7 Auto Obj. Manual

9.5 See fig 8 Auto Obj. Manual

10.1a //*[@target=” blank”] Auto Obj. Semi

10.1a //*[@target=” new”] Auto Obj. Semi

12.2 //frame[toolong(@title)][not(@longdesc)] Auto Subj. Semi

12.3a See fig 13 Auto Subj. Semi

12.3b See fig 14 Auto Subj. Semi

12.3c //p[toolong p(text())] Auto Subj. Manual

12.4a See fig 15 Auto Obj. Manual

Table 6
Rules with common poor behaviour in automated evaluators

Table 6 includes rules for the detection of Javascript being found on im-
proper attributes (rule 6.3b), improper tabindex (rule 9.4), and improper
accesskey shortcuts (rule 9.5). Table 6 also depicts how to restrict some
popups and other windows appearances (rule 10.1) labels pointing to more
than one form field (rule 12.4a), and many others that are detailed in the
following figures (referred from tables 4 , 5 and 6). It is quite surprising that
none of these very simple checkings were detected by any analized tool, though
they easily could. Only manual or semi-automated support was provided for
these fully automatable rules.

89

Luque-Centeno et al.

Rule 3.5: Use headings properly

Figure 1 specifies an XQuery 1.0 [5] addressing expression for all non properly
used h3 elements. It is necessary that a h1 and h2 properly precede any h3

element. So, this rule will be broken for those h3 having no prior h1 or h2 or
having the nearest h2 prior the nearest h1.

//h3[let $h3:=self::h3 return
let $h2:=$h3/preceding::h2[last()] return
let $h1:=$h3/preceding::h1[last()] return
$h1=() or $h2=() or $h1>>$h2]

Fig. 1. XQuery 1.0 expression for h3 elements breaking WCAG 3.5b

Figures 2 , 3 and 4 provide addressing expressions for improper h4, h5 and
h6 elements respectively, in a similar way as rule from figure 1 .

//h4[let $h4:=self::h4 return
let $h3:=$h4/preceding::h3[last()] return
let $h2:=$h4/preceding::h2[last()] return
let $h1:=$h4/preceding::h1[last()] return
$h1=() or $h2=() or $h3=() or
$h1>>$h2 or $h2>>$h3 or $h3>>$h4]

Fig. 2. XQuery 1.0 expression for h4 elements breaking WCAG 3.5c

//h5[let $h5:=self::h5 return
let $h4:=$h5/preceding::h4[last()] return
let $h3:=$h5/preceding::h3[last()] return
let $h2:=$h5/preceding::h2[last()] return
let $h1:=$h5/preceding::h1[last()] return
$h1=() or $h2=() or $h3=() or
$h4=() or $h1>>$h2 or $h2>>$h3 or
$h3>>$h4 or $h4>>$h5]

Fig. 3. XQuery 1.0 expression for h6 elements breaking WCAG 3.5d

Header elements should not be too long, as defined in figure 5 . If a header
appears to be too long, it should be considered as a paragraph or its size
should be reduced.

Rule 4.2: Use proper abbreviations and acronyms

Abbreviations and acronyms should not be used inconsistently. They should
have unique definitions. Figure 6 detects all abbreviations and acronyms that
provide more than a single definition for a given text. Rule 4.2a, however,
is not enough to guarantee rule 4.2, since it detects improper marked up
acronyms and can not detect whether all possible abbreviations and acronyms
are currently marked up.

90

Luque-Centeno et al.

//h6[let $h6:=self::h6 return
let $h5:=$h6/preceding::h5[last()] return
let $h4:=$h6/preceding::h4[last()] return
let $h3:=$h6/preceding::h3[last()] return
let $h2:=$h6/preceding::h2[last()] return
let $h1:=$h6/preceding::h1[last()] return
$h1=() or $h2=() or $h3=() or
$h4=() or $h5=() or $h1>>$h2 or
$h2>>$h3 or $h3>>$h4 or
$h4>>$h5 or $h5>>$h6]

Fig. 4. XQuery 1.0 expression for h6 elements breaking WCAG 3.5e

(//h1|//h2|//h3|//h4|//h5|//h6)[toolong h(text())]

Fig. 5. XQuery 1.0 expression for header elements breaking WCAG 3.5f

(//abbr | //acronym)[let $a:=self::node() return
count((//abbr | //acronym)[text() = $a/text()]) != 1]

Fig. 6. XQuery expression for abbr and acronym elements breaking WCAG 4.2a

Rule 9.4: Specify a proper tab order

Whenever a tab order being different from the default is being specified,
tabindex attributes should be used consistently. Figure 7 spots all elements
that have a tabindex attribute which is not a proper number or which is
shared by several elements (it should be used uniquely).

//*[@tabindex][let $n:=self::node()/@tabindex return
not(isnumber($n)) or count(//*[@tabindex=$n]) != 1 or
number($n)<1 or number($n)>count(//*[@tabindex])]

Fig. 7. XQuery expression for elements breaking WCAG 9.4

Rule 9.5: Provide proper keyboard shortcuts

Whenever keyboard shortcuts are being specified, accesskey attributes should
be used consistently. Figure 8 spots all elements that have an accesskey

attribute which is not a proper character or which is shared by several elements
(it should be used uniquely).

//*[@accesskey][let $c:=self::node()/@accesskey return
not(ischar($c)) or count(//*[@accesskey=$c]) != 1]

Fig. 8. XQuery expression for elements breaking WCAG 9.5

91

Luque-Centeno et al.

Rule 10.4: Include default, place-holding characters in form fields

Editable (not hidden) form fields different from text areas (i.e, text fields,
radio or checkbox buttons) that have null or no default values are detected
by the XQuery addressing expression from figure 9 . Empty text areas are
detected by the expression of 10.4b from table 6 .

//input[@type!=”hidden”][not(@value) or @value=””]

Fig. 9. XQuery expression for input elements breaking WCAG 10.4a

Select boxes having no selected option by default are detected by expression
from figure 10 . Figure 11 addresses sets of radio buttons where no option
has been checked by default. Though not explicitly declared on WCAG, these
last two rules might also be considered as an extension of rule 10.4.

//select[not(@multiple)][not(.//option[@selected])]

Fig. 10. XQuery expression for select elements breaking WCAG 10.4c

//input[@type=”radio”][let $n:=self::input/@name return
not(ancestor::form//input[@name=$n][@checked])]

Fig. 11. XQuery expression for radio buttons breaking WCAG 10.4d

Rule 10.5: Include non-link, printable characters between adjacent links

Figure 12 addresses all consecutive links that have nothing more that white
spaces between them. If so, several consecutive links might be interpreted as
a single big link. For this rule we use a combination of both XQuery and
XPointer [6].

//a[position() < last()][let $a:=self::a return
normalize-space((end-point($a)/range-to($a/following::a))/text())=””]

Fig. 12. XPointer + XQuery based rule for WCAG 10.5

Rule 12.3: Divide large blocks of information into more manageable groups

The fieldset elements is highly recommended for forms that have several
form fields. It can be used to group several of them which are semantically
related within a same group, thus providing more manageable groups of form
fields. Though it could be a subjectively automated rule (toomany inputs

should be defined with some subjective criteria), both Bobby, WebXACT and
Taw treat this rule as semi-automated, asking a human evaluator whenever a
form addressable by expression from figure 13 is found. The same applies for
rule 12.3b from figure 14 (for non grouped options within a select).

92

Luque-Centeno et al.

//form[toomany inputs(.//input)][not(.//fieldset)]

Fig. 13. XQuery expression for forms breaking WCAG 12.3a

//select[toomany options(option)][not(optgroup)]

Fig. 14. XQuery expression for select elements breaking WCAG 12.3b

Rule 12.4: Associate labels explicitly with their controls

This rule implies two different conditions. Figure 15 addresses all labels which
are not properly used, i.e., that point to more than a single control (rule 12.4a).
Vice-versa, all form fields should have no more than a single label (rule 12.4b).
Otherwise, they can be detected by expression from figure 16 . If both rules
12.4a and 12.4b are followed, there exists a bijective mapping between labels
and form fields, as desirable, so no confusion can be obtained when mapping
labels to controls or asking for control’s labels.

//label[let $l:=self::label return
count((//select|//input|//textarea)[@id=$l/@for]) != 1]

Fig. 15. XQuery expression for labels breaking WCAG 12.4a

(//select|//textarea|//input[@type=”text” or @type=”password” or
@type=”radio” or @type=”checkbox”])[let $ff:=self::node() return
count(//label[@for=$ff/@id]) != 1]

Fig. 16. XQuery expression for form fields breaking WCAG 12.4b

Rule 13.1: Clearly identify the target of each link

It is not possible to automatically determine whether the text of a link can be
understood by itself when read out of context (which is treated in manual rule
13.1b). However, we still can determine if two links are used in a confusing
manner. Figure 17 contains a XQuery expression for finding all links that,
having same text and descriptions, point to different targets.

(//a | //area)[let $a:=self::node() return
(//a | //area)[@title = $a/@title and
text() = $a/text() and @href != $a/@href] != ()]

Fig. 17. XQuery expression for links breaking WCAG 13.1a

5. Conclusions and future work

As a result of this evaluation, we can determine that it is easier to detect
accessibility barriers using Bobby or WebXACT than using Taw. However,
none of these tools provide as much coverage as we could desire. In fact, they
are far away from having a good automated coverage of WCAG. Thus, we are

93

Luque-Centeno et al.

now working on a Web evaluator tool that will have a better coverage and,
since it will be implemented with the XQuery and XPath expressions showed
in this article (among some other similar expressions not appearing in this
article), we hope it will not be very expensive to build.

Normalization is also an important focus, so that we don’t have multiple
rulesets for accessibility depending on which country we are. We hope that
a formalization attempt like ours may help in that direction. Comparison of
WCAG 1.0 and Bobby’s implementation of U.S. Section 508 Guidelines [17]
has lead us to conclude that both rules have a lot of common rules and minor
changes should be added to WCAG 1.0 to include this normative.

There are few tools freely available for accessibility evaluation. Torque-
mada is no longer operative and WebXACT is offered by Bobby’s developers,
something which explains why WebXACT only offers a minor enhancement
from Bobby, the most well known tool in this area. Anyway, different mis-
interpretations of W3C’s WCAG will still occur on future implementations
as long as there is no common formalized interpretation of these rules. Our
proposal is to give some light in this process. That’s why we have redefined
the set of 65 WCAG into a set of 103 rules which are more focused on low
level details than those of WCAG.

6. Acknowledgements

The work reported in this paper has been partially funded by the projects
INFOFLEX TIC2003-07208 and SIEMPRE TIC2002-03635 of the Spanish
Ministry of Science and Research.

References

[1] W3C Web Content Accessibility Guidelines 1.0
www.w3.org/TR/WCAG10

[2] W3C Techniques For Accessibility Evaluation And Repair Tools W3C Working
Draft, 26 April 2000
www.w3.org/TR/AERT

[3] W3C XML Path Language (XPath) Version 1.0 W3C Recommendation 16
November 1999
www.w3.org/TR/xpath

[4] W3C XML Path Language (XPath) 2.0 W3C Working Draft 29 October 2004
www.w3.org/TR/xpath20

[5] W3C XQuery 1.0: An XML Query Language W3C Working Draft 29 October
2004
www.w3.org/TR/xquery

94

Luque-Centeno et al.

[6] W3C XML Pointer Language (XPointer), W3C Working Draft 16 August 2002
www.w3.org/TR/xptr

[7] W3C XHTML 1.0 TM The Extensible HyperText Markup Language (Second
Edition), A Reformulation of HTML 4 in XML 1.0, W3C Recommendation 26
January 2000, revised 1 August 2002
www.w3.org/TR/xhtml1

[8] W3C XHTML Basic W3C Recommendation 19 December 2000
www.w3.org/TR/xhtml-basic

[9] W3C XHTML TM 1.1 - Module-based XHTML, W3C Recommendation 31 May
2001
www.w3.org/TR/xhtml11

[10] W3C XHTML TM 2.0, W3C Working Draft 22 July 2004
www.w3.org/TR/xhtml2

[11] W3C Markup Validation Service
validator.w3.org

[12] Watchfire Bobby Accessibility tool
bobby.watchfire.com/bobby/html/en/index.jsp

[13] CEAPAT, Fundación CTIC, Spanish Ministry of Employment and Social Affairs
(IMSERSO) Online Web accessibility test
www.tawdis.net

[14] Watchfire WebXACT
webxact.watchfire.com

[15] Vicente Luque Centeno, Carlos Delgado Kloos, Luis Sánchez Fernández,
Norberto Fernández Garćıa Device independence for Web Wrapper Agents
Workshop on Device Independent Web Engineering (DIWE’04) 26 July 2004,
Munich

[16] Peter Blair A Review of Free, Online Accessibility Tools
www.webaim.org/techniques/articles/freetools, February 2004

[17] Center for IT Accommodation (CITA) U.S. Section 508 Guidelines
www.section508.gov

[18] Fondazione Ugo Bordoni Torquemada, Web for all
www.webxtutti.it/testa en.htm

95

WWV 2005 Preliminary Version

Automated Web Site Accessibility Evaluation

Shadi Abou-Zahra 1

Web Accessibility Initiative

World Wide Web Consortium

Sophia-Antipolis, France

Abstract

The Evaluation and Report Language (EARL) is an RDF Schema which allows eval-
uation tools to express test results in a machine-readable, platform-independent, and
vendor-neutral format. Describing test results (such as results from automated Web
accessibility checks) using technologies provided by the Semantic Web framework
facilitates the aggregation of test results with readily available parsers, libraries, and
resources. Furthermore, Semantic Web technologies allow authoring tools (such as
editors, content management system, or save-as utilities), Web browsers, search
engines, or other types of applications to elegantly process these test results and
provide more advanced features to the end users.

Key words: Accessibility, Automated Evaluation, Conformance
Testing, Quality Assurance, Validation

1 Introduction

The Web has rapidly evolved to become a key resource for news, information,
commerce, and entertainment. It is continuing to displace traditional sources
of information and other aspects of society such as leisure, education, at the
workspace, civic participation, and government services. However, for some
people with visual, hearing, physical, cognitive, or neurological disabilities,
there are severe barriers on the Web denying them access to fundamental
information and services.

The W3C/WAI Web Content Accessibility Guidelines (WCAG) addresses
accessibility requirements of people with disabilities. It is accompanied by a
set of Techniques documents which explain to Web developers how to imple-
ment accessibility features in different Web technologies such as HTML, CSS,
SVG, or SMIL. In order to determine conformance of Web sites with WCAG,

1 Email: shadi@w3.org

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Abou-Zahra

numerous accessibility checks need to be made on each site. For large or sophis-
ticated Web sites, such conformance testing can be very time cosuming and
costly. This is one of the main motivations for developing EARL; to leverage
the ability and quality of Web accessibility evaluation tools which significantly
reduce the time and effort required to evalute Web sites for accessibility.

This paper will explain how Semantic Web technologies (such as RDF
and OWL) can be used by evaluation tools to describe test results and allow
a whole range of applications to process this data. While the primary aim
of EARL is to enable the exchange of test results between Web accessibility
evaluation and repair tools, it is has been designed to be generic and serve
several other purposes.

2 Anatomy of the Evaluation and Report Language

EARL is a collection of objects (called Classes) and attributes (called Prop-

erties), as well as the relationships between them, all expressed using the
Resource Description Framework (RDF). RDF does not actually define any
domain specific vocabulary but rather a basic set of expressions to allow the
definition of vocabularies. It is similar to XML which does not define ap-
plication specific vocabulary but rather a formal grammar for the syntax of
these; only that RDF also deals with the representation of semantic knowledge
bound to the vocabulary.

2.1 Core Classes

There are four core classes in EARL which define the basic data model of the
language, these are expressed below:

• Assertor
The context information about the test contains information such as who
or what carried out the test, when the test was carried out, or information
about the platform and configuration in which the test was executed.

• Subject
The subject which is being evaluated is usually a Web page but could also
be anything else such as a piece of software code, a document, or an object
which is not available on the Web (e.g. a fax machine).

• Testcase
The test criteria against which a subject is being evaluated could be any
(referenceable) specification, a set of guidelines, a single test from a test
suite, or some other test case.

• Result
The outcomes of a test conducted on a subject can contain information
about the success or fail of the test, the confidence in the obtained results,
the reason for failing, or other attributes.

98

Abou-Zahra

2.2 Extensions

RDF allows Classes and Properties to be subclassed into further classes, while
still retaining backward compatibility. This happens through simple inference
of the class type through inheritance. For example, a fax machine manufac-
turer may want to subclass the Subject to a new class called SAZ-1 in order
to identify a specific model of fax machines which is currently being tested.
Outside this company, other systems can still deduce that SAZ-1 is a subject
(because its parent in the hierarchy is a subject) without really knowing much
more about what SAZ-1 actually is. So, while EARL defines a minimum set
of entities required to describe test results, it does not confine developers from
extending these core classes with domain specific terminology. In fact, EARL
ensures the compatibility of the test results despite such extensions.

3 Current State of Web Accessibility Evaluation Tools

Currently, there is a very broad spectrum of Web accessibility evaluation tools
available but only very little consistency in their features and performance.
Even though there has been substantial development in the quality of these
tools, much more work needs to be done:

• higher degree of precise and reliable automated testing capabilities need to
be achieved in order to reduce time and effort required for large scale or
comprehensive Web site evaluations;

• integration of Web accessibility evaluation tools into existing development
environments (such as editors or content management systems needs) to be
better facilitated;

• more mature user interfaces which can adapt to the requirements of the
visual designers, content authors, programmers, or project managers need
to become standard features.

4 Use cases for the Evaluation and Report Language

In the context of evaluation of Web sites for accessibility, the following use
cases illustrate some of the ways in which the machine readable Evaluation
and Report Language (EARL) can be utilized.

4.1 Combine Reports

Web accessibility evaluation tools vary greatly in their capability to test
WCAG Checkpoints. For example, while some evaluation tools have more
advanced color contrast analysis algorithms, others perform better in text
analysis. EARL provides a standardized data format which allows test results
from automated or semi-automated evaluation tools to be collected into a sin-
gle repository. This enables reviewers to make use of different evaluation tools

99

Abou-Zahra

during a review process and maximize the number of covered Checkpoints.

4.2 Verify Test Results

EARL allows the test results of different Web accessibility evaluation tools to
be compared against each other. For different WCAG Checkpoints, reviewers
can prefer to trust the results from certain evaluation tools more than others.
Test results claimed by evaluation tools can then be weighted according to
these preferences and then verified by comparison against other tools. This
minimizes the rate of false positives (not identifying existing errors) and false
negatives (incorrectly reporting non-existing errors) in evaluation reports.

4.3 Prioritize Results

Data analysis tools can process EARL reports and prioritize test results ac-
cording to different policies. For instance, it may sometimes be desirable to
sort the test results according to their corresponding severity (for example by
matching them to the Priority of the WCAG Checkpoint). In other cases, the
relative cost of repair for an accessibility barrier may be the key by which an
entity may choose to sort the test results. Data analysis tools can output their
reports in EARL format to allow the chaining of EARL enabled tools.

4.4 Provide Data Views

Test results can contain comprehensive information for different end-users.
For example line numbers and detailed error messages for Web developers,
or less verbose technical detail for project managers and executives. Repair
suggestions and educational resources may sometimes be helpful to educate
developers new to Web accessibility, but may also be tedious for more experi-
enced ones. The well defined structure of EARL allows customized data views
to be made from the same set of test results in order to suite the preferences
of the end-users.

4.5 Integrate Authoring Tools

EARL also provides a standardized interface between Web accessibility evalu-
ation tools and authoring tools. Instead of producing reports of the test results
directly for end-users, authoring tools could process these machine readable
reports and assist Web developers in finding and fixing errors. Evaluation
tools could then more easily become vendor neutral plug-ins which can be
integrated into any EARL aware editors or content management systems and
be utilized like spell- or grammar checking tools.

100

Abou-Zahra

4.6 Annotate Web Content

While the ultimate aim is to achieve a universal Web which is accessible to
everyone, EARL reports can also be used to annotate the current state of Web
sites. Search engines or User Agents (such as browsers or media players) can
make use of these reports according to user preferences. For example, some
users may wish not to receive any links to Web pages with flashing content in
their search results or they may prefer the browsers to suppress from displaying
such content. Evaluation tools could either serve as third-party annotation
services or plug-ins for EARL enabled search engines or User Agents.

5 Summary

On the one hand, the Evaluation and Report Language (EARL) is a mere
syntax to structure test results in a standardized way. This enables Web ac-
cessibility evaluation tools to exchange data in a vendor-neutral and platform-
independent environment amongst themselves and among authoring tools,
browsers, or search engines. A common syntax also allows tool results to
be collected, combined, and compared in order to achieve the best possible
performance.

On the other hand, EARL makes use of the well-founded Semantic Web
technologies to add meaning to the formal syntax. The vocabulary defined by
EARL to describe test results is part of a rich framework which allows infer-
ences, queries, and mappings to be made to the reports. Ontologies and rules
can analyze and prioritize test results as well as infer additional evaluation
results indirectly by running queries on the reports.

Which ever aspect we consider, EARL enhances the automated Web site
accessibility evaluation by enabling tools to exchange data in an open form. It
syndicates results between different types of tools to facilitate their integration
into a powerful orchestration. However, EARL is intentionally designed to
address the more generic requirement of Quality Assurance in order to be
applicable and reusable in many other fields as well.

References

[1] World Wide Web Consortium (W3C)
http://www.w3.org/

[2] Web Accessibility Initiative (WAI)
http://www.w3.org/WAI/

[3] Web Content Accessibility Guidelines (WCAG)
http://www.w3.org/WAI/GL/

[4] Evaluation and Repair Tools Working Group
http://www.w3.org/WAI/ER/

101

http://www.w3.org/
http://www.w3.org/WAI/
http://www.w3.org/WAI/GL/
http://www.w3.org/WAI/ER/

Abou-Zahra

[5] Evaluation and Report Language (EARL)
http://www.w3.org/TR/EARL10/

[6] Evaluation and Repair Tools
http://www.w3.org/WAI/ER/existingtools.html

[7] Resource Description Framework (RDF)
http://www.w3.org/RDF/

[8] Web Ontology Language (OWL)
http://www.w3.org/2004/OWL/

[9] Quality Assurance Activity
http://www.w3.org/QA/

[10] Semantic Web Activity
http://www.w3.org/2001/sw/

102

http://www.w3.org/TR/EARL10/
http://www.w3.org/WAI/ER/existingtools.html
http://www.w3.org/RDF/
http://www.w3.org/2004/OWL/
http://www.w3.org/QA/
http://www.w3.org/2001/sw/

WWV 2005 Preliminary Version

Context Sequence Matching for XML

Temur Kutsia 1,2

Research Institute for Symbolic Computation
Johannes Kepler University

A-4040 Linz, Austria

Abstract

Context and sequence variables allow matching to explore term-trees both in depth
and in breadth. It makes context sequence matching a suitable computational
mechanism for a rule-based language to query and transform XML, or to specify
and verify web sites. Such a language would have advantages of both path-based and
pattern-based languages. We develop a context sequence matching algorithm and its
extension for regular expression matching, and prove their soundness, termination
and completeness properties.

Key words: Context variables, Sequence variables, Matching,
Regular expressions, XML querying, Web site verification.

1 Introduction

Context variables allow matching to descend in a term represented as a tree
to arbitrary depth. Sequence variables give terms a flexible arity and allow
matching to move to arbitrary breadth. The ability to explore these two
orthogonal directions makes context sequence matching a useful mechanism
for querying data available as a large term, like XML documents [26].

Context variables may be instantiated with a context—a term with a hole.
Sequence variables may be instantiated with a finite (maybe empty) sequence
of terms. Sequence variables are normally used with flexible arity function
symbols. Besides context and sequence variables we have function and indi-
vidual variables. Function variables may be instantiated with a single func-
tion symbol or with another function variable. Individual variables may be
bound with a single term. Like context and sequence variables, functional
and individual variables can be used to traverse terms in depth and breadth,
respectively, but only in one level.

1 Supported by Austrian Science Foundation (FWF) under the SFB projects 1302 and
1322.
2 Email: kutsia@risc.uni-linz.ac.at

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Kutsia

In this paper we develop a matching algorithm for terms built using flexible
arity function symbols and involving context, sequence, function, and individ-
ual variables. We call it the context sequence matching algorithm underlying
the importance of the context and sequence variables. We prove soundness,
termination, and completeness of the algorithm. It generates a minimal com-
plete set of solutions for the input matching problem. For solvable problems
this set is finite, that indicates that context sequence matching is finitary.

Context matching and unification have been intensively investigated in the
recent past years, see e.g, [9,10,19,22,23,24]. Context matching is decidable.
Decidability of context unification is still an open question [25]. Schmidt-
Schauß and Stuber in [24] gave a context matching algorithm and noted that
it can be used similar to XPath [7] matching for XML documents. Sequence
matching and unification was addressed, for instance, in [2,12,13,16,17,18].
Both matching and unification with sequence variables are decidable. Se-
quence unification procedure described in [17,18] was implemented in the con-
straint logic programming language CLP(Flex) [8] and was used for XML
processing. However, to the best of our knowledge, so far there was no at-
tempt to combine these two kinds of variables in a single framework. The main
contribution of this paper is exactly to develop such a framework and show
its usefulness in XML querying, transformation, and web site verification. In-
corporating regular expressions into context sequence matching problems is
one of such useful features. We give regular expression matching rules that
extend those for context sequence matching and show soundness, termination,
and completeness of such an extension. Regular expressions constrain both
context and sequence variables, i.e., these expressions can be used both on
depth and on breadth in terms, which provides a high degree of flexibility and
expressiveness. Also, we can easily express incomplete and unordered queries.

Simulation unification [4] implemented in the Xcerpt language has a de-
scendant construct that is similar to context variables in the sense that it
allows to descend in terms to arbitrary depth, but it does not allow regular
expressions along it. Also, sequence variables are not present there. However,
it can process unordered and incomplete queries, and it is a full scale unifi-
cation, not a matching. Having sequence variables in a full scale unification
would make it infinitary (see e.g., [18]).

In our opinion, context sequence matching can serve as a computational
mechanism for a declarative, rule-based language to query and transform
XML, or to specify and verify web sites. Such a query language can have
advantages from both path-based and pattern-based languages that form two
important classes of XML query languages. Path-based languages usually al-
low to access a single set of nodes of the graph or tree representing an XML
data. The access is based on relations with other nodes in the graph or tree
specified in the path expression. Pattern-based languages allow access to sev-
eral parts of the graph or tree at once specifying the relations among the
accessed nodes by tree or graph patterns. (For a recent survey over query and

104

Kutsia

transformation languages see [11].) Moreover, with context sequence matching
we can achieve improved control on rewriting that can be useful for rewriting-
based web site specification and verification techniques [1].

Another application area for context sequence matching is mathematical
knowledge management. For instance, it can retrieve algorithms or problems
from the schema library [5] of the Theorema system [6].

We made a prototype implementation of the context sequence matching
algorithm in the rule-based programming system ρLog [21].

The paper is organized as follows: In Section 2 we introduce preliminary
notions and fix the terminology. In Section 3 we design the context sequence
matching algorithm and prove its properties. In Section 4 we introduce rules
for regular expression matching for context and sequence variables. In Sec-
tion 5 we discuss usefulness of context sequence matching for languages to
query and transform XML and to verify web sites. Section 6 concludes.

2 Preliminaries

We assume fixed pairwise disjoint sets of symbols: individual variables VInd,
sequence variables VSeq, function variables VFun, context variables VCon, and
function symbols F . The sets VInd, VSeq, VFun, and VCon are countable. The
set F is finite or countable. All the symbols in F except a distinguished
constant ◦ (called a hole) have flexible arity. We will use x, y, z for individual
variables, x, y, z for sequence variables, F,G,H for function variables, C,D,E
for context variables, and a, b, c, f, g, h for function symbols. We may use these
meta-variables with indices as well.

Terms are constructed using the following grammar:

t ::= x | x | ◦ | f(t1, . . . , tn) | F (t1, . . . , tn) | C(t)

In C(t) the term t can not be a sequence variable. We will write a for the
term a() where a ∈ F . The meta-variables s, t, r, maybe with indices, will
be used for terms. A ground term is a term without variables. A context is
a term with a single occurrence of the hole constant ◦. To emphasize that
a term t is a context we will write t[◦]. A context t[◦] may be applied to a
term s that is not a sequence variable, written t[s], and the result is the term
consisting of t with ◦ replaced by s. We will use C and D, with or without
indices, for contexts.

A substitution is a mapping from individual variables to those terms which
are not sequence variables and contain no holes, from sequence variables to fi-
nite, possibly empty sequences of terms without holes, from function variables
to function variables and symbols, and from context variables to contexts,
such that all but finitely many individual and function variables are mapped
to themselves, all but finitely many sequence variables are mapped to them-
selves considered as singleton sequences, and all but finitely many context

105

Kutsia

variables are mapped to themselves applied to the hole. For example, the
mapping {x 7→ f(a, y), x 7→ pq, y 7→ pa, C(f(b)), xq, F 7→ g, C 7→ g(◦)} is a
substitution. Note that we identify a singleton sequence with its sole member.
We will use lower case Greek letters σ, ϑ, ϕ, and ε for substitutions, where ε
will denote the empty substitution. As usual, indices may be used with the
meta-variables.

Substitutions are extended to terms as follows:

xσ = σ(x)

xσ = σ(x)

f(t1, . . . , tn)σ = f(t1σ, . . . , tnσ)

F (t1, . . . , tn)σ = σ(F)(t1σ, . . . , tnσ)

C(t)σ = σ(C)[tσ].

A substitution σ is more general than ϑ, denoted σ ≤· ϑ, if there exists a ϕ
such that σϕ = ϑ. A context sequence matching problem is a finite multiset
of term pairs (matching equations), written {s1 � t1, . . . , sn � tn}, where
the s’s and the t’s contain no holes, the s’s are not sequence variables, and
the t’s are ground. We will also call the s’s the query and the t’s the data.
Substitutions are extended to matching equations and matching problems in
the usual way. A substitution σ is called a matcher of the matching problem
{s1 � t1, . . . , sn � tn} if siσ = ti for all 1 ≤ i ≤ n. We will use Γ and ∆
to denote matching problems. A complete set of matchers of a matching
problem Γ is a set of substitutions S such that (i) each element of S is a
matcher of Γ, and (ii) for each matcher ϑ of Γ there exist a substitution σ ∈ S
such that σ ≤· ϑ. The set S is a minimal complete set of matchers of Γ if it is
a complete set and two distinct elements of S are incomparable with respect
to ≤·. For solvable problems this set is finite, i.e. context sequence matching
is finitary.

Example 2.1 The minimal complete set of matchers for the context sequence
matching problem {C(f(x)) � g(f(a, b), h(f(a)))} consists of two elements:
{C 7→ g(◦, h(f(a))), x 7→ pa, bq} and {C 7→ g(f(a, b), h(◦)), x 7→ a}.

3 Matching Algorithm

We now present inference rules for deriving solutions for matching problems.
A system is either the symbol ⊥ (representing failure) or a pair Γ;σ, where Γ is
a matching problem and σ is a substitution. The inference system I consists
of the transformation rules on systems listed below. We assume that the
indices n and m are non-negative unless otherwise stated.

T: Trivial

{t� t} ∪ Γ′; σ =⇒ Γ′; σ.

106

Kutsia

IVE: Individual Variable Elimination

{x� t} ∪ Γ′; σ =⇒ Γ′ϑ; σϑ, where ϑ = {x 7→ t}.

FVE: Function Variable Elimination

{F (s1, . . . , sn) � f(t1, . . . , tm)} ∪ Γ′; σ
=⇒ {f(s1ϑ, . . . , snϑ) � f(t1, . . . , tm)} ∪ Γ′ϑ; σϑ,

where ϑ = {F 7→ f}.

TD: Total Decomposition

{f(s1, . . . , sn) � f(t1, . . . , tn)} ∪ Γ′; σ
=⇒ {s1 � t1, . . . , sn � tn} ∪ Γ′; σ,

if f(s1, . . . , sn) 6= f(t1, . . . , tn) and si /∈ VSeq for all 1 ≤ i ≤ n.

PD: Partial Decomposition

{f(s1, . . . , sn) � f(t1, . . . , tm)} ∪ Γ′; σ
=⇒ {s1 � t1, . . . , sk−1 � tk−1, f(sk, . . . , sn) � f(tk, . . . , tm)} ∪ Γ′; σ,

if f(s1, . . . , sn) 6= f(t1, . . . , tm), sk ∈ VSeq for some 1 < k ≤ min(n,m) + 1,
and si /∈ VSeq for all 1 ≤ i < k.

SVD: Sequence Variable Deletion

{f(x, s1, . . . , sn) � t} ∪ Γ′; σ =⇒ {f(s1ϑ, . . . , snϑ) � t} ∪ Γ′ϑ; σϑ,

where ϑ = {x 7→ pq}.

W: Widening

{f(x, s1, . . . , sn) � f(t, t1, . . . , tm)} ∪ Γ′; σ
=⇒ {f(x, s1ϑ, . . . , snϑ) � f(t1, . . . , tm)} ∪ Γ′ϑ; σϑ,

where ϑ = {x 7→ pt, xq}.

CVD: Context Variable Deletion

{C(s) � t} ∪ Γ′; σ =⇒ {sϑ� t} ∪ Γ′ϑ; σϑ, where ϑ = {C 7→ ◦}.

D: Deepening

{C(s) � f(t1, . . . , tm)} ∪ Γ′; σ =⇒ {C(sϑ) � tj} ∪ Γ′ϑ; σϑ,

where ϑ = {C 7→ f(t1, . . . , tj−1, C(◦), tj+1, . . . , tm)} for some 1 ≤ j ≤ m,
and m > 0.

SC: Symbol Clash

{f(s1, . . . , sn) � g(t1, . . . , tm)} ∪ Γ′; σ =⇒ ⊥,

if f /∈ VCon ∪ VFun and f 6= g.

AD: Arity Disagreement

{f(s1, . . . , sn) � f(t1, . . . , tm)} ∪ Γ′; σ =⇒ ⊥,

if m 6= n and si /∈ VSeq for all 1 ≤ i ≤ n.

107

Kutsia

We may use the rule name abbreviations as subscripts, e.g., Γ1;σ1 =⇒T

Γ2;σ2 for the Trivial rule. SVD, W, CVD, and D are non-deterministic rules.

A derivation is a sequence Γ1;σ1 =⇒ Γ2;σ2 =⇒ · · · of system transforma-
tions.

Definition 3.1 A context sequence matching algorithm M is any program
that takes a system Γ; ε as an input and uses the rules in I to generate a
complete tree of derivations, called the matching tree for Γ, in the following
way:

(i) The root of the tree is labeled with Γ; ε.

(ii) Each branch of the tree is a derivation. The nodes in the tree are systems.

(iii) If several transformation rules, or different instances of the same trans-
formation rule are applicable to a node in the tree, they are applied
concurrently.

The leaves of a matching tree are labeled either with the systems of the
form ∅;σ or with ⊥. The branches that end with ∅;σ are successful branches ,
and those that end with ⊥ are failed branches . We denote by SolM(Γ) the
solution set of Γ generated by M, i.e., the set of all σ’s such that ∅;σ is a leaf
of the matching tree for Γ.

Theorem 3.2 (Soundness of M) Let Γ be a matching problem. Then every
substitution σ ∈ SolM(Γ) is a matcher of Γ.

Proof. (Sketch) Inspecting the rules in I one can conclude that for a deriva-
tion Γ; ε =⇒+ ∅;σ the problems Γσ and ∅ have the same set of matchers. It
implies that σ is a matcher of Γ. 2

Theorem 3.3 (Termination of M) The algorithm M terminates on any
input.

Proof. With each matching problem ∆ we associate a complexity measure
as a triple of non-negative integers 〈n1, n2, n3〉, where n1 is the number of
distinct variables in ∆, n2 is the number of symbols in the ground sides of
matching equations in ∆, and n3 is the number of subterms in ∆ of the form
f(s1, . . . , sn), where s1 is not a sequence variable. Measures are compared
lexicographically. Every non-failing rule in I strictly decreases the measure.
Failing rules immediately lead to termination. Hence, M terminates on any
input. 2

Theorem 3.4 (Completeness of M) Let Γ be a matching problem and let ϑ
be a matcher of Γ. Then there exists a derivation Γ; ε =⇒+ ∅;σ such that
σ ≤· ϑ.

Proof. We construct the derivation recursively. For the base case Γ1;σ1 = Γ; ε
we have ε ≤· ϑ. Now assume that the system Γn;σn, where n ≥ 1 and
Γn 6= ∅, belongs to the derivation and find a system Γn+1;σn+1 such that

108

Kutsia

Γn;σn =⇒ Γn+1;σn+1 and σn+1 ≤· ϑ. We have σn ≤· ϑ. Therefore, there
exists ϕ such that σnϕ = ϑ and ϕ is a matcher of Γn. Without loss of generality,
we pick an arbitrary matching equation s � t from Γn and represent Γn as
{s� t} ∪ Γ′

n. Depending on the form of s� t, we have three cases:

Case 1. The terms s and t are the same. We extend the derivation with
the step Γn;σn =⇒T Γ′

n;σn. Therefore, σn+1 = σn ≤· ϑ.

Case 2. The term s is an individual variable x. Then xϕ = t. Therefore,
for ψ = {x 7→ t} we have ψϕ = ϕ and, hence, σnψϕ = ϑ. We extend the
derivation with the step Γn;σn =⇒IVE Γ′

n;σn+1, where σn+1 = σnψ ≤· ϑ.

Case 3. The terms s and t are not the same and s is a compound term.
The only non-trivial cases are those when the first argument of s is a sequence
variable, or when the head of s is a context variable. If the first argument
of s is a sequence variable x then ϕ must contain a binding x 7→ pt1, . . . , tkq
for x, where k ≥ 0 and ti’s are ground terms. If k = 0 then we take ψ =
{x 7→ pq} and extend the derivation with the step Γn;σn =⇒SVD Γ′

n;σn+1,
where σn+1 = σnψ. If k > 0 then we take ψ = {x 7→ pt1, xq} and extend the
derivation with the step Γn;σn =⇒W Γ′

n;σn+1, where σn+1 = σnψ. In both
cases we have σn+1 = σnψ ≤· σnϕ = ϑ. If the head of s is a context variable C
then ϕ must contain a binding C 7→ C for C, where C is a ground context. If
C = ◦ then we take ψ = {C 7→ ◦} and we extend the derivation with the step
Γn;σn =⇒CVD Γ′

n;σn+1, where σn+1 = σnψ. If C 6= ◦ then C should have a
form f(t1, . . . , tj−1, D, tj+1, . . . , tm), whereD is a context and f(t1, . . . , tm) = t.
Then we take ψ = {C 7→ f(t1, . . . , tj−1, C(◦), tj+1, . . . , tm)} and extend the
derivation with the step Γn;σn =⇒W Γ′

n;σn+1, where σn+1 = σnψ. In both
cases σn+1 = σnψ ≤· σnϕ = ϑ. 2

Theorem 3.5 (Minimality) Let Γ be a matching problem. Then SolM(Γ)
is a minimal set of matchers of Γ.

Proof. For any matching problem ∆ the set

S(∆) = {ϕ | ∆; ε =⇒ Φ;ϕ for some Φ}

is minimal. Moreover, every substitution ϑ in S(∆) preserves minimality: If
{σ1, . . . , σn} is a minimal set of substitutions then so is the set {ϑσ1, . . . , ϑσn}.
It implies that SolM(Γ) is minimal. 2

These results are summarized in the main theorem.

Theorem 3.6 (Main Theorem) The matching algorithm M terminates for
any input problem Γ and generates a minimal complete set of matchers of Γ.

Moreover, note that M never computes the same matcher twice.

If we are not interested in bindings for certain variables, we can replace
them with the anonymous variables: “ ” for any individual or function vari-
able, and “ ” for any sequence or context variable. It is straightforward to
adapt the rules in I to anonymous variables: If an anonymous variable occurs

109

Kutsia

in the rule IVE, FVE, SVD, W, CVD, or D then the substitution ϑ in the same
rule is the empty substitution ε. It is interesting to note that a context se-
quence matching equation s� t whose all variables are anonymous variables
can be considered as a problem of computing simulations of s in t that can be
efficiently solved by the algorithm described in [14].

4 Regular Expressions

Regular expressions provide a powerful mechanism for restricting data values
in XML. Many languages have support for them. In [15] regular expression
pattern matching is proposed as a core feature of programming languages for
manipulating XML. The classical approach uses finite automata for regular
expression matching. In this section we show that regular expression matching
can be easily incorporated into the rule-based framework of context sequence
matching.

Regular expressions on terms are defined by the following grammar:

R ::= t | pq | pR1, R2q | R1|R2 | R
∗,

where t is a term without holes, pq is the empty sequence, “,” is concatenation,
“|” is choice, and ∗ is repetition (Kleene star). The symbols “p” and “q” are
there just for the readability purposes. The operators are right-associative; “*”
has the highest precedence, followed by “,” and “|”.

Substitutions are extended to regular expressions on terms in the usual
way: pqσ = pq, pR1, R2qσ = pR1σ, R2σq, (R1|R2)σ = R1σ|R2σ, and R∗σ = (Rσ)∗.

Regular expressions on functions are defined as follows:

Q ::= f | F | C | pQ1, Q2q | Q1|Q2 | Q
∗.

Note that by this definition the hole ◦ is a regular expression on functions,
because it is a (constant) function symbol.

We introduce a new operation � as a special way of applying substitu-
tions on context variables: For any C and σ, C � σ = path(Cσ), where
path(C) is the sequence of symbols from the head of the context C to the hole
in C. For instance, path(f(a, f(g(a), H(b,D(h(c), ◦), b), c))) = pf, f,H,Dq

and path(◦) = pq. We can extend � to regular expressions on functions:
f �σ = fσ, F �σ = Fσ, pQ1, Q2q�σ = pQ1 �σ, Q2 �σq, (Q1|Q2)�σ = Q1 �σ|Q2 �σ,
and Q∗ � σ = (Q � σ)∗.

We write L(E) for a regular language described by the regular expression E.
The only element of L(pq) and L(◦) is the empty sequence pq.

Patterns are atoms of the form Ts in R or Fs in Q, where Ts is a finite,
possibly empty, sequence of terms and Fs is a finite, possibly empty, sequence
of function symbols, function variables, and context variables. Pattern-pairs
are pairs (p, f) where p is a pattern and f is a flag that is an integer 0 or 1.
The intuition behind the pattern-pair (x in R, f) (resp. (C in Q, f)) is that if

110

Kutsia

f = 0 then x (resp. C) is allowed to be replaced with pq (resp. with ◦) if R
(resp. Q) permits. If f = 1 then the replacement is impossible, even if the
corresponding regular expression permits. It will be needed later to guarantee
that the regular pattern matching algorithm terminates. Substitutions are
extended to pattern-pairs as follows: (Ts in R, f)σ = (Tsσ in Rσ, fσ), and
(Fs in Q, f)σ = (Fs � σ in Q � σ, f � σ).

A context sequence regular pattern matching problem is a multiset of match-
ing equations and pattern-pairs of the form:

{s1 � t1, . . . , sn � tn, (x1 in R1, f
1
1), . . . , (xm in Rm, f

1
m),

(C1 in Q1, f
2
1), . . . , (Ck in Qk, f

2
k)},

where all x’s and all C’s are distinct and do not occur in R’s and Q’s. We will
assume that all x’s and C’s occur in the matching equations. A substitution σ
is called a regular pattern matcher for such a problem if siσ = ti, xjσ ∈
L(Rjσ)f1

j
, and C l �σ ∈ L(Ql �σ)f2

l
for all 1 ≤ i ≤ n, 1 ≤ j ≤ m, and 1 ≤ l ≤ k,

where L(P)0 = L(P) and L(P)1 = L(P) \ {pq}.

We define the inference system IR to solve context sequence regular pattern
matching problems. It operates on systems Γ;σ where Γ is a regular pattern
matching problem and σ is a substitution. The system IR includes all the
rules from the system I, but SVD, W, CVD, and D need an extra condition
on applicability: For the variables x and C in those rules there should be no
pattern-pair (x in R, f1) and (C in Q, f2) in the matching problem. There
are additional rules in IR for the variables constrained by pattern-pairs listed
below. The meta-functions NonEmpty and ⊕ used in these rules are defined as
follows: NonEmpty() = 0 and NonEmpty(r1, . . . , rn) = 1 if ri /∈ VSeq ∪ VCon for
some 1 ≤ i ≤ n; 0 ⊕ 0 = 1 ⊕ 1 = 0 and 1 ⊕ 0 = 0 ⊕ 1 = 1.

ESRET: Empty Sequence in a Regular Expression for Terms

{f(x, s1, . . . , sn) � t, (x in pq, f)} ∪ Γ′; σ
=⇒ {f(x, s1, . . . , sn)ϑ� t} ∪ Γ′ϑ; σϑ,

where ϑ = {x 7→ pq} if f = 0. If f = 1 the rule fails.

TRET: Term in a Regular Expression for Terms

{f(x, s1, . . . , sn) � t, (x in s, f)} ∪ Γ′; σ
=⇒ {f(x, s1, . . . , sn)ϑ� t} ∪ Γ′ϑ; σϑ,

where ϑ = {x 7→ s} and s /∈ VSeq.

SVRET: Sequence Variable in a Regular Expression for Terms

{f(x, s1, . . . , sn) � t, (x in y, f)} ∪ Γ′; σ
=⇒ {f(x, s1, . . . , sn)ϑ� t} ∪ Γ′ϑ; σϑ,

where ϑ = {x 7→ y} if f = 0. If f = 1 then ϑ = {x 7→ py, yq} where y is a
fresh variable.

111

Kutsia

ChRET: Choice in a Regular Expression for Terms

{f(x, s1, . . . , sn) � t, (x in R1|R2, f)} ∪ Γ′; σ
=⇒ {f(x, s1, . . . , sn)ϑ� t, (yi in Ri, f)} ∪ Γ′ϑ; σϑ,

for i = 1, 2, where yi is a fresh variable and ϑ = {x 7→ yi}.

CRET: Concatenation in a Regular Expression for Terms

{f(x, s1, . . . , sn) � t, (x in pR1, R2q, f)} ∪ Γ′; σ
=⇒ {f(x, s1, . . . , sn)ϑ� t, (y1 in R1, f1), (y2 in R2, f2)} ∪ Γ′ϑ; σϑ,

where y1 and y2 are fresh variables, ϑ = {x 7→ py1, y2q}, and f1 and f2

are computed as follows: If f = 0 then f1 = f2 = 0 else f1 = 0 and f2 =
NonEmpty(y1) ⊕ 1.

RRET1: Repetition in a Regular Expression for Terms 1

{f(x, s1, . . . , sn) � t, (x in R∗, f)} ∪ Γ′; σ
=⇒ {f(x, s1, . . . , sn)ϑ� t} ∪ Γ′ϑ; σϑ,

where ϑ = {x 7→ pq} and f = 0. If f = 1 the rule fails.

RRET2: Repetition in a Regular Expression for Terms 2

{f(x, s1, . . . , sn) � t, (x in R∗, f)} ∪ Γ′; σ
=⇒ {f(x, s1, . . . , sn)ϑ� t, (y in R, 1), (x in R∗, 0)} ∪ Γ′ϑ; σϑ,

where y is a fresh variable and ϑ = {x 7→ py, xq}.

HREF: Hole in a Regular Expression for Functions

{C(s) � t, (C in ◦, f)} ∪ Γ′; σ =⇒ {C(s)ϑ� t} ∪ Γ′ϑ; σϑ,

where ϑ = {C 7→ ◦} and f = 0. If f = 1 the rule fails.

FREF: Function in a Regular Expression for Functions

{C(s) � t, (C in M, f)} ∪ Γ′; σ =⇒ {C(s)ϑ� t} ∪ Γ′ϑ; σϑ,

where M ∈ (F \ {◦}) ∪ VFun, and ϑ = {C 7→ M(x, ◦, y)} with fresh
variables x and y.

CVREF: Context Variable in a Regular Expression for Functions

{C(s) � t, (C in D, f)} ∪ Γ′; σ =⇒ {C(s)ϑ� t} ∪ Γ′ϑ; σϑ,

where ϑ = {C 7→ D(◦)} if f = 0. If f = 1 then ϑ = {C 7→ F (x,D(◦), y)}
where F, x, and y are fresh variables.

ChREF: Choice in a Regular Expression for Functions

{C(s) � t, (C in Q1|Q2, f)} ∪ Γ′; σ
=⇒ {C(s)ϑ� t, (Di in Qi, f)} ∪ Γ′ϑ; σϑ,

for i = 1, 2, where Di is a fresh variable and ϑ = {C 7→ Di(◦)}.

112

Kutsia

CREF: Concatenation in a Regular Expression for Functions

{C(s) � t, (C in pQ1, Q2q, f)} ∪ Γ′; σ
=⇒ {C(s)ϑ� t, (D1 in Q1, f1), (D2 in Q2, f2)} ∪ Γ′ϑ; σϑ,

where D1 and D2 are fresh variables and ϑ = {C 7→ D1(D2(◦))}, and f1

and f2 are computed as follows: If f = 0 then f1 = f2 = 0 else f1 = 0 and
f2 = NonEmpty(D1) ⊕ 1.

RREF1: Repetition in a Regular Expression for Functions 1

{C(s) � t, (C in Q∗, f)} ∪ Γ′; σ =⇒ {C(s)ϑ� t} ∪ Γ′ϑ; σϑ,

where ϑ = {C 7→ ◦} and f = 0. If f = 1 the rule fails.

RREF2: Repetition in a Regular Expression for Functions 2

{C(s) � t, (C in Q∗, f)} ∪ Γ′; σ
=⇒ {C(s)ϑ� t, (D in Q, 1), (C in Q∗, 0)} ∪ Γ′ϑ; σϑ,

where D is a fresh variable and ϑ = {C 7→ D(C(◦))}.

A context sequence regular pattern matching algorithm MR is defined in
the similar way as the algorithm M (Definition 3.1) with the only difference
that the rules of IR are used instead of the rules of I. ¿From the beginning,
all the flags in the input problem are set to 0. Note that the rules in IR work
either on a selected matching equation, or on a selected pair of a matching
equation and a pattern-pair. No rule selects a patter-pair alone. We denote
by SolMR

(Γ) the solution set of Γ generated by MR.

Theorem 4.1 (Soundness of MR) Let Γ be a regular pattern matching pro-
blem. Then every substitution σ ∈ SolMR

(Γ) is a regular pattern matcher of Γ.

Proof. (Sketch) Inspecting the rules in IR one can conclude that for a deriva-
tion Γ; ε =⇒+ ∅;σ every regular pattern matcher of ∅ is also a regular pattern
matcher of Γσ. It implies that σ is a regular pattern matcher of Γ. 2

Theorem 4.2 (Termination of MR) The algorithm MR terminates on any
input.

Proof. The tricky part of the proof is related with patterns containing the star
“*”. A derivation that contains an application of the RRET2 rule on a system
with a selected matching equation and pattern-pair s0 � t0, (x in R∗0, f) either
fails or eventually produces a system that contains a matching equation s1 �
t1 and a pattern-pair (x in R∗1, 0) where R1 is an instance of R0 and x is the
first argument of s1:

{s0 � t0, (x in R∗0, f)} ∪ Γ;σ

=⇒RRET2 {s0ϑ� t0, (y in R0, 1), (x in R∗0, f)} ∪ Γϑ;σϑ

=⇒+ {s1 � t1, (x in R∗1, 0)} ∪ ∆;ϕ.

113

Kutsia

Hence, the rule RRET2 can apply again on {s1 � t1, (x in R∗1, 0)} ∪ ∆;ϕ.
The important point is that the total size of the ground sides of the match-
ing equations strictly decreases between these two applications of RRET2: In
{s1 � t1} ∪ ∆ it is strictly smaller than in {s0 � t0} ∪ Γ. This is guaranteed
by the fact that (y in R0, 1) does not allow the variable y to be bound with
the empty sequence. The same argument applies to derivations that contain
an application of the RREF2 rule. Applications of the other rules also lead to
a strict decrease of the size of the ground sides after finitely many steps. Since
no rule increases the size of the ground sides, the algorithm MR terminates.2

Theorem 4.3 (Completeness of MR) Let Γ be a regular pattern matching
problem and let ϑ be a regular pattern matcher of Γ. Then there exists a
substitution σ ∈ SolMR

such that σ ≤· ϑ.

Proof. Similar to the proof of Theorem 3.4. 2

Note that we can extend the system IR with some more rules that facili-
tate an early detection of failure, e.g., {f(x, s1, . . . , sn) � f(), (x in R, 1)} ∪
Γ′;σ =⇒ ⊥ would be one of such rules.

5 Context Sequence Matching and XML

We assume the existence of a declarative, rule-based query and transformation
language for XML that uses the context sequence matching to answer queries.
Queries are expressed as (conditional) rules pattern → result if condition.
We do not go into the details, but just mention that regular expression pat-
terns x in R and C in Q can be used as conditions. In such cases context
sequence regular pattern matching can be used to match pattern to the data.
Arithmetic formulae and matchability tests are other instances of conditions.
Note that conditions can also be omitted (assumed to be true). The pattern
matches the data in the root position. One can choose between getting all the
results or only one of them.

To put more syntactic sugar on queries, we borrow some notation from [4].
We write f{s1, . . . , sn} if the order of arguments s1, . . . , sn does not matter.
The following (rather inefficient) rule relates a matching problem in which the
curly bracket construct occurs, to the standard matching problems:

Ord: Orderless

{f{s1, . . . , sn} � t} ∪ Γ′; σ =⇒ {f(sπ(1), . . . , sπ(n)) � t} ∪ Γ′; σ,

if f(s1, . . . , sn) 6= t and π is a permutation of 1, . . . , n.

Moreover, we can use double curly bracket notation f{{s1, . . . , sn}} for
f{ , s1, , . . . , , sn, }. Similarly, we may use the notation with double
brackets and write f((s1, . . . , sn)) for f(, s1, , . . . , , sn,). The match-
ing algorithm can be easily modified to work directly (and more efficiently)
on such representations.

114

Kutsia

Now we show how in this language the query operations given in [20] can be
expressed. (This benchmark was used to compare five XML query languages
in [3].) The case study is that of a car dealer office, with documents from
different auto dealers and brokers. The manufacturer documents list the
manufacturers name, year, and models with their names, front rating, side
rating, and rank; the vehicle documents list the vendor, make, year, color
and price. We consider XML data of the form:

<manufacturer>
<mn-name>Mercury</mn-name>
<year>1999</year>
<model>

<mo-name>Sable LT</mo-name>
<front-rating>3.84</front-rating>
<side-rating>2.14</side-rating>
<rank>9</rank>

</model>
<model>...</model>
...

</manufacturer>

while the dealers and brokers publish information in the form

<vehicle>
<vendor>Scott Thomason</vendor>
<make>Mercury</make>
<model>Sable LT</model>
<year>1999</year>
<color>metallic blue</color>
<option opt="sunroof"/>
<option opt="A/C"/>
<option opt="lthr seats"/>
<price>26800</price>

</vehicle>.

Translating the data into our syntax is pretty straightforward. For in-
stance, the manufacturer element can be written as:

manufacturer(mn-name(Mercury), year(1999),

model(mo-name(SableLT), front-rating(3 .84), side-rating(2 .14), rank(9))).

The query operations and their encoding in our syntax are given below.

Selection and Extraction: We want to select and extract <manufacturer>
elements where some <model> has <rank> less or equal to 10:

((manufacturer(x 1 ,model(y1 , rank(x), y2), x 2)))

→ manufacturer(x 1 ,model(y1 , rank(x), y2), x 2) if x ≤ 10 .

115

Kutsia

Reduction: From the <manufacturer> elements, we want to drop those
<model> sub-elements whose <rank> is greater than 10. We also want to
elide the <front-rating> and <side-rating> elements from the remaining
models.

((manufacturer(x 1 ,

model(y1 , front-rating(), side-rating(), rank(x), y2), x 2)))

→ manufacturer(x 1 ,model(y1 , rank(x), y2), x 2) if x ≤ 10 .

Joins: We want to generate pairs of <manufacturer> and <vehicle> el-
ements where <mn-name>=<make>, <mo-name>=<model>, and <year>=
<year>.

{{manufacturer(x 1 ,mn-name(x1), x 2 , year(x2), x 3 ,C (mo-name(y1)), x 4),

vehicle(z 1 ,make(x1), z 2 ,model(y1), z 3 , year(x2), z 4)}}

→ pair(

manufacturer(x 1 ,mn-name(x1), x 2 , year(x2), x 3 ,C (mo-name(y1)), x 4),

vehicle(z 1 ,make(x1), z 2 ,model(x2), z 3 , year(y1), z 4)).

Restructuring: We want our query to collect <car> elements listing their
make, model, vendor, rank, and price, in this order:

{{vehicle((vendor(y1),make(y2),model(y3), year(y4), price(y5))),

manufacturer((C (rank(x1))))}}

→ car(make(y2),model(y3), vendor(y1), rank(x1), price(y5)).

Hence, all these operations can be easily expressed in our framework.

At the end of this section we give an example how to extract elements from
an XML document that do not meet certain requirements (e.g., miss certain
information). Such problems arise in web site verification tasks discussed
in [1].

We use the data from [1]. Assume that a web site is given in the form of
the following term:

website(members(member(name(mario),surname(rossi),status(professor)),
member(name(franca),surname(bianchi),status(technician)),
member(name(anna),surname(gialli),status(professor)),
member(name(giulio),surname(verdi),status(student))),
hpage(name(mario),surname(rossi),phone(3333),status(professor),

hobbies(hobby(reading),hobby(gardening))),
hpage(name(franca),surname(bianchi),status(technician),phone(5555)),
hpage(name(anna),surname(gialli),status(professor),phone(4444),

teaching(course(algebra))),
pubs(pub(name(mario),surname(rossi),title(blahblah1),year(2003)),
pub(name(anna),surname(gialli),title(blahblah1),year(2002)))).

116

Kutsia

The task is to find those home pages of professors which miss the teaching
information. We formulate the question as the following query:

((hpage(x , status(professor), y))) → hpage(x , status(professor), y)

if (teaching()) 6� hpage(x , status(professor), y).

The condition in the query requires the term (teaching()) not to
match hpage(x , status(professor), y). In (teaching()), the first anony-
mous variable is the anonymous context variable, and the second one is the
anonymous sequence variable. Since context sequence matching is decidable,
the condition can be effectively checked. The result of the query is

hpage(name(mario),surname(rossi),phone(3333),status(professor),
hobbies(hobby(reading),hobby(gardening))).

6 Conclusions

Context sequence matching is a matching for flexible arity terms that contain
context and sequence variables. These two kinds of variables allow match-
ing to explore terms (represented as trees) in two orthogonal directions: in
depth (context) and in breadth (sequence) and, thus, to get more freedom in
selecting subterms. Besides context and sequence variables, terms may con-
tain function and individual variables that allow matching to make a single
step in depth or in breadth. We developed a rule-based algorithm for context
sequence matching and proved its soundness, termination and completeness.
Moreover, we showed that regular restrictions can be easily incorporated in
the rule-based matching framework extending the algorithm with the rules
for matching regular expressions both for context and sequence variables. We
showed soundness, termination and completeness of such an extension.

In our opinion, context sequence matching can serve as a computational
mechanism for a declarative, rule-based language to query and transform
XML, or to specify and verify web sites. The ability of traversing trees both
in depth and in breadth would give such a language the advantages from both
path-based and pattern-based languages. It would easily support, for instance,
a wide range of queries (selection and extraction, reduction, negation, restruc-
turing, combination), parent-child and sibling relations and their closures,
access by position, unordered matching, order-preserving result, partial and
total queries, optionally, construction, multiple results, and other properties.
We expect such a language to have a clean declarative semantics (rule-based
paradigm) and to be visualizable.

References

[1] M. Alpuente, D. Ballis, and M. Falaschi. A rewriting-based framework for web
sites verification. Electronic Notes on Theoretical Computer Science, 2004. To

117

Kutsia

appear.

[2] H. Boley. A Tight, Practical Integration of Relations and Functions, volume
1712 of LNAI. Springer, 1999.

[3] A. Bonifati and S. Ceri. Comparative analysis of five XML query languages.
ACM SIGMOD Record, 29(1):68–79, 2000.

[4] F. Bry and S. Schaffert. Towards a declarative query and transformation
language for XML and semistructured data: Simulation unification. In Proc.
of International Conference on Logic Programming (ICLP), number 2401 in
LNCS, Copenhagen, Denmark, 2002. Springer.

[5] B. Buchberger and A. Crǎciun. Algorithm synthesis by lazy thinking: Examples
and implementation in Theorema. In Proc. of the Mathematical Knowledge
Management Symposium, volume 93 of Electronic Notes on Theoretical
Computer Science, pages 24–59, 2003.

[6] B. Buchberger, C. Dupré, T. Jebelean, F. Kriftner, K. Nakagawa, D. Vasaru,
and W. Windsteiger. The Theorema project: A progress report. In M. Kerber
and M. Kohlhase, editors, Proc. of Calculemus’2000 Conference, pages 98–113,
2000.

[7] J. Clark and S. DeRose, editors. XML Path Language (XPath) Version 1.0.
W3C, 1999. Available from: http://www.w3.org/TR/xpath/.

[8] J. Coelho and M. Florido. CLP(Flex): Constraint logic programming applied
to XML processing. In R. Meersman and Z. Tari, editors, On the Move
to Meaningful Internet Systems 2004: CoopIS, DOA, and ODBASE. Proc.
of Confederated Int. Conferences, volume 3291 of LNCS, pages 1098–1112.
Springer, 2004.

[9] H. Comon. Completion of rewrite systems with membership constraints. Part I:
Deduction rules. J. Symbolic Computation, 25(4):397–419, 1998.

[10] H. Comon. Completion of rewrite systems with membership constraints.
Part II: Constraint solving. J. Symbolic Computation, 25(4):421–453, 1998.

[11] T. Furche, F. Bry, S. Schaffert, R. Orsini, I. Horroks, M. Kraus, and O. Bolzer.
Survey over existing query and transformation languages. Available from:
http://rewerse.net/deliverables/i4-d1.pdf, 2004.

[12] M. L. Ginsberg. The MVL theorem proving system. SIGART Bull., 2(3):57–60,
1991.

[13] M. Hamana. Term rewriting with sequences. In: Proc. of the First
Int. Theorema Workshop. Technical report 97–20, RISC, Johannes Kepler
University, Linz, Austria, 1997.

[14] M. R. Henzinger, T. A. Henzinger, and P. W. Kopke. Computing simulations
on finite and infinite graphs. In Proc. of the 36th Annual Symposium on
Foundations of Computer Science (FOCS), pages 453–462. IEEE Computer
Society Press, 1995.

118

Kutsia

[15] H. Hosoya and B. Pierce. Regular expression pattern matching for XML.
J. Functional Programming, 13(6):961–1004, 2003.

[16] T. Kutsia. Solving and Proving in Equational Theories with Sequence Variables
and Flexible Arity Symbols. PhD thesis, Johannes Kepler University, Linz,
Austria, 2002.

[17] T. Kutsia. Unification with sequence variables and flexible arity symbols and
its extension with pattern-terms. In J. Calmet, B. Benhamou, O. Caprotti,
L. Henocque, and V. Sorge, editors, Artificial Intelligence, Automated Reasoning
and Symbolic Computation. Proc. of Joint AISC’2002 – Calculemus’2002
Conference, volume 2385 of LNAI, pages 290–304. Springer, 2002.

[18] T. Kutsia. Solving equations involving sequence variables and sequence
functions. In B. Buchberger and J. A. Campbell, editors, Artificial Intelligence
and Symbolic Computation. Proc. of AISC’04 Conference, volume 3249 of
LNAI, pages 157–170. Springer, 2004.

[19] J. Levy and M. Villaret. Linear second-order unification and context unification
with tree-regular constraints. In L. Bachmair, editor, Proc. of the 11th Int.
Conference on Rewriting Techniques and Applications (RTA’2000), volume
1833 of LNCS, pages 156–171. Springer, 2000.

[20] D. Maier. Database desiderata for an XML query language. Available from:
http://www.w3.org/TandS/QL/QL98/pp/maier.html, 1998.

[21] M. Marin. Introducing a rule-based programming system ρLog. Available from:
http://www.score.is.tsukuba.ac.jp/~mmarin/RhoLog/, 2004.

[22] M. Schmidt-Schauß. A decision algorithm for stratified context unification.
J. Logic and Computation, 12(6):929–953, 2002.

[23] M. Schmidt-Schauß and K. U. Schulz. Solvability of context equations with two
context variables is decidable. J. Symbolic Computation, 33(1):77–122, 2002.

[24] M. Schmidt-Schauß and J. Stuber. On the complexity of linear and stratified
context matching problems. Research Report 4923, INRIA-Lorraine, France,
2003.

[25] The RTA List of Open Problems. Problem No. 90. Available from:
http://www.lsv.ens-cachan.fr/rtaloop/problems/90.html.

[26] World Wide Web Consortium (W3C). Extensible Markup Language (XML) 1.0.
Second edition. Available from: http://www.w3.org/, 1999.

119

WWV 2005 Preliminary Version

Slicing XML Documents

Josep Silva 1

DSIC, Technical University of Valencia

Valencia, Spain

Abstract

Program slicing is a well-known technique to extract the program statements that

(potentially) affect the values computed at some point of interest. In this work, we

introduce a novel slicing method for XML documents. Essentially, given an XML

document (which is valid w.r.t. some DTD), we produce a new XML document

(a slice) that contains the relevant information in the original XML document ac-

cording to some criterion. Furthermore, we also output a new DTD such that the

computed slice is valid w.r.t. this DTD. A prototype implementation of the XML

slicer has been undertaken.

Key words: XML, DTD, Program Slicing.

1 Introduction

The increasing complexity of websites demands for tools which are able to

aid Web designers in their construction and maintenance. Systematic, formal

approaches can bring many benefits to quality website development, giving

support for automated website transformations.

One of the most widely used program transformations is program slicing.

It consists of a decomposition technique for the extraction of those program

statements that (potentially) affect the values computed at some point of in-

terest. Program slicing was originally introduced by Weiser [6] and has now

many applications such as debugging, code understanding, program special-

ization, etc. See [4] for a survey.

In this work, we present a slicing technique which is applicable to XML

documents [1]. The result of slicing an XML document is a new XML doc-

ument (a slice) composed by those parts of the original document satisfying

some criterion (the slicing criterion). We also produce a new DTD such that

the computed slice is well-formed and valid with respect to this DTD.

1
Email: jsilva@dsic.upv.es

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Silva

<PersonalInfo>

<Contact>

<Status> Professor </Status> <!ELEMENT PersonalInfo (Contact,

<Name> Ryan </Name> Teaching,

<Surname> Gibson <Surname> Research)>

</Contact> <!ELEMENT Contact (Status,

<Teaching> Name,

<Subject> Surname)>

<Name> Logic </Name> <!ELEMENT Status ANY>

<Sched> Mon/Wed 16-18 </Sched> <!ELEMENT Name ANY>

<Course> 4-Mathematics </Course> <!ELEMENT Surname ANY>

</Subject> <!ELEMENT Teaching (Subject+)>

<Subject> <!ELEMENT Subject (Name,

<Name> Algebra </Name> Sched,

<Sched> Mon/Tur 11-13 </Sched> Course)>

<Course> 3-Mathematics </Course> <!ELEMENT Sched ANY>

</Subject> <!ELEMENT Course ANY>

... <!ELEMENT Research (Project*)>

</Teaching> <!ELEMENT Project ANY>

<Research> <!ATTLIST Project

<Project name CDATA #REQUIRED

name = "SysLog" year CDATA #REQUIRED

year = "2003-2004" budget CDATA #IMPLIED

budget = "16000ε" /> >

...

</Research>

</PersonalInfo>

(a) XML document with the contents of a webpage (b) DTD defining personal info

Fig. 1. XML document (a) and its associated DTD (b)

2 XML

XML [1] was developed by an XML Working Group formed under the auspices

of the World Wide Web Consortium (W3C) in 1996. XML documents are

made up of basic units called “elements” according to a set of restrictions

specified on an independent specification called Document Type Definition

(DTD). Figure 1 shows an example of XML (a) and DTD (b) documents with

some staff information from a university (for the time being, the reader can

ignore the differences between black and grey text). An XML document is

“well-formed” if it conforms to the standard XML syntax rules described in

[1]. A “valid” XML document is a well-formed XML document, which also

conforms to the rules of a DTD.

XML documents can easily be transformed to a webpage by means of

the Extensible Stylesheet Language Transformations (XSLT) [2]. It specifies

the presentation of XML documents by describing how their instances are

transformed to an XML document that uses a formatting vocabulary, such as

(X)HTML or XSL-FO, that can be interpreted by any standard browser. For

instance, the XML document in Figure 1 can be automatically translated to a

standard webpage showing the information structured with tables and colored

122

Silva

text. Different slices of an XML document could be used to produce (keeping

the same XSLT transformation) distinct versions of the generated webpage.

3 The Slicing Technique

Program slicing techniques have been typically based on a data structure

called Program Dependence Graph (PDG). In the case of XML, we take ad-

vantage of the tree-like structure of XML documents and DTDs. Despite the

fact that DTDs can be graphs, we only consider trees without lost of general-

ity, since they can easily be converted to trees by duplicating those elements

producing cycles. Every vertex in the tree represents a single element of the

XML document of type ’ELEMENT’ (we refer the reader to [1] for a more de-

tailed explanation about XML elements) containing all its attributes. Edges

represent aggregation relations between elements.

In our setting, the slicing criterion consist of a set of elements from one of

the trees (the XML or its associated DTD). As a consequence, we distinguish

between two types of slicing:

DTD slicing: Given a set of elements from a DTD, we extract from this DTD

those elements which are strictly necessary to maintain the tree structure,

i.e., all the DTD elements that are in the path from the root to any of the

elements in the slicing criterion.

Once the DTD slice is produced, the set of elements in the slice is used as a

slicing criterion in order to produce the associated XML slice (see below).

Example 3.1 Consider the XML and DTD documents in Figure 1. Let

the set containing the single element “Course” be the slicing criterion. The

slices computed for the two documents are highlighted in Figure 1 with

black color.

XML slicing: Analogously to DTD slicing, given a set of XML elements, we

extract from the XML document those elements which are in the path from

the root to any of the elements in the slicing criterion.

Note that this criterion could be more fine-grained than the previous one.

While a slicing criterion in a DTD selects a type of elements, a slicing

criterion in an XML document can select only some particular instances of

this type.

Example 3.2 Consider the XML and DTD documents in Figure 1. Let

the element “3-Mathematics” of type “Course” be the slicing criterion. The

slice computed for the DTD is exactly the same than the one in Example

3.1. However, the XML slice only contains the information related to the

“Algebra” subject, being the information related to the “Logic” subject

removed.

123

Silva

The slicer proceeds as follows:

1) Compute the set of relevant elements with respect to the slicing criterion

2) The computed set is modified in order to satisfy all the restrictions of the

DTD (for instance, the * and + relations). Attributes are also included

3) The result is used as a slicing criterion for the associated DTD/XML

Let D be a well-formed DTD, X an XML document valid with respect to

D, D′ and X ′ two slices of D and X respectively, computed with a DTD-slicing

criterion C, and D′′ and X ′′ two slices of D and X respectively, computed with

a XML-slicing criterion C ′, we have proven the following properties:

a) D′ is well-formed and X ′ is valid with respect to D′

b) D′′ is well-formed and X ′′ is valid with respect to D′′

If all the elements in C ′ are of one of the types in C, then

c) D′ = D′′

d) X ′′ is a subtree of X ′

4 Implementation

We have implemented our prototype in Haskell [3]. Haskell provides us a

formal basis with many advantages for the manipulation of XML documents

such as the HaXml library [5]. It allows us to automatically translate XML

or HTML documents into a Haskell representation. In particular, we use the

following data structures that can represent any XML/HTML document:

data Element = Elem Name [Attribute] [Content]

data Attribute = (Name, Value)

data Content = CElem Element

| CText String

One of the main possible applications of XML slicing is webpages slicing,

because XML slices have a direct representation in webpages, producing slices

of the original webpages. For instance, Figure 2 (a) shows the webpage that

is automatically generated with an XSLT file from the XML document of

Figure 1. Figure 2 (b) shows the webpage that is automatically generated

with the same XSLT file from the XML slice of Figure 1. Figure 2 (c) shows

the webpage that is automatically generated with the same XSLT file from

the slice of Figure 1 computed with a DTD slicing criterion formed by the

“Project” element.

Preliminary results are very encouraging, showing that the slicing tech-

nique can bring many benefits when applied in conjunction with XSLT being

able to slice complex webpages. The implementation and some other materials

are publicly available at: http://www.dsic.upv.es/~jsilva/xml.

124

http://www.dsic.upv.es/~jsilva/xml

Silva

(a) WebPage (b) “Courses” Slice (c) “Projects” Slice

Fig. 2. Web Pages automatically generated from the XML in Figure 1

References

[1] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Maler, and Franois

Yergeau. Extensible markup language (xml) 1.0 (third edition). Available at:

http://www.w3.org/TR/REC-xml/, February 2004. W3C Recommendation.

[2] James Clark. Xsl transformations (xslt). Available at:

http://www.w3.org/TR/xslt, November 1999. W3C Recommendation.

[3] S. Peyton Jones, editor. Haskell 98 Language and Libraries: The Revised Report.

Cambridge University Press, 2003.

[4] F. Tip. A Survey of Program Slicing Techniques. Journal of Programming

Languages, 3:121–189, 1995.

[5] Malcolm Wallace and Colin Runciman. Haskell and XML: Generic combinators

or type-based translation? In Proceedings of the Fourth ACM SIGPLAN

International Conference on Functional Programming (ICFP’99), volume 34–9,

pages 148–159, N.Y., 1999. ACM Press.

[6] M.D. Weiser. Program Slicing. IEEE Transactions on Software Engineering,

10(4):352–357, 1984.

125

WWV 2005 Preliminary Version

A Language for Verification and

Manipulation of Web Documents

(Extended Abstract)

Luigi Liquori

INRIA, France

Furio Honsell

DIMI, University of Udine, Italy

Rekha Redamalla

Birla Science Center, Adarsh Nagar, Hyderabad, India

Abstract

In this paper we develop the language theory underpinning the logical framework
PLF. This language features lambda abstraction with patterns and application via
pattern-matching. Reductions are allowed in patterns. The framework is partic-
ularly suited as a metalanguage for encoding rewriting logics and logical systems
where rules require proof terms to have special syntactic constraints, e.g. call-by-
value λ-calculus, or term rewriting systems. PLF is a conservative extension of
the well-known Edinburgh Logical Framework LF. Because of sophisticated pat-
tern matching facilities PLF is suitable for verification and manipulation of XML

documents.

1 Introduction

Since the introduction of Logical Frameworks [4,6]), blending dependent typed
λ-calculi with rewriting systems has been a major challenge in the last decades,
see [9, 7, 12, 3, 5, 8]). Blending lambda calculi and rewrite rules enhances the
usability of the system as a metalanguage for logics. Clearly the expressiveness
of the system does not increase, since already the Logical Framework of [6] is
a universal language for encoding formal systems. Clearly rewrite systems can
provide in many instances much more natural and transparent encodings, thus
improving the overall pragmatic usability of the system, and the possibility of
automating decision procedures, such as checking and encoding equality.

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Liquori, Honsell and Redamalla

In this paper, we present an uniform framework based on a dependent
typed lambda calculus enriched with pattern matching in lambda abstrac-
tion, called PLF. In contrast to the simple λ-calculus, the pattern-matching
algorithm can either fire a substitution, or stick the computation unless fur-
ther substitution are provided. The following simple example illustrates the
point:

M ≡ (λ(f y).y) x

is stuck, but

(λ(f x).M) (f (f 3)) 7→→β 3.

Furthermore, for a given pattern inside an abstraction, the user can explicitly
discriminate between variables that will be bound in the body, and variables
that can be bound in an external context containing the abstraction itself.
This freedom is particularly appreciated in patterns that evolve (by reduction
or substitution) during execution, e.g.

(λx:A.λP [x].N) M 7→β λP [M].N.

PLF extends the subsystem of [1] corresponding to LF in allowing reductions
inside patterns. As is well know, since the seminal work of [12], variables in
patterns can be bound only if they occur linearly and not actively (i.e. not
in functional position), hence extra care has to be payed when reductions are
allowed in patterns. We presents few simple examples of encoding, which capi-
talize on patterns, namely Plotkin’s call-by-value λ-calculus, and the rewriting
calculus (ρ-calculus) [11]. An appendix complete the paper with few classical
XML-oriented routines, written in the rewriting calculus, that can be either
runned and certified in our PLF. The full metatheory of PLF will appear in a
companion paper.

2 The Pattern Logical Framework

We present the syntax of PLF, a logical framework with pattern oriented
features. Since patterns occurs as binders in abstractions the types of the
“matchable” variable in the pattern are decorated in suitable contexts, i.e. a
pattern abstraction has the form λM :∆.N . Therefore, the contexts defining
the types of the free variables of these patterns are given explicitly as part of
the abstraction. The context ∆ can discriminate on variables that are suitable
to be matched and variables that are not, the latter are de facto considered
as constants. This treatment of constants simplifies the presentation of the
system since constants are now considered as variables that cannot be bound.
This mechanism implies also that some patterns can evolve during reduction
via substitution; this operation is rather delicate, but sound, since a pattern,
considered with a suitable context recording the types of the free variables, is
enforced to preserve suitable good properties, under restriction.

128

Liquori, Honsell and Redamalla

2.1 PLF’s Terms

The first definition introduces the pseudo-syntax for kinds, families, objects
and contexts.

Definition 2.1 [PLF’s Pseudo-syntax]

Γ,∆ ∈ C Γ ::= ∅ | Γ, x:K | x:A

K ∈ K K ::= Type | ΠM :∆.K | λM :∆.K | K M

A,B, C ∈ F A ::= x | ΠM :∆.A | λM :∆.A | A M

M,N,P, Q ∈ O M ::= x | λM :∆.M | M M

As usual, application associates to the right. Let “T” range over any term
in the calculus, and let the symbol “X” range over the set {λ, Π}. To ease
the notation, we write Xx:T1.T2 for Xx:(x:T1).T2 in case of a variable-pattern.
Intuitively the context ∆ in λM :∆.N contains the type declarations of some
(but not all) of the free variables appearing in the pattern M . These variables
are bound in the (pattern and body of the) abstraction and the reduction of
an abstraction application strongly depends on them, all the other variables
being handled as constants. The free variables of M not declared in ∆ are not
bound in N but can be bound outside the scope of the abstraction itself. For
example, in the abstraction

λ(x y z):(y:w, z:w).M

the y and z variables (of type w) are bound in M , while the x variable (not
declared in the context) is considered as free (i.e. it is de facto handled as a
constant). As in ordinary systems dealing with dependent types, we suppose
that in the context Γ, x:T , the variable x does not appear free in Γ, and T .
Some remarks to understand this syntax are in order.

Remark 2.2

(i) In case of variable patterns, we recover the syntax of LF.

(ii) The above pseudo-syntax does not enforce any particular shape to pat-
terns in abstractions, but it is well known that allowing in patterns non-
linearity, i.e. multiple occurrences of the same variable, e.g.
λ(x y y):(y:T1).T2), and active variables, i.e. variables in functional posi-
tion, e.g. λ(x y):(x:T1).T2, breaks confluence and subject reduction. This
anomaly will be repaired by enforcing the syntax with suitable restrictions.

(iii) A context Γ can be always split in three parts ΓT, ΓS, ΓV, where ΓT con-
tains type definitions, i.e. families variables, ΓS contains the type decla-
rations of some constants objects, i.e. variables that cannot be abstracted,
and ΓV contains the type declarations of the object variables which can be
abstracted.

129

Liquori, Honsell and Redamalla

The following predicates characterize the set of legal/good patterns w.r.t. a
given context.

Definition 2.3 [Safe Patterns]
A safe pattern is characterized by having no free variables in functional posi-
tion, and by its linearity. This can be carefully formalized, but for the purpose
of this paper we just write

SPC(M ; V)
4

= ¬APC(M ; V) ∧ LPC(M ; V).

This definition can be extended poitwise to substitutions, families and kinds.

Given the above restrictions on objects occurring in patterns, we can thus
define a safe/legal PLF syntax as follows:

Definition 2.4 [PLF’s Safe Syntax]
A term in the PLF syntax is safe if any subterm XM :∆.T occurring in it is
such that

SPC(M ;Dom(∆)) ∧ SPC(T ;Dom(∆))

In the rest of the paper we shall consider only safe terms. The definition
of free variables needs to be customized as follows.

Definition 2.5 [Free Variables]
The set Fv of free variables is given by:

Fv(XT1:∆.T2)
4

= (Fv(T1) ∪ Fv(T2) ∪ Fv(∆)) \ Dom(∆)

Fv(∆, x:T)
4

= Fv(∆) ∪ (Fv(T) \ Dom(∆))

The set Bv of bound variables of a term is the set of variables in the
term which are not free. Since we work modulo α-conversion, we suppose
that all bound variables of a term have different names and therefore, the
domains of all contexts are distinct. A suitable, intuitive, (re)definition of
simultaneous substitution application (denoted by θ) to deal with the new
forms of abstraction is assumed.

2.2 Matching and Operational Semantics

PLF features pattern abstractions whose application requires solving matching
problems. The next two definitions introduce the notion of matching systems
and matching algorithm. Both are an easy modification of the ones presented
in [1]. The algorithm is first-order, hence decidable.

Definition 2.6 [Matching System]

(i) A matching system

T
4

=
∧

i=0...n

Mi <V

Wi
Ni

130

Liquori, Honsell and Redamalla

is a conjunction of matching equations. The set V records the name of
the free variables that are matchable, while the sets Wi record the name
of bound variables appearing in abstractions which cannot be matched.

(ii) A matching system T is solved by the substitution θ if for all i = 0 . . . n,
we have that Miθ ≡ Ni.

(iii) A matching system T is in normal form when it has the form

T
4

=
∧

i=0...n

xi <V

Wi
Ni

(iv) A matching system in normal form is solved and produces the substitution
[N1/x1 · · ·Nn/xn], if the following conditions are satisfied (otherwise the
matching fails)
(a) for all h, k = 0 . . . n, if xh ≡ xk then Nh ≡ Nk.
(b) for all i = 0 . . . n, if xi ∈ Wi, then Ni ≡ xi.
(c) for all i = 0 . . . n, if Fv(Ni) ∩ Wi 6= ∅, then Ni ≡ xi.
(d) for all i = 0 . . . n, if xi 6∈ V, then Ni ≡ xi.
(e) for all x ∈ V, there exists x <V

Wi
∈ T.

Let solve be a function that returns a substitution if a matching system
in normal form is solvable, and fails otherwise.

Definition 2.7 [Matching Algorithm Alg]

(i) The reduction ; is the compatible relation induced by the following two
rules:

W
4

= U ∪ Dom(∆)

XM1:∆.N1 <V

U
XM2:∆.N2 ; M1 <V

W
M2 ∧ N1 <V

W
N2

(Lbd/Prod)

W
4

= U ∪ Dom(∆)

M1 N1 <V

U
M2 N2 ; M1 <V

W
M2 ∧ N1 <V

W
N2

(Appl)

(ii) The reduction ;
∗ is defined as the reflexive and transitive closure of ;.

Let normalize be the function that reduces a matching system in normal
form, or fails.

(iii) Alg(M · N · V) is defined as follows:
1 T := normalize(M <V

∅ N);
2 if T 6= fail then return solve(T)

The matching algorithm is clearly terminating (since all rules decrease the
size of terms), deterministic (no critical pairs), and works modulo α-conversion
and Barendregt’s hygiene-convention. We write θ for the successful output of
Alg(M ·N ·V). The next definition introduces the classical notions of one-step,
many-steps, and congruence relation of →β.

Definition 2.8 [One/Many-Steps, Congruence]
Let θ = Alg(P · N · Dom(∆)).

131

Liquori, Honsell and Redamalla

(i) The top-level rules are

(βp−Obj) (λP :∆.M) N →β Mθ

(βp−Fam) (λP :∆.A) N →β Aθ

(βp−Kinds) (λP :∆.K) N →β Kθ

(ii) Let C[−] denote a pseudo-context with a “single hole” inside, it is defined
as follows

C[−] ::= [−] | C[−]T | T C[−] | XM :∆.C[−] | XM :C[−].T | x:C[−] | C[−], x:T

and let C[T] be the result of filling the hole with the term T . The
one-step evaluation 7→β is defined by the following inference rules

T1 →β T2

C[T1] 7→β C[T2]
(Ctx)

M →β N SPC(N ;Dom(∆))

Fv(M) ∩ Dom(∆) = Fv(N) ∩ Dom(∆)

XM :∆.T 7→β XN :∆.T
(CtxX)

The intended meaning of the (Ctx) rule is the usual one. Rule (CtxX)
forbids Kβ-reductions in patterns enforces the safe pattern condition in
both redex and the reduced term.

(iii) The many-step evaluation 7→→βp
and the congruence relation =β are respec-

tively defined as the reflexive-transitive and reflexive-symmetric-transitive
closure of 7→βp

.

2.3 PLF’s Type System

PLF involves type judgments of the following shape:

` Γ Γ ` K Γ ` A : Type Γ ` M : A

The type system rules of PLF are presented in Figure 1. Some rules are quite
similar to the ones of the classical logical framework, but others deserve a brief
explanation:

• The (F·Abs), (O·Abs) rules deal with λ-abstractions in which we bind over
(non trivial) patterns; this rule requires that the pattern and the body of
the abstraction are typable in the extended context Γ, ∆.

• The (F·Appl), (O·Appl) rules, give a type to an application; this type con-
trasts with classical type systems which utilize meta-substitutions. Suitable
applications of (F·Conv), (O·Conv) rule can reduce this type.

• The (K·Pi), (F·Pi) rules, give a type to a kind and family products. As for
λ-abstractions we require that the pattern and the body of the abstraction
are typable in the extended context Γ, ∆.

132

Liquori, Honsell and Redamalla

Dependent Syntax

Γ ::= ∅ | Γ, x:K | x:A

K ::= Type | ΠM :∆.K | λM :∆.K | K M

A ::= x | ΠM :∆.A | λM :∆.A | A M

M ::= x | λM :∆.M | M M

Safe Syntax

XM :∆.T ∈ C,K,F ,O =⇒

SPC(M ;∆) ∧ SPC(T ;∆)

Contexts rules

` ∅
(C·Empty)

` Γ Γ ` K x 6∈ Dom(Γ)

` Γ, x:K
(C·Kind)

` Γ Γ ` A : Type x 6∈ Dom(Γ)

` Γ, x:A
(C·Type)

Kind rules

` Γ

Γ ` Type
(K·Type)

Γ, ∆ ` M : A Γ, ∆ ` K

Γ ` ΠM :∆.K
(K·Pi)

Γ, ∆ ` M : A Γ, ∆ ` K

Γ ` λM :∆.K
(K·Abs)

Γ ` ΠM :∆.K Γ, ∆ ` M : A Γ ` N : A

Γ ` (λM :∆.K) N
(K·Appl)

Families rules

` Γ x:K ∈ Γ

Γ ` x : K
(F·Var)

Γ, ∆ ` M : B Γ, ∆ ` A : Type

Γ ` ΠM :∆.A : Type
(F·Pi)

Γ, ∆ ` M : B Γ, ∆ ` A : K

Γ ` λM :∆.A : ΠM :∆.K
(F·Abs)

Γ ` A : ΠN :∆.K Γ, ∆ ` N : B Γ ` M : B

Γ ` A M : (λN :∆.K) M
(F·Appl)

Γ ` A : K′ Γ ` K K =β K′

Γ ` A : K
(F·Conv)

Object rules

` Γ x:A ∈ Γ

Γ ` x : A
(O·Var)

Γ, ∆ ` M : B Γ, ∆ ` N : A

Γ ` λM :∆.N : ΠM :∆.A
(O·Abs)

Γ ` M : ΠP :∆.A Γ, ∆ ` P : B Γ ` N : B

Γ ` M N : (λP :∆.A) N
(O·Appl)

Γ ` M : A Γ ` B : Type A =β B

Γ ` M : B
(O·Conv)

Figure 1. PLF’s Type Rules

3 Examples

Readers familiar with the activity of encoding systems in LF will surely ap-
preciate the usability of this metalanguage and will play with it providing
interesting examples. For lack of space we will provide only few examples,
which illustrate how patterns can safely replace sub-categories and coercions
in the encoding of syntax. Moreover, the sophisticated shapes of patterns and
the built-ins pattern matching facilities make PLF (and its extensions) suit-
able for modeling regular languages, theory of functions, and term rewriting
systems that are the engine of many XML-manipulations. More interesting
examples can be devised in encoding the proof theory, such as, in modal logic.
An appendix presents some classical XML-oriented routines, written in the
rewriting calculus [11], that can be either runned and certified in our PLF.

133

Liquori, Honsell and Redamalla

Syntactic Categories

o : Type

Operations (we short XC[x]:(x:o) for XC[xo])

Val : o → o Lam : Πf :(Π(Val xo). o). o App : o → o → o

Judgments

= : o → o → Type

Λ encoding J− K : Λv ⇒ PLF

Jx K
4

= Val x Jλx.M K
4

= Val (Lam (λ(Val xo).JM K)) JM N K
4

= App JM K J N K

Axioms and Rules

Eqrefl : Πx:o. x = x

Eqsymm : Πx:o. Πy:o. (x = y) → (y = x)

Eqtrans : Πx:o. Πy:o. Πz:o. (x = y) → (y = z) → (x = z)

Eqctx : Πx:o. Πy:o. Πz:o. Πw:o. (x = y) → (z = w) → (App x z = App y w)

Betav : Π(Val (Lam f)):(f :Π(Val xo).o). Π(Val ao).

App (Val (Lam f)) (Val a) = f (Val a)

Etav : Π(Val xo). (Val (Lam (λ(Val yo).App (Val x) (Val y)))) = (Val x)

Xiv : Π(Val (Lam f)):(f :(Π(Val xo).o). Π(Val (Lam g)):(g:(Π(Val xo).o).

(Π(Val xo). f (Val x) = g (Val x)) → (Val (Lam f) = Val (Lam g))

Figure 2. Plotkin Call-by-value λ-calculus Encoding

3.1 Call-by-value Lambda Calculus

Plotkin’s call-by-value λ-calculus (λv-calculus) [10] differs from the traditional
λ-calculus in the formulation of the β-reduction rule, namely

(λx.M) N →βv
M [N/x]

provided that N is a value, that is a variable or an abstraction. The encoding
in PLF is shown in Figure 2. We omit adequacy results. We could, e.g., prove
that

Th : Etav =⇒ Xiv

134

Liquori, Honsell and Redamalla

Syntax and Operational Semantics

P ::= x | A | P _ M

A ::= f | A P

M ::= P | M M

(P _ M) N →ρ Mθ with θ = Alg(P · N · Fv(P))

(M1 ,M2) M3 →δ (M1 M3 ,M2 M3)

N.B. both (M1 ,M2) and →δ are derivable

Syntactic Categories

o : Type

Operations (we short on for o → . . . → o
︸ ︷︷ ︸

n times

and XC[x]:(x:on) for XC[xon])

Alg : o2 Rew : o2 → o App : o3 Pair : o3

Judgments

= : o → o → Type

Rewriting encoding J− K : Rho ⇒ PLF

Jx K
4

= x

J f K
4

= Alg f

JA P K
4

= App JA K J P K

JP _ M K
4

= Rew (λJP K:∆.JM K) ∆
4

=Fv(P):o

JM N K
4

= App JM K J N K

JM ,N K
4

= Rew (λx:o.Pair (App JM Kx) (App JN Kx))

Axioms and Rules

Eqrefl Eqsymm Eqtrans Eqctx see the lambda calculus

Rho : Πr:o2. Πa:o. App (Rew r) a = r a

Eta : Πx:o. Rew (λy:o.App x y) = x

Xi : Πr:o2. Πs:o2. (Πa:o. r a = s a) → Rew r = Rew s

Delta : ΠRew (λx:o.Pair (App yo x) (App zo x)). Πa:o.

App (Rew (λx:o.Pair (App y x) (App z x))) a = (λx:o.Pair (App y x) (App z x)) a

Figure 3. Classical ρ-calculus Encoding

3.2 Untyped Rewriting Calculus

The rewriting calculus (ρ-calculus) [2, 3], is a simple higher-order calculus
where functions can be applied only upon reception of an argument whose
“pattern” matches with the one explicitly declared in the function itself. This
allows to represents naturally classical lambda calculus and many term rewrit-
ing systems. What makes the rewriting calculus appealing for reasoning on
the web is precisely its foundational features that allow us to represent the

135

Liquori, Honsell and Redamalla

atomic actions (i.e. rules) and the chaining of these actions (i.e. what we called
above strategies) in order to achieve a global goal like, for example, transform-
ing semi-structured data, extracting informations or inferring new ones. As
the matching mechanism of the calculus can be parameterized by a suitable
matching theory, this allows us for example to express in a precise way how
the semi-structured data should be matched. The encoding in PLF is shown
in Figure 3. We omit adequacy results. We could, e.g., prove that

Th : Rho =⇒ Delta

References

[1] G. Barthe, H. Cirstea, C. Kirchner, and L. Liquori. Pure Pattern Type Systems.
In Proc. of POPL. The ACM Press, 2003.

[2] H. Cirstea, C. Kirchner, and L. Liquori. Matching Power. In Proc. of RTA,
volume 2051 of LNCS, pages 77–92. Springer-Verlag, 2001.

[3] H. Cirstea, C. Kirchner, and L. Liquori. Rewriting Calculus with(out) Types.
In Proc. of WRLA, volume 71 of ENTCS, 2002.

[4] T. Coquand and G. Huet. The Calculus of Constructions. Information and

Computation, 76:95–120, 1988.

[5] D. J. Dougherty. Adding Algebraic Rewriting to the Untyped Lambda Calculus.
Information and Computation, 101(2):251–267, 1992.

[6] R. Harper, F. Honsell, and G. Plotkin. A Framework for Defining Logics.
Journal of the ACM, 40(1):143–184, 1992.

[7] J.P. Jouannaud and M. Okada. Executable Higher-Order Algebraic
Specification Languages. In Proc. of LICS, pages 350–361, 1991.

[8] J.W. Klop, V. van Oostrom, and F. van Raamsdonk. Combinatory reduction
systems: introduction and survey. Theoretical Computer Science, 121:279–308,
1993.

[9] M. Okada. Strong Normalizability for the Combined System of the Typed
λ Calculus and an Arbitrary Convergent Term Rewrite System. In Proc. of

ISSAC, pages 357–363. ACM Press, 1989.

[10] G. Plotkin. Call-by-Name, Call-by-Value and the λ-Calculus. Theoretical

Computer Science, 1:125–159, 1975.

[11] Rho Team. The Rho Home Page, 2005. http://rho.loria.fr/.

[12] V. van Oostrom. Lambda Calculus with Patterns. TR IR-228, Vrije Univ.
Amsterdam, 1990.

136

http://rho.loria.fr/

Liquori, Honsell and Redamalla

A Genuine XML-examples in à la Rewriting Calculus

**

* Small XML Galleria written in the Rewriting Calculus *

* Run it with the interpreter iRho, its free! *

* http://www-sop.inria.fr/mirho/Luigi.Liquori/iRho/ *

**

*** Some list of numbers ***

ZERO = 0;; ONE = (succ 0);; TWO = (succ ONE);; THREE = (succ TWO);;

FOUR = (succ THREE);; FIVE = (succ FOUR);; SIX = (succ FIVE);; SEVEN = (succ SIX);;

EIGHT = (succ SEVEN);; NINE = (succ EIGHT);; TEN = (succ NINE);;

*** Some list of friends ***

ME = (person ((first luigi) ,(last liquori) ,(sex m),(empl inria) ,(nat it) ,(cat ONE)));;

YOU = (person ((first jessica) ,(last rabbit) ,(sex f),(empl disney) ,(nat usa),(cat TWO)));;

SHE = (person ((first helene) ,(last kirchner),(sex f),(empl cnrs) ,(nat fr) ,(cat ZERO)));;

HIM = (person ((first claude) ,(last kirchner),(sex m),(empl inria) ,(nat fr) ,(cat FOUR)));;

HER = (person ((first uma) ,(last thurman) ,(sex f),(empl hollywd) ,(nat usa),(cat FIVE)));;

BIG = (person ((first bg) ,(last sidharth),(sex m),(empl birla) ,(nat in) ,(cat SIX)));;

HEAD = (person ((first moreno) ,(last falaschi),(sex m),(empl siena) ,(nat it) ,(cat TWO)));;

BOSS = (person ((first furio) ,(last honsell) ,(sex m),(empl udine) ,(nat it) ,(cat ONE)));;

JEFE = (person ((first maria) ,(last alpuente),(sex f),(empl valencia),(nat es) ,(cat ZERO)));;

GURU = (person ((first salvador),(last lucas) ,(sex m),(empl papaya) ,(nat es) ,(cat ONE)));;

*** The DB ***

DB = (group (ME,YOU,SHE,HIM,HER,BIG,HEAD,BOSS,JEFE,GURU,nil));;

*** FINDN: Find in a DB the nth Element in a xml catalogue ***

[FINDN = ((0,nil) -> fail, ((succ N),(group nil)) -> fail,

((succ 0),(group (X,Y))) -> X, ((succ N),(group (X,Y))) -> (FINDN (N,(group Y))))];

(FINDN (THREE,DB));;

*** KILLIT: Kill in a DB all the items of "it" nationality ***

[KILLIT = (group X) -> (group (DROPIT X)) |

DROPIT = ((nil) -> (nil),

((person (X,Y,Z,U,(nat it) ,V)),W) -> (DROPIT W),

((person (X,Y,Z,U,(nat fr) ,V)),W) -> ((person (X,Y,Z,U,(nat fr) ,V)),(DROPIT W)),

((person (X,Y,Z,U,(nat es) ,V)),W) -> ((person (X,Y,Z,U,(nat es) ,V)),(DROPIT W)),

((person (X,Y,Z,U,(nat in) ,V)),W) -> ((person (X,Y,Z,U,(nat in) ,V)),(DROPIT W)),

((person (X,Y,Z,U,(nat usa),V)),W) -> ((person (X,Y,Z,U,(nat usa),V)),(DROPIT W)))];

(KILLIT DB);;

*** KILLC: Kill in a DB all the items of a given category ***

[KILLC = (C,(group X)) -> (group (DROPC (C,X))) |

DROPC = ((C,(nil)) -> (nil),

(C,((person (X,Y,Z,U,V,(cat K))),W)) ->

(COND ((EQ (C,K)),DUMMY -> (DROPC (C,W)),

DUMMY -> ((person (X,Y,Z,U,V,(cat K))),(DROPC (C,W))))))];

(KILLC (ONE,DB));;

*** GETC: Select in a DB all the items of a given category ***

[GETC = (C,(group X)) -> (group (SELC (C,X))) |

SELC = ((C,(nil)) -> (nil),

(C,((person (X,Y,Z,U,V,(cat K))),W)) ->

(COND ((EQ (C,K)),DUMMY -> ((person (X,Y,Z,U,V,(cat K))),(SELC (C,W))),

DUMMY -> (SELC (C,W)))))];

(GETC (ONE,DB));;

*** Auxiliary COND and EQ ***

COND = (BOOL,THEN,ELSE) -> ((true -> (THEN dummy),false -> (ELSE dummy)) BOOL);;

EQ = ((0,0)->true,(0,(succ X))->false,((succ X),0)->false,((succ X),(succ Y))->(EQ (X,Y)));;

137

WWV 2005 Preliminary Version

Anchoring modularity in HTML

Claude Kirchner

INRIA & LORIA

Hélène Kirchner

CNRS & LORIA

Anderson Santana 1

INRIA & LORIA

Abstract

Modularity is a key feature at design, programming, proving, testing, and main-
tenance time, as well as a must for reusability. Most languages and systems provide
built-in facilities for encapsulation, importation or parameterization. Nevertheless
there exists also languages, like HTML, with poor support for modularization. A
natural idea is therefore to provide generic modularization primitives.

To extend an existing language with additional and possibly formal capabilities,
the notion of anchorage and Formal Island has been introduced recently. TOM
for example, provides generic matching, rewriting and strategy extensions to JAVA
and C.

In this paper, we show on the HTML example, how to add modular features by
anchoring modularization primitives in HTML. This allows one to write modular
HTML descriptions, therefore facilitating their design, reusability, and maintenance,
as well as providing an important step towards HTML validity checking.

Key words: Modularization, parameterization, HTML, TOM,
MHTML, formal island, feature anchorage

1 Introduction

Modularity is a key feature of programming environments at all stages of soft-
ware development, from users requirements analysis to maintenance. It is of
course the key feature of reusability policies and therefore a main concept in

1 Supported by CAPES.

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Kirchner, Kirchner and Santana

any software library. With the raising time of safe and secure software, modu-
larity appears also as a fundamental feature to make possible the construction
of large certified software.

Modularity is thus present in many programming languages and proof
environments and we have now a fairly good understanding of the semantics
of the main modularity constructs. In particular in functional and algebraic
programming, the notions of importation, parameterization and visibility have
been given both categorical and operational semantics (e.g. [2,6,12]).

If from the theoretical point of view, the situation is satisfactory, this is
not the case from the practical one, in particular because each language has
its own modularity features and semantics. Clusters in CLU, packages in Ada,
structures in ML, classes in C++ and Java are different constructs facilitating
modular programming. Some languages have quite sophisticated modularity
features, like CASL, OBJ and Maude, where the notion of view precisely for-
malizes the way parameters are instantiated or modules imported. Others,
like ELAN have a more elementary approach. Object-oriented languages like
Java take into account classes and inheritance. Functional languages, such as
ML, have also evolved towards modularity. Face to this variety of approaches,
we are thus in a situation where standard modularity features, mainly inde-
pendent of the language, would be greatly appreciated.

But modularity is not a universal feature of programming languages and
several of them lack of useful capabilities. For example, parameterization does
not exist in ASF+SDF nor C. An extreme example in this case is HTML that
has no importation nor parameterization capability at all.

So either for standardization or for needed improvement, it is desirable to
have the capability of adding modularity features to an existing programming
language.

While we understand its usefulness, we have now to address the feasibility
of adding modularity primitives in a programming environment. This ques-
tion has been explored in [12] where an SML-like module system is presented
that can accommodate a variety of base languages, provided they satisfy mild
assumptions.

Another approach, independently developed, is the formal island paradigm
that comes into play in a simple and pragmatic context: indeed, it would be
nonsense to throw away the billions of code lines that are in use today in all do-
mains of human activities, nevertheless it is clear that all these software have
to be considerably improved in their logic, algorithmic, security and main-
tenance qualities. As introduced in TOM 2 [13,8] in particular for matching,
normalization and strategic rewriting, formal islands allow for the addition
to existing programming languages, of formal features that can be compiled
later on into the host language itself, therefore inducing no dependency on the
formal island mechanism.

2 tom.loria.fr

140

Kirchner, Kirchner and Santana

At the price of a rigorous anchoring, that provides the link between the host
language data structure and the formal objects, the formal island approach
gives the possibility (i) to extend the expressivity of the language with higher-
level constructs at design time, (ii) to perform formal proof on the formal
island constructions, (iii) to certify the implementation of the formal island
compilation into the host language [11].

In addition to these benefits, what makes formal islands even more attrac-
tive is that they are shared between several implementations made in different
programming languages. For instance, TOM provides matching, normaliza-
tion and strategic rewriting in Java (this is jTOM), in C (this is cTOM) or in
CAML (mlTOM).

To set-up the general definition of Modular Formal Island is a difficult goal
and a first work towards making TOM modular for algebraic specifications in
the vein of CASL has been done in [9].

The purpose of this paper is to present a first step for anchoring modular-
ity in an existing language and to illustrate the approach with HTML. This
allows writing modular HTML descriptions, therefore facilitating their design,
reusability, and maintenance, as well as providing an important step towards
HTML validity checking. While we only deal in this paper with the HTML
case, one important interest of the proposed approach is to set-up the basis
for a generic method.

In order to make precise our objectives, we use in Section 2 a running
example of a one block HTML page and show how we would like it to be
decomposed in significantly smaller pieces. We then present in Section 3 the
modularity features added to HTML and give in Section 4 its operational se-
mantics, thus making clear the compilation process. Related work and further
extensions are addressed respectively in Section 5 and Section 6.

2 Motivating example

Let us first consider an illustrative example of how modularity can help for
the task of construction and maintenance of web sites.

Commonly, web pages composing a web site share some contents. This
is related either to standard information that must appear on each page, or
to navigability issues, for example, sets of links repeatedly presented to site
visitors leading to other pages on the site.

The current trend among web designers is to drop the use of frames 3 ,
which allows shared content between pages to be repeated in every page of
the site. Especially for web sites built without the use of a script language,
the webmasters have literally to “copy and paste” the static information from
one page to another. Consequently, updates become an annoying task.

3 http://www.w3c.org/TR/REC-html40/present/frames.html

141

Kirchner, Kirchner and Santana

A typical web site layout is shown in Figure 1. All pages that follow the
home (index) page would share the same code for page header, menu, and
page footer. The interaction of a visitor with the links contained on the list
of pointers on the left, brings a similar page where the “content” box, as
indicated in the figure, displays varying information, according to the subject
of that page.

Fig. 1. A typical web site layout

Having the capability to isolate each piece of repeated code, web sites
writers could (semi-)automatically compose a new web page from separate
sources. In the example above, the page should be broken into reusable named
modules for the page heading, navigation menu, and for the page footer.

Moreover, introducing parameters would allow reusing a similar page for-
mat for another user, facilitating uniform presentation of web sites.

As a third concern, in this context, each repeated piece of code could be
checked only once to be well-formed from an HTML point of view.

Our goal is now to give a practical answer to these concerns, through the
proposal of a formal language and its anchoring process in HTML.

3 The Modular HTML language

In this section we present the implementation of Modular HTML (MHTML).
Basically, we use the algebraic specification formalism to express syntax and
semantics of the language. Similar approaches have been used in the definition
of Full Maude [5] as well as a module algebra for ASF+SDF [1]. Neverthe-
less, no sophisticated knowledge about algebraic specifications is required to
understand the mechanism on which this execution model is based.

142

Kirchner, Kirchner and Santana

The MHTML language is a combination of the regular HTML markup with
structuring primitives that allows the composition of documents through the
reuse of existing code fragments. The principles that have guided its design
are simplicity and genericity.

Modules

A first concern in modularization is how to define a self-contained piece
of reusable code that represents a module. Our approach leaves to the user
the task of defining the desired degree of granularity, since we do not restrict
the modules to be exactly valid HTML code. Actually, any well-formed set
of HTML markup can be considered as a module. For example, by using the
%module primitive, we can define a reusable “menu” available for all pages in
a web site in the following manner:

Example 3.1 The left menu of the web page in Figure 1 is described in the
following module.

%module menu

Home

Research Interests

Recent Work

Projects

Conferences

Publications

Curriculum Vitae

By convention and in order to facilitate access to modules, we restrict to
one module per file, and impose that module and system file containing it
have the same names. Thus a module called foo, will be found in a system
file called foo.mhtml.

Imports

Secondly, a common need in the context of reuse is to access symbols de-
clared by other modules. This can be achieved through the %import primitive,
The effect of the import primitive at compile time is a textual expansion of
the document. The imported module is inserted at the position the %import

mark is found, repeated headers will be ignored, only the main module header
is kept. In the case where the imported module has itself importations, this
process is recursively performed.

Another important concern is to force the imported modules to be well-
formed HTML. Alternatively it would be desirable to import valid HTML
code, what would mean that the imported code should satisfy all the require-
ments from the W3C current HTML specification [14]. This is achieved by
another feature of the language which provides a theory notion, close to the

143

Kirchner, Kirchner and Santana

notion of type. Setting in MHTML that a module mod is well-formed (resp.
valid) is achieved by the declaration mod :: WellFormedHTML (resp. mod ::

ValidHTML). At compile time, in the HTML case, this property is checked by
calling the appropriate HTML tools.

The example below illustrates these issues considering the web site pre-
sented in Section 2:

Example 3.2 The web page of Figure 1 is written as the following module.

%module page1

<html>

<head>

<link href="styles.css" rel="stylesheet" type="text/css" />

<title>Home Page</title>

</head>

<body>

%import header :: WellFormedHTML

<div class="header">

<h1 class="title">Research Interests</h1>

</div>

<div class="menu">

%import menu :: WellFormedHTML

</div>

<div class="content">

%import contents :: WellFormedHTML

</div>

<div class="footer">

%import footer :: WellFormedHTML

</div>

</body>

</html>

Templates

The language also provides a template mechanism, that extends the lan-
guage with parameterized modules. In this case, actual parameters are ex-
pected to be other modules, that in their turn, may be required to conform
to a certain theory. In the HTML case, we currently simply consider these as
either valid or simply well-formed HTML. Again, the parameters are trans-
formed into a textual expansion when the preprocessor composes instances of
such templates. The following example shows the definition of a parameterized
MHTML module:

Example 3.3 For reusing the structure of the web page of Figure 1, the
following template is provided:

%module template1 [

Title

Header :: WellFormedHTML

144

Kirchner, Kirchner and Santana

Menu :: WellFormedHTML

Contents :: WellFormedHTML

Footer :: WellFormedHTML]

<html>

<head>

<title>%use Title</title>

</head>

<body>

%use Header

<div class="header">

<h1 class="title">Research Interests</h1>

</div>

<div class="menu">

%use Menu

</div>

<div class="content">

%use Contents

</div>

<div class="footer">

%use Footer

</div>

</body>

</html>

This template can generate a new instance with the following instantiation:

Example 3.4 Actual module names are substituted to parameters to obtain
an appropriate instance of the previous template:

%module publications

%import template1 [myHomePage

myPageHeeader

myBookmarks

myPublications

myPageFooter]

Figure 2 presents the syntax used in the examples above.

4 Semantics, anchoring and compilation

We are now ready to describe how the modular features provided in MHTML can
be compiled into HTML. From an implementation point of view, the compiler
accepts as input an MHTML program, consisting of native code combined with
the modularity primitives of the language described in Section 3 and gener-
ates pure native code as output. For describing this compilation process, we
choose to write an algebraic specification with rewrite rules, implemented in
ELAN 4 [10]. In this way, we also provide the operational semantics of our
MHTML language. Outlines of this specification is given in Figure 3. This is sim-

145

Kirchner, Kirchner and Santana

Module ::= %module 〈moduleName〉 (“[”Param+ “]”)∗ Body

Body ::= ([Import][Use] [HTML])∗

Import ::= %import 〈moduleName〉 [Paraminst+] [“::”Theory]

Param ::= 〈paramName〉 [“::” Theory]

Paraminst ::= 〈moduleName〉

Use ::= %use 〈paramName〉

Theory ::= WellFormedHTML | ValidHTML

HTML ::= Any HTML code with the clear exception of the primi-
tives listed above

Fig. 2. Syntax for the generic structuring constructs

ilar to (but indeed simpler than) the rules given in [5] to describe the (more
elaborated) modularity features of the Maude language.

ELAN 4 shares the syntax definition of SDF [4]. HTML code is represented
by the sort HTML. The next rules can be read as follows:

• The first rule, establishes that modules with no further structuring con-
structs than %module should be transformed into HTML code.

[] translate (%module m html) => html

• The couple of rules below state that any importation without parameters
nor theories should start a recursive call to the translate function, and as
result would concatenate the produced HTML in the position the %import
mark was found

[] translate (%module m %import m1 html) => translate(load(m1)) html

[] translate (%module m html %import m1) => html translate(load(m1))

• The following rules have a similar effect as the previous ones, but they ensure
that the modules being imported conform to a certain theory, through the
satisfies function.

[] translate (%module m html %import m1 :: th) =>

html translate(load(m1))

if satisfies(load(m1), th)

[] translate (%module m %import m1 :: th html) =>

translate(load(m1)) html

if satisfies(load(m1), th)

• The next two rules deal with the importation of parameterized modules, in
this case a second version of the translation function is activated to treat
the actual parameters.

[] translate (%module m %import m1 [i] html) =>

translate(load(m1), i) html

[] translate (%module m %import m1 [i] :: th html) =>

translate(load(m1), i) html

if satisfies(load(m1), th)

146

Kirchner, Kirchner and Santana

module \mhtmlTranslate

imports basic/ElanLayout

basic/BuiltinBool

\mhtmlSyntax

exports

context-free syntax

translate(Module) -> HTML

translate (Module , ParamList) -> HTML

HTML HTML -> HTML

load(ModuleName) -> Module

satisfies(Module, Theory) -> BuiltinBool

hiddens

variables

"m"[0-9]* -> ModuleName

"x"[0-9]* -> ParamName

"p"[0-9]* -> ParamDecList

"i"[0-9]* -> ParamList

"html"[0-9]* -> HTML

"th"[0-9]* -> Theory

rules

[] ...(c.f. text)

Fig. 3. Rewrite rules for the MHTML compiler

• The following rules run through lists of formal parameters to verify them
against actual parameters, and perform the corresponding substitution wher-
ever the parameter occurrence was found

[] translate (%module m [x p] html %use x, m2 i) =>

translate (%module m [p] html translate(load(m2)) , i)

[] translate (%module m [x :: th p] html %use x, m2 i) =>

translate (%module m [p] html translate(load(m2)) , i)

if satisfies(load(m2), th)

These rewrite rules provide an outline of the compilation of MHTML to
HTML. When completed with the full description of the instantiation pro-
cess, this specification provides a normalization process that compiles MHTML

into HTML. Compared to the implementation of formal islands provided for
matching and rewriting in TOM, this process is simpler from several points
of views. With the modularity primitives introduced here, there is no need
for an anchoring dealing with the structure of terms. This could change when
considering, for example, dependent types. So rather than a “deep” anchoring
involving the structure of terms as used in [11], we need here only a “shal-
low” one dealing with the module content only. Another difference is that we

147

Kirchner, Kirchner and Santana

do not have to certify the compilation process in the same way: in [11], the
matching compilation has to be certified, taking into account the properties of
the anchoring. In our case, the verification process will concern the validation
of the importations and of the parameter instantiations, leading in particular
the way to another use of type systems for HTML.

5 Related Work about HTML

Restricting our attention to the specific question of anchoring modularity in
HTML, the question arises to identify the improvements provided by our ap-
proach with respect to the web site development process. First of all, MHTML

provides the following main advantages:

• It is independent of the web server hosting the web site.

• It is not necessary to process the language in a graphical environment, like
in WYSIWYG HTML editors. This simplifies the maintenance process. It
could also be used by the graphical environment to produce modular and
hopefully readable code.

• It has a lightweight compilation process.

• It is easy to learn.

• It does not need to be executed every time the site is accessed.

• Finally, we should emphasize that, as for any anchorage, it does not induce
any dependence on the language extension, as all the anchored language
features are compiled into the target language.

The lack of HTML modularity has of course already drawn attention and
we can mention the following web related works.

The jigwig project[3] provides an implementation of a language aimed at
designing interactive web services. It is based on a session centered execution
model of requests made through the web. As a secondary result, it provides
a template language for dynamic web page construction. This language al-
lows the definition of gaps, that may be filled with HTML code. Surely, the
approach provides reuse of HTML code, but it is dependent on the whole
environment to do simple structuring tasks.

In [7] a complete management environment with a language is developed
to attack the management problems that appear in the implementation of
data intensive web sites. The system combines a query language to specify
the site’s structure and content with a template language for its HTML rep-
resentation. Although reusability is not the main concern of this work, the
template language offers flexibility and extensibility to the creation of the site,
it presents the same disadvantage as the previous one.

With respect to scripting languages like PHP, ASP, PERL, etc, this ap-
proach has the advantage of being simple and straightforward for the user.
Another advantage of MHTML when compared to scripting languages or server

148

Kirchner, Kirchner and Santana

side includes, available in Apache for example, is that it does not need to
be re-executed every time the root module is accessed via the web. More-
over we believe, although this has not yet been considered, that MHTML can be
combined with other languages in the development of web sites.

Similar forms of template mechanisms are provided by a number of WYSI-
WYG HTML editors. This restricts the re-use of HTML because the user
depends on a graphical environment to generate a new web page from existing
templates, whereas the same functionality can be obtained in MTML through
a simple text editor. It is also obviously possible for the user to design his page
in his favorite WYSIWYG editor, and after, determine what are the parts he
would like to reuse from that page in MHTML.

6 Conclusion

The approach described in this paper is part of a much larger enterprise to-
wards the non-invasive diffusion of formal methods and algebraic methodology
through the concept of Formal Islands. For example, on one hand matching
and strategic rewriting may help to model large pieces of code. On the other
hand, modularity is of fundamental use in the structuration of large software.

We have developed the idea of modular anchoring on the example, sim-
ple but useful, of the HTML language. Introducing quite simple primitives
for importation and parameterization, we have shown how this can define a
modular extension of HTML. The compilation process has been outlined using
ELAN 4.

This is of course a preliminary work and we are actively working on deep-
ening several points. First an implementation of MHTML in on its way and
we naturally chose as implementation framework TOM itself. This will allow
us to play with the concept and to validate our initial ideas. Second and
quite importantly, verification tools specific to HTML should be used or de-
veloped. One can think of course, as we mentioned before, to the (X)HTML
code validation as provided by the W3C tools. Specific type systems will also
be developed to ensure desirable properties. For example and as for algebraic
languages, structured data types could be statically typed using prescriptive
type systems. Also, the introduction of views for parameter validation will
require for their verification to perform non-trivial proofs and the experience
gained again from the algebraic specification community will be of great in-
terest here. We may also think to specific verification tools for HTML, like
checking the reachability of linked objects. Of course HTML is a very specific
and elementary language. A natural extension will concern XML, in partic-
ular for the logic and semantic web, and modularity features will be of great
use in projects like Rewerse 4 .

Acknowledgments This paper benefits of the many fruiful discussions we had

4 rewerse.net

149

Kirchner, Kirchner and Santana

with Pierre-Etienne Moreau, Horatiu Cirstea and Antoine Reilles, in particular
on formal islands. We also thanks the anonymous referees for their construc-
tive comments on the first version of this paper.

References

[1] Bergstra, J. A., J. Heering and P. Klint, Module algebra, Journal of the ACM
37 (1990), pp. 335–372.

[2] Bidoit, M., D. Sannella and A. Tarlecki, Architectural specifications in Casl,
Formal Aspects of Computing 13 (2002), pp. 252–273.

[3] Christensen, A. S., A. Moller and M. I. Schwartzbach, Extending Java for high-
level Web service construction, ACM Trans. Program. Lang. Syst. 25 (2003),
pp. 814–875.

[4] Deursen, A., J. Heering and P. Klint, “Language Prototyping,” World Scientific,
1996, iSBN 981-02-2732-9.

[5] Durán, F., “A Reflective Module Algebra with Applications to the
Maude Language,” Ph.D. thesis, Universidad de Málaga, Spain (1999),
http://maude.csl.sri.com/papers.

[6] Durán, F. and J. Meseguer, Structured theories and institutions, in:
M. Hofmann, G. Rosolini and D. Pavlović, editors, Proceedings of 8th
Conference on Category Theory and Computer Science, Edinburgh, Scotland,
September 1999, Electronic Notes in Theoretical Computer Science 29 (1999),
pp. 71–90, http://www.elsevier.nl/locate/entcs/volume29.html.

[7] Fernandez, M., D. Florescu, A. Levy and D. Suciu, Declarative specification of
web sites with strudel, The VLDB Journal 9 (2000), pp. 38–55.

[8] Guyon, J., P.-E. Moreau and A. Reilles, An integrated development environment
for pattern matching programming, in: 2nd eclipse Technology eXchange
workshop - eTX’2004, Barcelona, Spain, Electronic Notes in Theoretical
Computer Science, Brian Barry and Oege de Moor, 2004.

[9] Hrvatin, S., Structuration pour les spécifications à base de règles : Etude et mise
en œuvre pour TOM, Rapport de DEA, Université Henri Poincaré - Nancy 1
(2004).

[10] Kirchner, C. and H. Kirchner, Rule-based programming and proving : the
ELAN experience outcomes, in: Ninth Asian Computing Science Conference
- ASIAN’04, Chiang Mai, Thailand, 2004.

[11] Kirchner, C., P.-E. Moreau and A. Reilles, Formal validation of pattern
matching code, Submitted (2005).

[12] Leroy, X., A modular module system, Journal of Functional Programming 10

(2000), pp. 269–303.

150

http://maude.csl.sri.com/papers
http://www.elsevier.nl/locate/entcs/volume29.html

Kirchner, Kirchner and Santana

[13] Moreau, P.-E., C. Ringeissen and M. Vittek, A Pattern Matching Compiler for
Multiple Target Languages, in: G. Hedin, editor, 12th Conference on Compiler
Construction, Warsaw (Poland), LNCS 2622 (2003), pp. 61–76.

[14] Raggett, D., A. L. Hors and I. Jacobs, Html 4.01 specification (1999),
http://www.w3.org/TR/REC-html40/.

151

WWV 2005 Preliminary Version

A Rule-based System for Web site Verification 1

D. Ballis a J. Garćıa-Vivó b

a Dip. Matematica e Informatica, Via delle Scienze 206, 33100 Udine, Italy.
Email: demis@dimi.uniud.it.

b DSIC, Universidad Politécnica de Valencia, Camino de Vera s/n, Apdo. 22012,
46071 Valencia, Spain. Email: jgarciavivo@dsic.upv.es.

Abstract

In this paper, we describe a system, written in Haskell, for the automated verifica-
tion of Web sites which can be used to specify (partial) correctness and completeness
properties of a given Web site, and then automatically check whether these prop-
erties are actually fulfilled. It provides a rule-based, formal specification language
which allows us to define syntactic/semantic conditions for the Web site by means
of a user-friendly graphical interface as well as a verification facility for recognizing
forbidden/incorrect patterns and incomplete/missing Web pages.

Key words: Web site Verification, Rewriting, Formal Methods.

1 Introduction

The management of a complex Web site is a nontrivial task, in which the prob-
lematics related to the verification and the correction of the (semistructured)
data play a fundamental role. As a matter of fact, it is far simpler to discover
inconsistent information on the Web than to find a well-maintained Web site.
We believe that formal methods can bring a relevant contribution, giving sup-
port to Automated Web site verification. For instance, the system xlinkit [3]
allows one to check the consistency of distributed, heterogeneous documents
as well as to fix the (possibly) inconsistent information. Its specification lan-
guage is a restricted form of first order logic combined with Xpath expressions.
[4] presents a framework for modeling Web interactions and a type system,
which can be employed to catch errors in interactive Web programs. In our
previous work [2], we described the system Verdi which provides a rule-based

1 This work has been partially supported by MEC under grant TIN2004-07943-C04-
02, and by ICT for EU-India Cross Cultural Dissemination Project under grant
ALA/95/23/2003/077-054.

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Ballis and Garćıa-Vivó

language for the specification and the verification of syntactic as well as se-
mantic properties of collections of XML/XHTML documents. Specifically, the
system is able to detect missing/incomplete Web pages w.r.t. a given formal
specification.

This paper describes an evolution of the Verdi system which improves
several aspects of the previous tool. Firstly, the new specification language
does offer the expressiveness and the computational power of functions (which
are modeled as term rewriting systems [5]) and is enriched by a new class of
rules (i.e., correctness rules) in order to express properties for the detection
of erroneous/forbidden information. Moreover, the verification methodology
allows one to investigate both the syntax and the semantics of a Web site, while
the typical validation against DTDs and XML Schemata can only check the
syntactic layer of the site. Secondly, a graphical interface has been developed
which provides a more friendly use of the tool.

The system is based on the theoretical framework we proposed in [1]. We
use rewriting-based technology both to specify the required properties and to
formalize a verification technique, which is able to check them.

2 Web site denotation

In our framework, a Web page is either an XHTML or an XML. document.
Since Web pages are provided with a tree-like structure, they can be straight-
forwardly translated into ordinary terms of a given term algebra. Note that
XML/XHTML tag attributes can be considered as common tagged elements,
and hence translated in the same way. Therefore, Web sites can be represented
as finite sets of (ground) terms.

3 Web specification language

A Web specification is a triple (R, IN , IM), where R, IN , and IM are finite set
of rules. The set R contains the definition of some auxiliary functions which
the user would like to provide, such as string processing, arithmetic, boolean
operators, etc. It is formalized as a term rewriting system, which is handled
by standard rewriting [5]. The rewriting mechanism allows one to execute
function calls by simply reducing them to their irreducible form (that is, a
term that cannot be rewritten any longer).

The set IN describes constraints for detecting erroneous Web pages (cor-
rectNess rules). A correctness rule has the following form: l ⇀ error |
C, where l is a term, error is a reserved constant, and C is a (possibly
empty) finite sequence containing membership tests w.r.t. a given regular
language 2 (e.g. X ∈ rexp), and/or equations over terms. For the sake of ex-
pressiveness, we also allow to write inequalities of the form s 6= t in C. Such

2 Regular languages are represented by means of the usual Unix-like regular expression
syntax.

154

Ballis and Garćıa-Vivó

inequalities are just syntactic sugar for (s = t) = false. When C is empty,
we simply write l ⇀ error. Informally, the meaning of a correctness rule
l ⇀ error | C is the following. Whenever an instance lσ of l is recognized in
some Web page p, and (i) each structured text Xiσ, i = 1, . . . , n, is contained
in the language of the corresponding regular expression rexpi in the condition;
(ii) each instantiated equation (s = t)σ holds; then, Web page p is marked as
an incorrect page.

The third set of rules IM specifes some properties for discovering incom-
plete/missing Web pages (coMpleteness rules). A completeness rule is defined
as l ⇀ r 〈q〉, where l and r are terms and q ∈ {E, A}. Completeness rules
of a Web specification formalize the requirement that some information must
be included in all or some pages of the Web site. We use attributes 〈A〉 and
〈E〉 to distinguish “universal” from “existential” rules. Right-hand sides of
completeness rules can contain functions, which are defined in R. Besides,
some symbols in the right-hand sides of the rules may be marked by means
of the symbol]. Marking information of a given rule r is used to select the
subset of the Web site in which we want to check the condition formalized by
r. Intuitively, the interpretation of a universal rule l ⇀ r 〈A〉 (respectively, an
existential rule l ⇀ r 〈E〉) w.r.t. a Web site W is as follows: if (an instance
of) l is recognized in W , also (an instance of) the irreducible form of r must
be recognized in all (respectively, some) of the Web pages which embed (an
instance of) the marked part of r.

Example 3.1 Let R be a TRS defining function Nat(X), which converts a
string X to a natural number, append(X, Y) which concatenates two strings,
and add(X, Y) which sums two natural numbers. Let (R, IN , IM) be a Web
specification where IN and IM are defined as follows:

member(name(X), surname(Y)) ⇀]hpage(fullname(append(X, Y)),status) 〈E〉
hpage(status(professor)) ⇀]hpage(]status(]professor), teaching)) 〈A〉
hpage(X) ⇀ error | X in [:TextTag:]* sex [:TextTag:]*
blink(X) ⇀ error

project(grant1(X), grant2(Y), total(Z)) ⇀ error | add(Nat(X), Nat(Y)) 6= Nat(Z)

The given Web specification models some required properties for a Web site of
a research group. The first two rules are completeness rules, while the remain-
ing ones are correctness rules. First rule formalizes the following property: if
there is a Web page containing a member list, then for each member, a home
page should exist which contains (at least) the full name and the status of this
member. The full name is computed by applying the function append to the
name and the surname of the member. The marking information establishes
that the property must be checked only on home pages (i.e., pages contain-
ing the tag “hpage”). Second rule states that, whenever a home page of a
professor is recognized, that page must also include some teaching informa-
tion. The rule is universal, since it must hold for each professor home page.
Such home pages are selected by exploiting the mark given on the tag “sta-

155

Ballis and Garćıa-Vivó

tus”. The third rule forbids sexual contents from being published in the home
pages of the group members. Precisely, we check that the word sex does not
occur in any home page by using the regular expression [:TextTag:]* sex

[:TextTag:]*, which identifies the regular language of all the strings, built
over the set of all the tags and raw texts, containing that word. The fourth
rule is provided with the aim of improving accessibility for people with disabil-
ities. It simply states that blinking text is forbidden in the whole Web site.
The fifth rule states that, for each research project, the total project budget
must be equal to the sum of the funds, which has been granted for the first
and the second research periods.

Diagnoses are carried out by running Web specifications on Web sites. The
operational mechanism is based on a novel rewriting-based technique called
partial rewriting, which is able to extract partial structure from a term, and
then rewrite it. Roughly speaking, partial rewriting is a rewriting relation in
which pattern matching is replaced by a simulation algorithm (cf. [1]).

4 The verification system

The verification system has been implemented in Haskell (GHC v6.2.2). The
implementation consists of approximately 1100 lines of source code. It includes
a parser for semistructured expressions (i.e. XML/XHTML documents) and
Web specifications, and several modules implementing the partial rewriting
mechanism, the verification technique, and the graphical user interface. The
system allows the user to load a Web site together with a Web specification.
Additionally, he/she can inspect the loaded data and finally check the Web
pages w.r.t. the Web site specification. We have tested the system on several
Web sites. As we plan to show in our system demonstration, we are able to
detect both missing/incomplete and incorrect Web pages efficiently.

References

[1] M. Alpuente, D. Ballis, and M. Falaschi. Automated Verification of Web Sites
Using Partial Rewriting. In Proc. of ISoLA’04, pp. 81—88, 2004.

[2] M. Alpuente, D. Ballis, and M. Falaschi. VERDI: An Automated Tool for Web
Sites Verification. In Proc. of JELIA’04, pp. 726–729. Springer LNCS 3229,
2004.

[3] L. Capra, W. Emmerich, A. Finkelstein, and C. Nentwich. xlinkit: a Consistency
Checking and Smart Link Generation Service. ACM Transactions on Internet
Technology, 2(2):151–185, 2002.

[4] P. T. Graunke, R. B. Findler, S. Krishnamurthi, and M. Felleisen. Modeling Web
Interactions. In Proc. of ESOP’03, pp. 238–252. Springer LNCS 2618, 2003.

[5] J.W. Klop. Term Rewriting Systems. In Handbook of Logic in Computer Science,
vol. I, pages 1–112. Oxford University Press, 1992.

156

WWV 2005 Preliminary Version

Rewriting-based navigation of Web sites 1

Salvador Lucas a

a DSIC, UPV, Camino de Vera s/n, 46022 Valencia, Spain. slucas@dsic.upv.es

Abstract

In this paper we sketch the use of term rewriting techniques for modeling the dy-
namic behavior of Web sites.

Key words: Hypertext browsing, Semantic modeling of Web
sites, Term rewriting.

1 Introduction

The World Wide Web (WWW) provides easy and flexible access to infor-
mation and resources distributed all around the world. Although Web sites
are usually connected via Internet, many hypertext-based systems like on-line
help in compilers, programming language reference manuals, electronic books,
or software systems are now organized in a very similar way, also using the
same description language (HTML) of Web sites. Browsing such systems is an
essential aspect of their design and use. Having appropriate dynamic models
of Web sites is essential for guaranteeing the expected behavioral properties.

Rewriting techniques [BN98,Ohl02,Ter03] have been recently used to rea-
son about the static contents of Web sites [ABF05]. In this paper we show
that term rewriting techniques are also well-suited for modeling the dynamic
behavior of Web sites. We use Maude [CDEL+02] as a suitable specification
language for the rewriting models which also permits to explore interesting
properties like the reachability of Web pages within the site.

2 From ARSs to TRSs

We use a (finite) set of symbols (an alphabet) P to give name to the Web
pages of a Web site. Regarding its dynamic modeling, the most relevant
information contained in a Web page is, of course, that of the links which

1 Work partially supported by Spanish MEC grant SELF TIN 2004-07943-C04-02,
Acción Integrada HU 2003-0003, and EU-India Cross-Cultural Dissemination project
ALA/95/23/2003/077-054.

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Lucas

can originate that a new Web page is downloaded and then used to further
browsing the site. The obvious way to express the different transitions between
Web pages is to give the (finite) set of transitions among them, i.e., for each
Web page p, we can define →p = {(p, p1), . . . , (p, pnp

)} ⊆ P × P which is
the abstract relation between the page p and its immediate successors (i.e.,
the pages p1, . . . , pnp

∈ P which are reachable from p in a single step). The
pair (P ,→P), where →P =

⋃
p∈P

→p is an Abstract Reduction System (ARS
[BN98, Chapter 2]) and we can use the associated computational relations
→P , →+

P
, etc., to describe the dynamic behavior of our Web site. For instance,

reachability of a Web page p′ from another page p can be rephrased as p →∗
P

p′.

This abstract model is intuitively clear and can, then, be used as a reference
for building more elaborated ones. For many applications, however, this ARS-
based framework becomes too restrictive. For instance, modeling safe (user-
sensitive) access to a Web page requires to represent information about the
users and modeling some kind of validation before granting any access.

Term Rewriting Systems (TRSs [BN98,Ter03]) provide a more expressive
setting by allowing the use of signatures, i.e., sets of symbols which can be
used to build structured objects (terms) by joining terms below a symbol of
the signature. For instance, a safe Web page p can take now an argument
representing the user who is trying to get access to this page. Web pages
p containing no link are just constant symbols p (without any transition).
Web pages p without safety requirements are represented by rewrite rules
p(U) → pi(U) for 1 ≤ i ≤ np. The definition of a safe page p is as follows:

p(U) → vp(U) vp(u1) → bp(u1) bp(U) → p1(U)
...

...

vp(ump
) → bp(ump

) bp(U) → pnp
(U)

where vp and bp stand for validate and browse page p, respectively, and ui for
1 ≤ i ≤ mp are terms (e.g., constant symbols) representing the users who are
allowed to gain access to the Web page p. The resulting TRS is shallow and
linear 2 ; thus, reachability is decidable [Com00]. Then, reachability of a Web
page from another one is decidable too.

Now, after representing the Web site as a Maude rewriting module, it is
possible to ask Maude about reachability issues. For instance, the following
Maude module provides a partial representation of the WWV’05 site (see
http://www.dsic.upv.es/workshops/wwv05):

mod WebWWV05 is

sort S .

ops wwv05 submission speakers org valencia accomodation travelling

: S -> S .

ops sbmlink entcs entcswwv05 : S -> S .

2 A TRS is shallow if variables occur (at most) at depth 1 both in the left- and right-hand
sides of the rules [Com00, Section 4]. A TRS is linear if variables occur at most once both
in left- and right-hand sides of the rules [BN98, Definition 6.3.1].

158

http://www.dsic.upv.es/workshops/wwv05

Lucas

ops login vlogin blogin : S -> S .

ops forgotten register submit : S -> S .

ops krishnamurthi finkelstein : S -> S .

ops alpuente ballis escobar : S -> S .

op cfp : -> S .

ops slucas smith : -> S .

vars P PS X U : S .

rl wwv05(U) => submission(U) . rl wwv05(U) => speakers(U) .

rl wwv05(U) => org(U) . rl wwv05(U) => cfp .

rl wwv05(U) => valencia(U) . rl wwv05(U) => accomodation(U) .

rl wwv05(U) => travelling(U) . rl submission(U) => sbmlink(U) .

rl submission(U) => entcs(U) . rl submission(U) => entcswwv05(U) .

rl sbmlink(U) => login(U) . rl sbmlink(U) => forgotten(U) .

rl sbmlink(U) => register(U) . rl speakers(U) => finkelstein(U) .

rl speakers(U) => krishnamurthi(U) . rl org(U) => alpuente(U) .

rl org(U) => ballis(U) . rl org(U) => escobar(U) .

rl login(U) => vlogin(U) . rl vlogin(slucas) => blogin(slucas) .

rl blogin(U) => submit(U) .

endm

The only safe page is login, which grants access to the submission system.
For the sake of simplicity, we have omitted many links. In fact, the only
‘terminal’ page is cfp, containing the textual version of the WWV’05 call for
papers. We can check whether slucas (who has been previously registered)
can get access to the submission system (page submit).

Maude> search wwv05(slucas) =>+ submit(slucas) .

search in WebWWV05safe : wwv05(slucas) =>+ submit(slucas) .

Solution 1 (state 21)

states: 22 rewrites: 21 in 0ms cpu (0ms real) (~ rewrites/second)

empty substitution

No more solutions.

states: 22 rewrites: 21 in 0ms cpu (1ms real) (~ rewrites/second)

Maude tells us that there is only one way for slucas to reach the submission
page. The command show path 21 provides the concrete path:

wwv05(slucas) → submission(slucas) → sbmlink(slucas)

→ login(slucas) → vlogin(slucas) → blogin(slucas)

→ submit(slucas)

The non-registered user smith cannot reach this protected part of the site:

Maude> search wwv05(smith) =>+ submit(smith) .

search in WebWWV05safe : wwv05(smith) =>+ submit(smith) .

No solution.

states: 20 rewrites: 19 in 0ms cpu (0ms real) (~ rewrites/second)

159

Lucas

3 Further improvements and applications

The basic model in Section 2 can be improved in a number of different ways
to obtain more expressive models and/or analyze other behavioral issues:

(i) Structured names of users and Web pages allowing for more intuitive and
hierarchical naming systems.

(ii) Efficiency of browsing paths; e.g., shortest path (if any) leading from a
Web page to another one.

(iii) Finiteness of the search space. Of course, the number of pages in a Web
site is always finite, but this could eventually be missed in more expres-
sive models. The use of type information and/or syntactic replacement
restrictions [Luc02] could be helpful to avoid this problem.

(iv) Frequency of use of the different links (by applying the recently intro-
duced probabilistic approaches to term rewriting).

Finally, the rewriting theory could also benefit from the new research direc-
tions pointed by the analysis of the Web. Some challenging aspects are:

(i) Structured definition of Web sites: a given site can often be considered
as composed by many smaller sites. This kind of issues correspond to the
analysis of modular properties in Term Rewriting [Ohl02], but the current
developments are probably too weak for modeling Web site structures.

(ii) Evolving Web sites: adding new pages to a Web site is quite usual. This
corresponds to dinamically adding new rules to the model of the site.

References

[ABF05] M. Alpuente, D. Ballis, and M. Falaschi. A Rewriting-based Framework
for Web Sites Verification. Electronic Notes in Theoretical Computer
Science, 124:41-61, 2005.

[BN98] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge
University Press, 1998.

[CDEL+02] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer,
and J. Quesada. Maude: specification and programming in rewriting
logic. Theoretical Computer Science 285(2):187-243, 2002.

[Com00] H. Comon. Sequentiality, Monadic Second-Order Logic and Tree
Automata. Information and Computation, 157(1-2): 25-51, 2000.

[Luc02] S. Lucas. Context-sensitive rewriting strategies. Information and
Computation, 178(1):293-343, 2002.

[Ohl02] E. Ohlebusch. Advanced Topics in Term Rewriting. Springer-Verlag,
Berlin, 2002.

[Ter03] TeReSe, editor, Term Rewriting Systems, Cambridge Univ. Press, 2003.

160

WWV 2005 Preliminary Version

Modeling Web Applications by the Multiple
Levels of Integrity Policy

G. Amato 1

Dipartimento di Scienze

Università degli Studi “G. d’Annunzio”, Italy

M. Coppola, S. Gnesi 2

Istituto di Scienza e Tecnologie dell’Informazione “A. Faedo”

CNR Pisa, Italy

F. Scozzari, L. Semini 3

Dipartimento di Informatica

Università di Pisa, Italy

Abstract

We propose a formal method to validate the reliability of a web application, by
modeling interactions among its constituent objects. Modeling exploits the recent
”Multiple Levels of Integrity” mechanism which allows objects with dynamically
changing reliability to cooperate within the application. The novelty of the method
is the ability to describe systems where objects can modify their own integrity
level, and react to such changes in other objects. The model is formalized with
a process algebra, properties are expressed using the ACTL temporal logic, and
can be verified by means of a model checker. Any instance of the above model
inherits both the established properties and the proof techniques. To substantiate
our proposal we consider several case-studies of web applications, showing how to
express specific useful properties, and their validation schemata. Examples range
from on-line travel agencies, inverted Turing test to detect malicious web-bots, to
content cross-validation in peer to peer systems.

Key words: Formal Methods, Model Checking, Process Algebra,
Temporal Logic.

1 Email: amato@sci.unich.it
2 Email: {coppola,gnesi}@isti.cnr.it
3 Email: {scozzari,semini}@di.unipi.it

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

G. Amato et al.

1 Introduction

Formal methods are increasingly being used to validate the design of dis-
tributed systems and have already proved successful in specifying commercial
and safety-critical software and in verifying protocol standards and hardware
design [4,8]. It is increasingly accepted that the adoption of formal methods in
the life cycle development of systems would guarantee higher levels of depend-
ability and greatly increase the understanding of a system by revealing, right
from the earliest phases of the software development, inconsistencies, ambigu-
ities and incompletenesses, which could cause subsequent faults. In particular
model checking techniques [6,7] have emerged as successful formal verifica-
tion techniques. They have been defined to automatically check the truth of
system properties, expressed as temporal logic formulae, on the finite state
model representing the behavior of a system. Model checkers can easily be
used by non–expert users too. For this reason model checking has often been
preferred in industries to other verification tools, and many efficient verifica-
tion environments are currently available, based on model checking algorithms
[5,11,15].

In the last few years distributed applications over the WEB have gained
wider popularity. Several systems have led to an increasing demand of evolu-
tionary paradigms to design and control the development of applications over
the WEB. The main advantages of exploiting the WEB as underlying plat-
form can be summarized as follows. The WEB provides uniform mechanisms
to handle computing problems which involve a large number of heterogeneous
components that are physically distributed and (inter)operate autonomously.
Conceptually, WEB services are stand-alone components that reside over the
nodes of the network. Each WEB service has an interface which is network
accessible through standard network protocols and describes the interaction
capabilities of the service. Applications over the WEB are developed by com-
bining and integrating together WEB services. Web applications show the
same verification problems of classical distributed systems. We may hence
extend techniques and tool used for their verification also in the case of Web
applications.

The formalization framework that we propose in this paper is based on
some results presented in [14], where the formal validation of an interaction
policy between communicating objects was carried out. The policy is the
Multiple Levels of Integrity policy, defined in the context of the design of fault
tolerant systems to enhance systems dependability. The original definition of
the policy simply consists of a set of declarative rules: it can be operationally
realized defining a communication protocol. The protocol which carries out the
integrity policy is formally specified as a collection of interacting processes in
a process algebra. We consider specific interaction patterns, which subsume
the most complex interaction schemata, and check on them temporal logic
formulae expressing the non-violation of integrity rules.

162

G. Amato et al.

2 The Multiple Levels of Integrity policy

Integrity policies are defined in the field of fault tolerant systems. The design
of fault tolerant systems usually includes the modeling of faults and failures
or the definition of fault tolerant schemata. At the software architecture level,
a fault tolerant schema usually describes a set of components and their in-
teractions. A component that is part of a fault tolerant system is said to be
critical if its failure can seriously affect the reliability of the overall system.
Fault tolerant schemata, and in particular integrity policies, are defined to
prevent failure propagation from non critical to critical components. An in-
tegrity policy assigns a level of integrity, ranging over a finite set of natural
values, to each system component, and states the communication patterns.
Components that may be critical are assigned a high integrity level.

The Multiple Levels of Integrity policy has been defined within an object–
oriented framework, to provide flexible fault tolerant schemata. Instead of
forbidding data flow from low level to high level objects, this policy permits
some objects to receive low level data, by decreasing their integrity level. The
policy is based on the following concepts:

Integrity levels (il) range from 0, the lowest, to 3, the highest. Data are
assigned the integrity level of the object which produced them.

Single Level Objects (SLO) are objects whose integrity level does not
change during computations. Consequently, an SLO of level n is only allowed
to receive data from objects of level ≥ n.

Multiple Level Objects (MLO) are the core of the policy: their integrity
level can be dynamically modified, since they are allowed to receive low level
data. To this purpose, an MLO is assigned three values:

maxil which represents the maximum integrity level that the MLO can have.
It is also called the intrinsic level of the MLO, since it is assigned during
the design of the application. It is a static value.

minil which represents the minimum value the integrity level of the MLO can
reach while interacting with other objects. It is set at invocation time, on
the bases of the invocation level. No memory of it is kept after the answer
to the invocation is returned: minil is local to an invocation.

il which is the current integrity level. It is set at invocation time to a value
ranging between maxil and minil and decreases if lower level data are re-
ceived during the computation to serve the invocation. Also il is local to
each invocation.

The policy requires a new MLO instance to be created every time the MLO
is invoked. As a consequence, an MLO cannot be used to implement a com-
ponent which has to store some data. This means that an MLO, from a
functional point of view, is a stateless object: only SLOs can store data. In
Fig. 1, we provide an example of the evolution of an MLO in response to an
invocation: when an MLO with maxil = 3 receives a read request of level 1, it

163

G. Amato et al.

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

�������������
�������������
�������������
�������������
�������������

�����������
�����������
�����������
�����������
�����������

3

2

1

0

RR

AN

minil=1 minil=1

il=3

il=2 AN

RR

MLO MLO

Fig. 1. Behaviour of an MLO: dotted arrows follow the MLO’s evolution, thick
arrows bind requests to the corresponding answers.

sets its minil: no answer with integrity level smaller than 1 can be returned.
The value of il equals maxil: a read request does not corrupt the integrity
level of the MLO. Suppose the MLO needs to delegate part of the answer con-
struction, sending another read request to a third object. The level assigned
to the request equals minil: an answer to this request is accepted if greater
or equal to minil. Since the integrity level of the answer is 2, the MLO can
accept it but il is decreased to level 2. Finally, an answer to the first request
is provided, whose level equals the current il, and the MLO restores its initial
state.

Validation Objects (VO) are used to extract reliable data from low
level objects and to provide information at a fixed level of integrity. In real
systems, it is sometimes necessary to get data from unreliable sources, such as
sensors, and use them in critical tasks. However, this use could either lower
the level of the entire system or violate the integrity policy. Validation Objects
represent a safe way to upgrade the integrity level of these data. An example
of Validation Object is the one that uses a redundant number of data sources,
and filters them with appropriate algorithms. For instance, a voting policy
can be used. These policies are well known in the literature, in particular in
the distributed fault tolerant community. Among them, we recall the solutions
to the Byzantine Generals problem [16], where an agreement among multiple
nodes is sought in the presence of faults. To validate a voting algorithm we
can apply the results presented in [2].

A set of rules is given, describing all the possible communication patterns
among pairs of objects, depending on the respective integrity levels. We list
them in Table 1: we call A and B the invoking and the invoked objects,
respectively. The first part of the table considers invocation conditions. The
invocation is refused if the specified condition is not satisfied. If it is accepted,
the invoked object (if an MLO) might have to change its integrity level, as
shown in the second part of the table, where invocation effects are considered.
In the case of read or read–write invocation, an answer is returned at the end of
the method execution. If the invoking object was an MLO, then the returned
data may decrease its integrity level as follows: il(A) := min(il(A), il(B)).

The communication model is based on the notion of method invocation.

164

G. Amato et al.

Conditions A&B SLOs A SLO, B MLO A MLO, B SLO A&B MLOs

A reads B il(A)≤ il(B) il(A)≤maxil(B) minil(A)≤ il(B) minil(A)≤maxil(B)

A writes B il(B)≤ il(A) always il(B)≤ il(A) always

A r-w B il(A)= il(B) il(A)≤maxil(B) minil(A)≤ il(B)≤ il(A) minil(A)≤maxil(B)

Effect A SLO, B MLO A&B MLOs

A reads B
minil(B) := il(A);

il(B) := maxil(B)

minil(B) := minil(A);

il(B) := maxil(B)

A writes B il(B) := min(il(A), maxil(B)) il(B) := min(il(A), maxil(B))

A r-w B minil(B), il(B) := il(A)
minil(B) := minil(A);

il(B) := min(il(A), maxil(B))

Table 1
Conditions to be satisfied for a method invocation to be accepted, and the effect

on the level of objects after acceptance.

Method invocations are assigned an integrity level too. In particular, read,
write and read–write requests are considered as abstractions of any method,
with respect to the effect on the state of objects. The level of a write request
corresponds to the level of the data which are written, the level of a read
request corresponds to the minimum acceptable level of the data to be read.
Read–write requests are assigned two integrity levels, one for read and one for
write.

3 Formal Validation Methodology

The Multiple Levels of Integrity policy has been validated according to the
following steps. We follow the same methodology to validate the case studies.

– Formal specification of the mechanism using the CCS process algebra [17].
Process algebras are based on a simple syntax and are provided with a
rigorous semantics defined in terms of Labeled Transition Systems (LTSs).
Process algebras are well suited to describing interaction policies, since
a policy definition abstracts from the functionalities of the objects, and
the relevant events to be specified are the object invocations (the actions)
which may change the object integrity level (the state). In Table 2 we
present the subset of the CCS operators used in the following.

– Use of the ACTL temporal logic [10] to describe the desired properties.
ACTL is a branching-time temporal logic whose interpretation domains
are LTSs. It is the action based version of CTL [13] and is well suited to
expressing the properties of a system in terms of the actions it performs.
We use a fragment of ACTL, given by the following grammar, where φ

denotes a state property:

165

G. Amato et al.

a : P Action prefix Action a is performed, and then process P is exe-
cuted. Action a is in Actτ

P + Q Nondeterministic choice Alternative choice between the behaviour of pro-
cess P and that of process Q

P ‖ Q Parallel composition Interleaved executions of processes P and Q. The
two processes synchronize on complementary in-
put and output actions (i.e. actions with the same
name but a different suffix)

P \ a Action restriction The action a can only be performed within a syn-
chronization

P = P ′ Process definition It includes recursion

Table 2
A fragment of CCS syntax

φ ::= true
∣

∣ φ & φ′
∣

∣ [µ]φ
∣

∣ AG φ
∣

∣ A[φ{µ}U{µ′}φ′]

In the above rules µ is an action formula defined by:

µ ::= true
∣

∣ a
∣

∣ µ ∨ µ
∣

∣ ∼µ for a ∈ Act

We provide here an informal description of the semantics of ACTL oper-
ators. The formal semantics is given in [10]. Any state satisfies true. A
state satisfies φ & φ′ if and only if it satisfies both φ and φ′. A state
satisfies [a]φ if for all next states reachable with a, φ is true. The meaning
of AG φ is that φ is true now and always in the future.

A state P satisfies A[φ{µ}U{µ′}φ′] if and only if in each path exiting
from P , µ′ will eventually be executed. It is also required that φ′ holds
after µ′, and all the intermediate states satisfy φ; finally, before µ′ only
µ or τ actions can be executed. A useful formula is A[φ{true}U{µ′}φ′]
where the first action formula is true: this means that any action can be
executed before µ′.

– Generation of the (finite state) model. To this end, we use the tools of
the JACK (Just Another Concurrency Kit) verification environment [3],
which is based on the use of process algebras, LTSs, and temporal logic
formalisms, and supports many phases of the systems development process.

– Model checking of the ACTL formulae against the model, using the model
checker for ACTL available in JACK, FMC.

3.1 Validation of the Multiple Levels of Integrity policy

The Multiple Levels of Integrity policy has to guarantee that the interaction
among different components does not affect the overall confidence of the appli-
cation, i.e., that a non–critical component does not corrupt a critical one. In
particular, data of a low integrity level cannot flow to a higher integrity level

166

G. Amato et al.

(unless through a Validation Object). This condition should hold for isolated
objects and in any schema of interaction among objects. In [14], the following
properties have been validated:

(i) An object with intrinsic level i cannot provide answers of level j > i.

(ii) An object with intrinsic level i does not accept read requests of level
j > i.

(iii) If an MLO with intrinsic level i receives a read request of level j ≤ i,
and, to serve the request, it invokes with a read request a third object
of intrinsic level maxil smaller than j, then it cannot answer the initial
request. Indeed, its level is decreased to the maxil value of the third
object because of the new data received.

(iv) If an MLO with intrinsic level i receives a read request of level j ≤ i,
and then a write request of level k < j, then it can still answer the
read request. In other words, its level is not decreased by the concurrent
invocation.

4 A concept of interface

The model proposed in [14] assumes that all the components of a system and
their relationships are known. This assumption cannot be satisfied in the case
of web site specification, since in most cases we only analyze a piece of the
system, while of the remaining components we only know the interface toward
the components of interest. We therefore need to define a formal concept of
interface for a component of a system expressed in the CCS process algebra.
This is accomplished using the restriction operator together with a dummy
process which simulates the rest of the world. To be more precise, let P be
a process over the set of actions ActP . We could image to have a process W

describing the rest of the world, thus we would like to verify the overall system
P ‖ W . Of course, this is not possible, since we cannot specify all the possible
components. Actually, since we are not interested in other communications
than those among our process P and the rest of the world, we can restrict
ourselves to study the process (P ‖ W) \ (ActW r ActP), where ActW is
the set of actions of W . But this is equivalent to considering the process
P ‖ (W \ (ActW r ActP)). Our idea is to consider, instead of the process
W \ (ActW rActP) its interface toward P . To this aim, we need to introduce
the notion of dummy process, that we use to separate the proper interface of
W we are interested in. Let DW,P be the dummy process

DW,P = a1 : DW,P + a2 : DW,P + . . . + an : DW,P (1)

where {a1, . . . , an} = ActW \ ActP . We define the interface of W w.r.t. P

the process WP = (W ||DW,P) \ (ActW r ActP). Actually, for our purpose,
any process trace-equivalent to WP would suffice, that is any process which
exhibits the same behaviour w.r.t. P when we observe only the traces of the

167

G. Amato et al.

system. In the following, we call interface any of such processes. Thus, given
any interface I of W w.r.t. P , we simply consider the system P ||I.

For example, given P =?request :!ask google :?read google :!reply we
do not want to observe the interaction of the Google web site with the rest
of the world, then we may choose ?ask google and !read google as the only
actions we are interested in, and which should be described in the interface of
Google.

Our aim is to verify ACTL formulas on processes defined by CCS agents.
Since we adopt the above concept of interface, we are particularly interested
in those formulas such that, once proved for P ‖ I, where I is any interface of
W w.r.t. P , they also hold for P ||W . It is well–known that every formula in
ACTL which does not contain any existential path quantifier E and negation
∼, enjoys the above property, since we can observe only the traces of the
system. This motivates our choice of the ACTL fragment, as presented in
Section 3.

5 Case Study: the Travel Agency

Our first case study concerns the modeling and analyzing of the architecture
of the subset of the Web, which is of interest for a user willing to organize a
travel by booking flights and hotels. The user interacts with an on–line travel
agency. The travel agency, in turn, accesses the web sites of air companies,
tour operators, single hotels as well as other travel agencies specialized in hotel
booking, and so on. Here, we consider a simplified scenario, with two reliable
sites, namely those of the travel agency and the air company Alitalia 4 , and a
fairly reliable hotel booking site.

We model Alitalia and the travel agency as MLOs with maxil 3, called
ALITALIA3 and TA3, respectively, and the hotel booking site as HOTELSEEK,
an MLO with maxil 2. All these sites are supposed to interact and receive
data from many distinguished other components. We want them to perform
their job even if the received data have a lower integrity level. At the same
time, we recall that MLOs cannot store data: we can imagine that these
components interact with some private SLOs, where to store the information
of any finalized reservation. To exemplify this, we specify the SLOs of the
travel agency, and call them disks. Since the travel agency is an MLO of
level 3, it may be at any level when accessing its disks with a write request.
We hence introduce 4 disks, one for each integrity level. They are specified
parametrically by the process DISKx. We also need a disk manager, specified
as an MLO of level 3, in order to choose the right DISKx according to the
integrity level.

4 Disclaimer: The company names and the integrity level we use, are freely introduced for
the purposes of the example, and have no correspondence with the reliability of the actual
sites, when they exists.

168

G. Amato et al.

3TA

Alitalia 3

Disk0

Disk1 Disk2

Disk3

2
HotelSeek

DiskManager
3

Fig. 2. The travel agency architecture.

The architecture of the resulting system is described in Figure 2. The full
specification is given below, by instantiating the process defined in [14]. A
disk can receive a read request when the travel agency needs to access previous
reservations. read requestx is a read request action of level x. In general,
this means that the invocation was issued either by an SLO with x as il or by
an MLO with x as minil. A disk can receive a write request too, when the
travel agency needs to store a new reservation. Only requests at level x are
served. A write request at a different level will be served by another disk.

DISK_MANAGER(3) =

?read_data(y). !read_disk(y).!answer_data(y).DISK_MANAGER(3) +

?write_data(y).!write_disk(y).DISK_MANAGER(3)

DISK_0 = ?read_disk(0).DISK_0 +

?write_disk(0).DISK_0

DISK_1 = ?read_disk(1).DISK_1 +

?write_disk(1).DISK_1

DISK_2 = ?read_disk(2).DISK_2 +

?write_disk(2).DISK_2

DISK_3 = ?read_disk(3).DISK_3 +

?write_disk(3).DISK_3

The agent HOTELSEEK accepts read–write hotel reservation requests, and
write–only confirmation requests. r w hreservey,z denotes a request issued
either by an MLO with y as minil and z as il or by an SLO with il = y = z.
Variable y denotes the read level of the request, variable z denotes the write
level. w confirmy denotes a write request of level y, issued by an object with y

as il. Hotel reservation requests are served as specified by process HOTEL RES.

HOTELSEEK(2) = ?r_w_hreserve(y,z).!hotel.(

169

G. Amato et al.

([y <= z] [z <= 2] HOTEL_RES(y,z,2)) +

([y <= 2] [2 <= z] HOTEL_RES(y,2,2)) +

([y > 2] !answer_hres(-1). HOTELSEEK(2))) +

?w_confirm(y). HOTELSEEK(2)

HOTEL_RES(min,il,max) =

([min <= 0] [0 <= il] !answer_hres(0). HOTELSEEK(2)) +

([min <= 1] [1 <= il] !answer_hres(1). HOTELSEEK(2)) +

([min <= 2] [2 <= il] !answer_hres(2). HOTELSEEK(2)) +

([min <= 3] [3 <= il] !answer_hres(3). HOTELSEEK(2)) +

!answer_hres(-1). HOTELSEEK(2)

The Alitalia specification is very simple. A web site such as the Alitalia
one can be implemented using a groupware protocol. These protocols ad-
dress, among others, the concurrency control problems that arise in systems
with multiple users (namely, groupware systems [1,12]) whose actions may be
conflicting. A typical example is to reserve the same seat to two or more users
that are concurrently booking a flight. The high integrity level of the Alitalia
site can be guaranteed by formally specifying the protocol and by proving
the non interference properties of interest. Validation can be done by model
checking using, for instance, the results given in [18] where some properties of
a public subscribe groupware protocol have been proved.

ALITALIA(3) = ?r_w_freserve(y,z). !flight.

[y <= z] !answer_fres(z). ALITALIA(3) +

?w_confirm(y). ALITALIA(3)

Finally, the travel agency.

TA(3) = ?r_w_booktravel(y,z). [y <= z] TA_BOOK(y,z,3) +

?r_infotravel(y). TA_INFO(y,3,3)

TA_BOOK(min,il,3) = F_BOOK(min,il,3) +

H_BOOK(min,il,3) +

F_BOOK(min,il,3).H_BOOK(min,il,3)

F_BOOK(min,il,3) = !r_w_freserve(min,il). ?answer_fres(x).

([x < min] !answer_booktravel(-1). TA(3) +

[min <= x] [x <= il] TA_FINALIZE(min,x,3) +

[il <= x] TA_FINALIZE(min,il,3))

H_BOOK(min,il,3) = !r_w_hreserve(min,il). ?answer_hres(x).

([x < min] !answer_booktravel(-1). TA(3) +

[min <= x] [x <= il] TA_FINALIZE(min,x,3) +

[il <= x] TA_FINALIZE(min,il,3))

TA_FINALIZE(min,il,3) = !write_data(il). !w_confirm(il).

!answer_booktravel(il). TA(3)

TA_INFO(min,3,3) = !read_data(min). ?answer_data(x).

170

G. Amato et al.

([x < min] !answer_info(-1). TA(3) +

[x >= min] !answer_info(x). TA(3))

We also need to specify a generic user of the system, which can ask for
information or book a travel.

User(x) = !info. ((!r_infotravel(x). ?answer_info(y).

(([y < 0] !failure. User(x)) +

([y >= 0] !success. User(x)))) +

!book. (!r_w_booktravel(0,x). ?answer_booktravel(y).

(([y < 0] !failure. User(x)) +

([y >= 0] !success. User(x)))))

In our test, we use a generic process consisting of the travel agency, the
air company, the hotel booking site, a generic user of level 2 and the disks.

(HOTELSEEK(2) || ALITALIA(3) || TA(3) || User(2) || DISK_MANAGER(3)

|| DISK_0 || DISK_1 || DISK_2 || DISK_3) \read_data \answer_data

\write_data \answer_hres \r_w_hreserve \w_confirm \r_w_freserve

\answer_fres \r_w_booktravel \r_infotravel \answer_booktravel

\answer_info \read_disk \write_disk

The only non restricted actions are info, book, hotel and flight. There-
fore we will use them when specifying the ACTL formula. As a first example,
we want to prove that, if a client requires a booking service (action !book),
the travel agency will either book an hotel (action !hotel) or a flight (action
!flight) before any positive answer (action !success). Formally, we require
to verify the following ACTL formula:

AG [!book] A [true { ~ !success } U { !hotel | !flight } true]

The result of the model checker is that the formula is true and that 153
states has been observed. The following formula:

AG [!info] A [true { ~ !success } U { !hotel | !flight } true]

states that at any request of information will follow the booking of an hotel
or a flight. Of course, in this case the result of the model checker is that the
formula is false.

6 Case Study: Peer to Peer Validation Service

We here describe a peer to peer architecture that a user can query to download
a video. This is a simplified instance of the concrete problem of identifying
remote file content before downloading in peer to peer systems, where some
or all of the peers are untrusted, or content-based access control has to be
enforced. In the example we assume that two peers exist, at level 1 and 2
respectively. Moreover, the system includes two refutation lists which collect
information of help to know whether the expected content of a file corresponds
to the file name. The download is filtered by a Validation object that first
looks for the video with a read video request, and then validates the answer
by querying the refutation lists. The system is described in Figure 3.

171

G. Amato et al.

Peer
1

RL
2

RL
1

3VO

Peer
2

Fig. 3. The Peer to Peer Validation Service architecture.

A peer’s answer to a read video request carries two values: the peer
integrity level, and an integer holding −1 if the peer does not have the video,
a different value otherwise. If the video is not found from both peers P, the
validator VO sends a negative answer to the user, otherwise it validates the
video content with the help of the clauses of the agents VAL and VAL2. This
involves querying one or more of the refutation lists processes RL.

In the example, we abstract from actual validation algorithms in VAL and
VAL2, and show a completely non-deterministic behaviour that can be refined
in any concrete solution. Our validation approach is compositional: to prove
the correctness of the final system, we only need to validate the refinement
step. Indeed, the abstract behaviour of the VO specified here corresponds to the
interface of any actual validation object, with a specific validation algorithm
demanded to the VAL agent.

To complete the example description, we assume that peers perform a
visible action video when the video is available, and the user performs the
visible actions start at search beginning, then success, or failure. The
last two actions discriminate the cases where a valid video was found from the
cases where either no video was found, or the video content was not correct.

P(x) = ?read_video(y). (([y <= x] (!video. !answer_video(x,x). P(x) +

!answer_video(x,-1). P(x))) +

([y > x] !answer_video(-1,-1). P(x)))

RL(x) = ?query_video(y). (([y <= x] !query_answer(x). RL(x)) +

([y > x] !query_answer(-1). RL(x)))

VO(x) = ?user_req(y). (([y <= x] !read_video(0). ?answer_video(z,w).

(([z = -1] !user_answer(-1). VO(x)) +

([z >=0] VAL(x,w))) +

([y > x] !user_answer(-1).VO(x))))

VAL(x,w) = [w = -1] !user_answer(-1). VO(x) +

[w >= 0] (!query_video(0). ?query_answer(y).

172

G. Amato et al.

(!user_answer(x). VO(x) +

!user_answer(-1). VO(x) +

VAL2(x)))

VAL2(x) = !query_video(0). ?query_answer(y). (!user_answer(x). VO(x) +

!user_answer(-1). VO(x))

User(x) = !start. !user_req(x). ?user_answer(y).

(([y < 0] !failure. User(x)) +

([y >= 0] !success. User(x)))

net Net = (VO(3) || P(1) || P(2) || RL(1) || RL(2) || User(1))

\read_video \query_video \user_req \answer_video \query_answer

\user_answer

The validation process has lead to the generation of a model with 524
states, against which the following properties have been checked, returning
the expected results.

AG [!start] A [true { ~ !start } U { !failure | !video } true]

-- The formula is TRUE --

AG [!start] A [true { true } U { !video } true]

-- The formula is FALSE --

7 The inverted Turing Test

The Inverted Turing test, proposed by Watt[19] as an alternative to the con-
ventional Turing Test for artificial intelligence, requires:

• to put a system in the role of the observer;

• the observer to discriminate between humans and machines.

The machine that wants to mimic humans should show naive psychology, that
faculty which predisposes us to anthropomorphism and enables us to ascribe
intelligence to others. An example test is the one that asks many questions
like “how close is a building to a house, how close is a hotel to a house, how
close is a lodge to a house, how close is a cavern to a house”, with answers
in a finite range, say 1–100. The observer compares the answers to a table
obtained by making the same questions to a sufficiently large population.

A variant of the Inverted Turing Test is the Editing Test [9], often used
to discriminate humans from machines when assigning a new e-mail address.
It is based on the so-called interpretative asymmetry, that is the asymmetry
of the skillful way in which humans “repair” deficiencies in speech, written
texts, handwriting, etc., and the failure of computers to achieve the same
interpretative competence. For instance, an optical sequence of characters
like the one in Figure 4 is printed on the screen, and the observed entity is
asked to type the characters with the keyboard.

173

G. Amato et al.

Fig. 4. The editing test: only humans are supposed to read the sequence of charac-
ters.

Provider
33ITT

Fig. 5. The architecture of the subset of the WEB including an Inverted Turing
test.

The component implementing the Inverted Turing test can be modeled in
our framework as a validation object. The architecture of the subset of the
WEB of interest can be modeled as described in Figure 5: the validation object
intercepts the interactions between the entity (human or machine) asking for
an e-mail address.

8 Conclusion

We have proposed a formal method to describe web applications by means of
a process algebra which can be automatically verified by a model checker. By
considering a fragment of the ACTL logic which does not contain negation and
existential path quantification, we can introduce a formal notion of interface
which allows us to prove properties expressed by temporal formulae in a mod-
ular way. We exploit the notion of validation object proposed in fault tolerant
system verification and show examples of web applications where validation
objects play a fundamental role. We describe in details two case studies val-
idating some formulae with the help of the FMC model checker. Moreover,
we briefly sketch another example where a commonly used web application
can be easily modeled as a validation object. As a future work, we intend
to investigate the possibility to separately verify different parts of the system
and to compose the results.

References

[1] Baecker, R., editor, “Readings in Groupware and Computer Supported Cooperation
Work–Assisting Human-Human Collaboration,” 1992.

[2] Bernardeschi, C., A. Fantechi and S. Gnesi, Formal validation of fault–tolerance

174

G. Amato et al.

mechanisms inside Guards, Reliability, Engineering and System Safety (RE&SS) 71

(2001), pp. 261–270, elsevier.

[3] Bouali, A., S. Gnesi and S. Larosa, JACK: Just another concurrency kit, Bulletin of
the European Association for Theoretical Computer Science 54 (1994), pp. 207–224.

[4] Bowen, J. and M. Hinchey, Seven more myths of formal methods, IEEE Software 12

(1995), pp. 34–41.

[5] Burch, J., E.M.Clarke, K. McMillan, D. Dill and J. Hwang., Symbolic Model Checking

1020 states and beyond, in: Proceedings of Symposium on Logics in Computer Science,
1990.

[6] Clarke, E., E. Emerson and A. Sistla, Automatic Verification of Finite–State

Concurrent Systems Using Temporal Logic Specification, ACM Transaction on
Programming Languages and Systems 8 (1986), pp. 244–263.

[7] Clarke, E., O. Grumberg and D.Peled, “Model Checking,” MIT Press, 1999.

[8] Clarke, E. and J. Wing, Formal methods: state of the Art and Future Directions, ACM
Computing Surveys 28 (1996), pp. 627–643.

[9] Collins, H., The editing test for the deep problem of AI, Psycoloquy 8 (1997).

[10] De Nicola, R. and F. Vaandrager, Action versus State based Logics for Transition

Systems, in: Proceedings Ecole de Printemps on Semantics of Concurrency, Lecture
Notes in Computer Science 469 (1990), pp. 407–419.

[11] Dill, D., A. Drexler, A. Hu and C. H. Yang, Protocol Verification as a Hardware Design

Aid, in: IEEE International Conference on Computer Design: VLSI in Computers and

Processors (1992), pp. 522–525.

[12] Ellis, C. and S. Gibbs, Concurrency control in groupware systems, in: In Proc.

SIGMOD’89 (1989), pp. 399–407.

[13] Emerson, E. and J. Halpern, Sometimes and Not Never Revisited: on Branching Time

versus Linear Time Temporal Logic, Journal of ACM 33 (1986), pp. 151–178.

[14] Fantechi, A., S. Gnesi and L. Semini, Formal Description and Validation for an Integrity

Policy Supporting Multiple Levels of Criticality, in: C. Weinstock and J. Rushby, editors,
Proc. DCCA–7, Seventh IFIP International Conference on Dependable Computing for

Critical Applications (1999), pp. 129–146.

[15] Holzmann, G., The Model Checker SPIN, IEEE Transaction on Software Engineering
5 (1997), pp. 279–295.

[16] Lamport, L., R. Shostack and M. Pease, The Byzantine Generals problem, ACM
Transactions on Programming Languages and Systems 4 (1982), pp. 282–401.

[17] Milner, R., “A Calculus of Communicating Systems,” Lecture Notes in Computer
Science 92, Springer-Verlag, Berlin, 1980.

[18] ter Beek, M., M. Massink, D. Latella and S. Gnesi, Model checking groupware protocols.,
in: F. Darses, R. Dieng, C. Simone and M. Zacklad, editors, Cooperative Systems Design

- Scenario-Based Design of Collaborative Systems, Frontiers in Artificial Intelligence
and Applications 107 (2004), pp. 179–194.

[19] Watt, S., Naive-psychology and the inverted turing test, Psycoloquy 7 (1996).

175

WWV 2005 Preliminary Version

Verification of Web Services with Timed

Automata

Gregorio Diaz 2 Juan-José Pardo 3 Maŕıa-Emilia Cambronero 4

Valent́ın Valero 5 Fernando Cuartero 6

Departamento de Informática
Universidad de Castilla-La Mancha

Escuela Politécnica Superior de Albacete. 02071 - SPAIN

Abstract

In this paper we show how we can use formal methods for describing and analyzing
the behavior of Web Services, and more specifically those including time restrictions.
Then, our starting point are Web Services descriptions written in WSCI - WSCDL
(XML-based description languages). These descriptions are then translated into
timed automata, and then, we use a well known tool that supports this formalism
(UPPAAL) to simulate and analyze the system behavior. As illustration we take a
particular case study, a travel reservation system.

1 Introduction

Nowadays the society model is changing. Our society is based on the infor-
mation exchange due to the growth of Internet and Telecommunications. For
example in the European Union the annual expenditure on ICT (Information
and Communication Technology) amounted to an estimated of more than 500
billion EUR which was approximately 6% of total Gross Domestic Product.
And the Internet access has increased for household and enterprises. In 2003,
the access level of household to the Internet was 45%. The access of enterpris-
ers was higher, reaching in some countries over 90% of all enterprises (source:
EUROSTAT [8]).

1 This work has been supported by the CICYT project “Description and Evaluation of

Distributed Systems and Application to Multimedia Systems”,TIC2003-07848-C02-02.
2 Email:gregorio@info-ab.uclm.es
3 Email:jpardo@info-ab.uclm.es
4 Email:emicp@info-ab.uclm.es
5 Email:valentin@info-ab.uclm.es
6 Email:fernando@info-ab.uclm.es

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Diaz et al

Due to this change in the society model it becomes necessary to increase
the research in the development of systems based in Internet, whose objective
is to develop solutions for automating their peer-to-peer collaborations, in an
effort to improve productivity and reduce operating costs.

Thus, in the last years some new techniques and languages for developing
this kind of distributed systems have appeared, such as the Extensible Markup
Language, XML [14], and some new Web Services frameworks [5,9,15] for de-
scribing interoperable data and platform neutral business interfaces, enabling
more open business transactions to be developed.

Web Services are a key component of the emerging, loosely coupled, Web-
based computing architecture. A Web Service is an autonomous, standards-
based component whose public interfaces are defined and described using XML
[11]. Other systems may interact with a Web Service in a manner prescribed
by its definition, using XML based messages conveyed by Internet protocols.

The Web Services specifications offer a communication bridge between
the heterogeneous computational environments used to develop and host ap-
plications. The future of E-Business applications requires the ability to per-
form long-lived, peer-to-peer collaborations between the participating services,
within or across the trusted domains of an organization.

The Web Service architecture stack targeted for integrating interacting
applications consists of the following components [11]:

• SOAP[9]: It defines the basic formatting of a message and the basic de-
livery options independent of programming language, operating system, or
platform. A SOAP compliant Web Service knows how to send and receive
SOAP-based messages.

• WSDL[15]: It describes the static interface of a Web Service. Then, at
this point the message set and the message characteristics of end points are
here defined. Data types are defined by XML Schema specifications, which
support rich type definitions and allow expressing any kind of XML type
requirement for the application data.

• Registry[5]: It makes visible an available Web Service and allows the ser-
vice requesters to discover it by means of relatively sophisticated searching
mechanims. It also describes the concrete capabilities of a Web Service.

• Security layer: Its goal is to ensure that exchanged informations are not
modified or forged in a verifiable manner and that parties can be authenti-
cated.

• Reliable Messaging layer: It provides a reliable layer for the exchange of
information between parties, guaranteeing the delivery of information with
an exactly-once semantics.

• Context, Coordination and Transaction layer: It defines interopera-
ble mechanisms for propagating context of long-lived business transactions
and enables parties to meet correctness requirements by following a global

178

Diaz et al

agreement protocol.

• Business Process Languages layer[2,3]: It describes the execution logic
of Web Services based applications by defining their control flows (such as
conditional, sequential, parallel and exceptional execution) and prescribing
the rules for consistently managing their non-observable data.

• Choreography layer[11]: It describes collaborations of parties by defin-
ing from a global viewpoint their common and complementary observable
behavior, where information exchanges occur, when the jointly agreed or-
dering rules are satisfied.

The Web Services Choreography specification is aimed at the composition
of interoperable collaborations between any type of party regardless of the
supporting platform or programming model used by the implementation of
the hosting environment.

Web Services cover a wide range of systems, which in many cases have
strong time constraints (for instance, peer-to-peer collaborations may have
time limits to be completed). Then, in many Web Services descriptions these
time aspects can become very important. Actually, they are currently covered
by the top level layers in Web Services architectures with elements such as
time-outs and alignments. Time-outs allow to each party to fix the available
time for an action to occur, while alignments are synchronizations between
two peer-to-peer parties.

Thus, it becomes important for Web Services frameworks to ensure the
correctness of systems with time constraints. For instance, we can think in
a failure of a bank to receive a large electronic funds transfer on time, which
may result in huge financial losses. Then, there is growing consensus that
the use of formal methods, development methods based on some formalism,
could have significant benefits in developing E-business systems due to the en-
hanced rigor these methods bring [10]. Furthermore, these formalisms allow
us to reason with the constructed models, analysing and verifying some prop-
erties of interest of the described systems. One of these formalisms are timed
automata [1], which are very used in practice and there are some well-known
tools supporting them, like UPPAAL [6,7,12] and KHRONOS [4].

Then, our goal with this paper is to describe how we can verify Web
Services with time constraints using model checking techniques. This verifi-
cation process starts from the top level layers of Web Services architectures
(Business Process Language Layer and Choreography layer). The particular
Business Process Language layer that we use here is the Web Service Chore-
ography Interface (WS-CI) [2], and the concrete Choreography Layer that we
use is the Web Service Choreography Description Language (WS-CDL) [11].
Therefore, the starting point are specification documents written in WS-CDL
and WS-CI. However, these description languages are not very useful for the
verification process. Thus, these descriptions are translated into timed au-
tomata, and the UPPAAL tool is used to simulate and verify the correctness

179

Diaz et al

of the system.

As illustration of this methodology of verification we use a particular case
study, which is an airline ticket reservation system, whose description contains
some time constraints.

The paper is structured as follows. In Section 2 we present the case study
that will be used to illustrate the methodology we propose for the verification
of Web Services with time restrictions. In Section 3 we describe WSCI -
WSCDL and how they are used to describe the case study. In Section 4 we
show how we can model the case study and we use the UPPAAL tool to
simulate and verify the system behavior. Finally, the conclusions and the
future work are presented in Section 5.

2 Case Study: Travel Reservation System

In this section we present the case study that we consider in order to illustrate
our methodology of verification. The scenario consists of three participants: a
Traveler, a Travel Agent and an Airline Reservation System, whose behavior
is as follows:

A Traveler is planning on taking a trip. Once he has decided the concrete
trip he wants to make he submits it to a Travel Agent by means of his local Web
Service software (Order Trip). The Travel Agent selects the best itinerary
according to the criteria established by the Traveler. For each leg of this
itinerary, the Travel Agent asks the Airline Reservation System to verify the
availability of seats (Verify Seats Availability). Thus, the Traveler has the
choice of accepting or rejecting the proposed itinerary, and he can also decide
not to take the trip at all.

• In case he rejects the proposed itinerary, he may submit the modifications
(Change Itinerary), and wait for a new proposal from the Travel Agent.

• In case he decides not to take the trip, he informs the Travel Agent (Cancel

Itinerary) and the process ends.

• In case he decides to accept the proposed itinerary (Reserve Tickets), he
will provide the Travel Agent with his Credit Card information in order to
properly book the itinerary.

Once the Traveler has accepted the proposed itinerary, the Travel Agent
connects with the Airline Reservation System in order to reserve the seats (Re-

serve Seats). However, it may occur that at that moment no seat is available
for a particular leg of the trip, because some time has elapsed from the mo-
ment in which the availability check was made. In that case the Travel Agent
is informed by the Airline Reservation System of that situation (No seats),
and the Travel Agent informs the Traveler that the itinerary is not possible
(Notify of Cancellation). Once made the reservation the Travel Agent informs
the Traveler (Seats Reserved). However, this reservation is only valid for a

180

Diaz et al

Fig. 1. Flow of the messages exchanged.

period of just one day, which means that if a final confirmation has not been
received in that period, the seats are unreserved and the Travel Agent is in-
formed. Thus, the Traveler can now either finalize the reservation or cancel
it. If he confirms the reservation (Book Tickets), the Travel Agent asks the
Airline Reservation System to finally book the seats (Book Seats).

According to the previous description, the high level flow of the messages
exchanged within the global process (which is called PlanAndBookTrip) is
that shown in Fig. 1, and a more complete description, including the actions
performed by each participant is shown in Fig. 2.

3 The WSCI - WSCDL Description

The Web Services Choreography specification is aimed at being able to pre-
cisely describe collaborations between any type of party, regardless of the
supporting platform or programming model used by the implementation of
the hosting environment. Using the Web Services Choreography specification,
a contract containing a ”global” definition of the common ordering conditions
and constraints under which messages are exchanged is produced that de-
scribes, from a global viewpoint, the common and complementary observable
behavior of all the parties involved. Each party can then use the global defi-
nition to build and test solutions that conform to it. The global specification
is in turn realized by combination of the resulting local systems, on the basis
of appropriate infrastructure support.

In real-world scenarios, corporate entities are often unwilling to delegate
control of their business processes to their integration partners. Choreography
offers a means by which the rules of participation within a collaboration can
be clearly defined and agreed to, jointly. Each entity may then implement its
portion of the Choreography as determined by the common or global view.

181

Diaz et al

Fig. 2. Overall picture of PlanAndBookTrip .

Fig. 3. WS-CDL and WS-CI usage.

It is the intent of WS-CDL that the conformance of each implementation to
the common view expressed in WS-CDL is easy to determine. Figure 3 shows
a possible usage of the Choreography Description Language. In the particu-
lar example we are using we take WS-CI as the Business Process Execution
Layer (BPEL for short). However, before that we must provide the WS-CDL
description.

182

Diaz et al

WS-CDL describes interoperable collaborations between parties. In order
to facilitate these collaborations, services commit to mutual responsibilities by
establishing relationships. Their collaboration takes place in a jointly agreed
set of ordering and constraint rules, whereby information is exchanged between
the parties. The WS-CDL model consists of the following entities:

• Participant Types, Role Types and Relationship Types: within a
Choreography the information is always exchanged between parties within
or across trust boundaries. A Role Type enumerates the observable behavior
a party exhibits in order to collaborate with other parties. A Relationship
Type identifies the mutual commitments that must be made between two
parties for them to collaborate successfully. A Participant Type is grouping
together those parts of the observable behavior that must be implemented
by the same logical entity or organization.

• Information Types, Variables and Tokens: Variables contain infor-
mation about commonly observable objects in a collaboration, such as the
information exchanged or the observable information of the Roles involved.
Tokens are aliases that can be used to reference parts of a Variable. Both
Variables and Tokens have Types that define the structure of what the
Variable contains or the Token references.

• Choreographies: They define collaborations between interacting parties:
· Choreography Life-line, which expresses the progression of a collab-

oration. Initially, the collaboration is established between parties, then
work is performed within it and finally it completes either normally or
abnormally.

· Choreography Exception Block, which specifies the additional inter-
actions should occur when a Choreography behaves in an abnormal way.

· Choreography Finalizer Block, which describes how to specify addi-
tional interactions that should occur to modify the effect of an earlier
successfully completed Choreography (for example to confirm or undo the
effect).

• Channels: They establish a point of collaboration between parties by spec-
ifying where and how information is exchanged.

• Work Units: They prescribe the constraints that must be fulfilled for
making progress and thus performing actual work within a Choreography.

• Activities and Ordering Structures: Activities are the lowest level com-
ponents of the Choreography that perform the actual work. Ordering Struc-
tures combine activities with other Ordering Structures in a nested structure
to express the ordering conditions in which information within the Chore-
ography is exchanged.

• Interaction Activity: It is the basic building block of a Choreography,
which results in an exchange of information between parties and possible
synchronization of their observable information changes and the actual val-

183

Diaz et al

<interaction name="reservation&booking"

channelVariable="travelAgentAirlineChannel"

operation="reservation&booking"

align="true"

initiate="true" >

<participate relationshipType="TravelAgentAirline"

fromRole="TravelAgent" toRole="Airline" />

<exchange name="reservation"

informationType="reservation" action="request" >

<send variable="tns:reservationOrderID" causeException="true" />

<receive variable="tns:reservationAckID" causeException="true" />

</exchange>

<exchange name="booking" informationType="booking" action="respond" >

<send variable="tns:bookingRequestID" causeException="true" />

<receive variable="bookingAckID" causeException="true" />

</exchange>

<timeout time-to-complete="24:00" />

<record name="bookingTimeout" when="timeout" causeException="true" />

<source

variable="AL:getVariable(’tns:reservationOrderCancel’, ’’, ’’)" />

<target

variable="TA:getVariable(’tns:reservationOrderCancel’, ’’, ’’)" />

</record>

</interaction>

Fig. 4. Part of the WS-CDL specification

ues of the exchanged information.

• Semantics: It allows the creation of descriptions that can record the se-
mantic definitions of every component in the model.

Figure 4 shows a part of the WS-CDL document that describes our case
study. This part shows the relationship between the Airline and the Travel
Agent. We can see that this interaction description determines that the max-
imum time a reservation is available is just of one day.

3.1 WSCI

WSCI is an interface description language. It describes the observable behav-
ior of a service and the rules for interacting with the service from outside. It
is not an executable language but it is precise and unambiguous enough.

The observable behavior of each party in a message exchange is described
independently of the others.

The basic construct of WSCI is the Action, which is bound to some WS-
CDL operation.

The main concepts in WSCI language are the following:

Interface: WSCI maps the description of a web service to the notion of in-
terface.

Activities and choreography of activities: WSCI describes the behavior

184

Diaz et al

of a Web Service in terms of choreographed activities. A choreography
describes temporal and logical dependencies among activities, where atomic
activities represent the basic unit of behavior of a Web Service.

Processes and units of reuse: A process is a portion of behavior labeled
with a name. It can be reused by referencing its name.

Properties: It allows us to reference a value within the interface definition.
They are the equivalent of variables on other languages.

Context: It describes the environment in which a set of activities is executed.
Each activity is defined in exactly one context definition.

Message correlation: It describes how conversations are structured and
which properties must be exchanged to do the service correctly.

Exceptions: The definiton of exception is part of the context definition.
There are three kinds of exceptions and when an exception occurs the cur-
rent context must terminate after the activities associated with the excep-
tion have been performed.

Transactions and compensation activities .- A transaction asserts that
a set of activities is executed in an all-or-nothing way. A transaction may
declare a set of compensation activities that will be executed if the trans-
action has completed successfully, but needs to be undone.

Global model: The global model is described by a collection of interfaces of
the participating services and a collection of links between the operations
of communicating services.

3.2 Example. Travel Reservation System

We now present the modeling details for the case study under consideration.

3.2.1 Travel Agent Interface

The model for the travel agent has the following elements:

• The main activities of the travel agent are represented via nested processes.

• The iterative processes are described by means of while activities.

• We use exceptions to capture the withdrawal of the trip request or the
reservation request.

• The interface uses two different correlations, which identify the same con-
versation involving the travel agent with both the traveler and the airline
reservation system.

Figure 5 shows a part of travel agent specification, in which an exception
to handle the reservation timeout is defined.

185

Diaz et al

...

<context>

<process name ="BookSeats" instantiation="other">

<action name="bookSeats"

role="tns:travelAgent"

operation="tns:TAtoAirline/bookSeats">

</action>

</process>

<exception>

<onMessage>

<action name="ReservationTimeOut"

role="tns:TravelAgent"

operation="tns:TAtoAirline/AcceptCancellation">

<correlate

correlation="defs:reservationCorrelation"/>

</action>

<action name="NotifyOfTimeOut"

role="tns:TravelAgent"

operation="tns:TAtotraveler/NotifyofCancellation"/>

<fault code="tns:reservationTimedOut"/>

</onMessage>

...

</exception>

...

</context>

Fig. 5. Part of the Travel Agent Specification

3.2.2 Traveler Interface

The main top-level process describing the Traveler is declared with instantia-

tion=other attribute to describe the fact that the traveler is actually the entity
starting the message exchange. Notice that the model captures the possibility
of canceling the reservation or the ticket booking, by means of a new context
with a new exception.

We use a correlation to ensure that both the travel agent and the airline
reservation system know how to fulfill the correlation requirements exhibited
by the traveler interface.

3.2.3 Airline Reservation System

The airline reservation system interface is modeled by an interface with two
top-level processes, both with the instantiation=message attribute.

The seat reservation for each leg is defined as a transaction which defines
a compensation activity which probably will withdraw the reservations for all
seats.

Figure 6 shows a part of the specification (the timeout control).

186

Diaz et al

...

<sequence>

<context>

<exception>

<onTimeout property ="tnsd:expireTime"

type="duration"

reference="tns:ReserveSeats@end">

<compensate name="CompensateReservation"

transaction="seatReservation"/>

</onTimeout>

</exception>

</context>

...

</sequence>

Fig. 6. Part of the Travel Agent Specification

4 Modeling, Simulation and Verification

The previous descriptions can be translated into timed automata, thus obtain-
ing three automata, which correspond to the traveler, the travel agent and the
airline company. These automata are shown in Figures 7, 8 and 9.

Start

ordertrip?

available?

change_itinerary!

cancel_itinerary!

reserve_tickets!

cancel_reservation!

book_ticket!

receive_statement?

notify_timeout?

receive_tickets?

accept_cancel?

no_available?

no_reservation?

no_reservation?

Fig. 7. Timed automaton for Traveler.

Notice the use of clock x in Fig. 8, to control when the reservation expires.
This clock is initialized once reserved seat is done.

By means of simulations we can check whether or not the system model
holds the expected behavior. These simulations are made by choosing different
transitions and delays along the system evolution. At any moment during the
simulation, you can see the variable values and the enabled transitions that
you can select. Thus, you can choose the transition you want to execute. Nev-
ertheless, you can also select a random execution of transitions, and thus, the

187

Diaz et al

x<24

check_seats? available_seat!
reserve_seat?

reserve_seat_ok!
x:=0

x<24

book_seat?

no_available_seat!

x==24
timeout!

x<24
cancel_reserve_seat?

cancel_reserve_seat_ok!

book_seat_ok!

receive_tickets!

book_seat_no!

reserve_seat_no!

Fig. 8. Timed automaton for Airline Reservation System.

ordertrip!

available!

cancel_itinerary?

change_itinerary?

reserve_tickets?

reserve_seat!reserve_seat_no?

reserve_seat_ok?timeout?
notify_timeout!

check_seats!

available_seat?

no_available_seat?

no_available!

book_seat!
book_seat_ok?

receive_statement!

cancel_reserve_seat!

cancel_reserve_seat_ok?

accept_cancel!

book_seat_no?

book_ticket?

cancel_reservation?

timeout?

no_reservation!

no_reservation!

Fig. 9. Timed automaton for Travel Agent.

system evolves by executing transitions and delays in a random way. We have
some other options in the Simulator. For instance, you can save simulations
traces that can be later used to recover a specific execution trace. Actually,
the simulation is quite flexible at this point, and you can back or forward in
the sequence.

Then, our main goal in the validation phase of our case study is to check
the correctness of the message flow and time-outs, taking into account the
protocol definition. We have made a number of simulations, and we have
concluded that the system design satisfies the expected behavior in terms of
the message flow between the parties.

Before starting the automatic verification, we must establish which are the
properties that the model must fulfill. We have divided these properties into
three classes: Safety, Liveness and Deadlocks. These properties are specified
by means of a Temporal Logic, and all of them have been checked by using the
UPPAAL tool. The temporal Logic used by UPPAAL is described in [13].

188

Diaz et al

Safety Properties: They allow us to check if our model satisfies some se-
curity restrictions. For example, if we have two trains that have to cross the
same bridge, a security property is that both trains cannot cross at the same
time the bridge:

∀¤¬(Train1.crossing ∧ Train2.crossing) or

¬∃♦(Train1.crossing ∧ Train2.crossing)

The main Safety properties for our case study are the following:

• The TravelAgent always sends the itinerary on traveler’s demand:

∀¤Traveler.Itinerary ⇒ TravelAgent.sendItinerary(1)

• The TravelAgent always changes the itinerary on traveler’s demand:

∀¤Traveler.ChangeItinerary ⇒ TravelAgent.PerformChange(2)

• The TravelAgent always cancels the reservation on traveler’s demand:

∀¤Traveler.CancelReservation →(3)

(TravelAgent.CancelReservtRcv ∧ Airline.PerformCancel ∧

Airline.Clockx < 24)

• A reservation is only available 24 hours before performing the booking:

∀¤(TravelAgent.Booking ∧(4)

Airline.ReceiveBoking ∧ Airline.ClockX <= 24)

• A Traveler always receives his tickets and the statement after the payment:

∀¤Traveler.PaymentPerform →(5)

(Traveler.F inish ∧ Airline.SnddTckt ∧ TravelAgent.SenddSttment)

Liveness Properties: They intend to check that our model can evolve in the
right order. Returning to the train example, if a train approaches the bridge,
some time later the train will be able to cross it:

Train.approach → Train.crossed

Liveness Properties for our model are simple, for instance, if a Traveler
sends a trip demand, some time later the TravelAgent will send the itineraries.
Translating it into Temporal Logic we have:

Traveler.P lanOrder −→ TravelAgent.SendItinerary(6)

Another liveness property of interest is the following: if a Traveler orders
a book within the next 24 hours after the reservation, the Airline performs
the booking. Translating it into Temporal Logic we have:

(Traveler.BookOdr ∧ Airline.ClockX < 24) −→ Airline.PerformBook(7)

Deadlocks: These are clear restrictions. We could check if our model is
deadlock free with the following formula:

∀¤¬Deadlock(8)

189

Diaz et al

5 Conclusions and Future Work

In this paper we have shown how we can apply formal methods to ensure the
correctness of Web Services with time restrictions. We have shown that we can
translate the descriptions written in WSCI-WSCDL into timed automata, and
thus, we can use the UPPAAL tool to simulate and verify the system behavior.

In the particular case study we have used to illustrate how this method-
ology works (the airline ticket reservation system) this translation has been
made manually, but our intention is to study if this translation can be made
automatically, and in that case to implement a tool supporting this transla-
tion.

References

[1] R. Alur and D. Dill. Automata for modeling real–time systems. In
Proceedings of the 17th International Colloquium on Automata, Languages
and Programming, volume 443, Editors. Springer–Verlag, 1990.

[2] Assaf Arkin et al. Web Service Choreography Interface (WSCI) 1.0. In
http:/www.w3.org/TR/wsci/.

[3] Assaf Arkin, Sid Askary, Ben Bloch, et. al., Web Services Business Process
Execution Language Version 2.0, Editors. OASIS Open, December 2004. In
http://www.oasis-open.org/committees/download.php/10347/wsbpel-specification-draft-120204.htm.

[4] M. Bozga, C. Daws, O. Maler, A. Olivero, S. Tripakis and S. Yovine.
Kronos: A model-checking tool for real-time systems. In Proc. 1998
Computer-Aided Verification, CAV’98, Vancouver, Canada, June 1998.
Lecture Notes in Computer Science 1427, Springer-Verlag.

[5] Luc Clement, Andrew Hately, Claus von Riegen and Tony Rogers.
UDDI Version 3.0.2, Editors. OASIS Open, 19 October 2004. In
http://uddi.org/pubs/uddi v3.htm.

[6] G. Diaz, F. Cuartero, V. Valero and F. Pelayo. Automatic Verification of
the TLS Handshake Protocol. In proceedings of the 2004 ACM Symposium
on Applied Computing.

[7] G. Diaz, K.G. Larsen, J. Pardo, F. Cuartero and V. Valero. An approach
to handle Real Time and Probabilistic behaviors in e-commerce: Validating
the SET Protocol. In proceedings of the 2005 ACM Symposium on Applied
Computing.

[8] Eurostat yearbook 2004. The statistical guide to Europe. Data 1992-2002.
European Commission: EUROSTAT, Office for Official Publications of the
European Communities, 2004

[9] Marc Hadley, Noah Mendelsohn, Jean-Jacques Moreau, et. al. SOAP
Version 1.2 Part 1: Messaging Framework, Editors. World Wide Web
Consortium, 24 June 2003. In http://www.w3.org/TR/soap12-part1.

190

http:/www.w3.org/TR/wsci/
http://www.oasis-open.org/committees/download.php/10347/wsbpel-specification-draft-120204.htm
http://uddi.org/pubs/uddi_v3.htm
http://www.w3.org/TR/soap12-part1

Diaz et al

[10] Constance Heitmeyer and Dino Mandrioli. Formal Methods for Real-Time
Computing. John Wiley & Sons. 1996.

[11] Nickolas Kavantzas et al. Web Service Choreography Description Language
(WSCDL) 1.0. In http://www.w3.org/TR/ws-cdl-10/.

[12] K. Larsen and P. Pettersson and Wang Yi. Uppaal in a Nutshell. Int.
Journal on Software Tools for Technology Transfer, Editors. Springer–
Verlag vol.1, 1997.

[13] Kim G. Larsen, Paul Petterson, Wang Yi. Diagnostic Model-Checking for
Real-Time Systems. Proc. of Workshop on Verification and Control of
Hybrid Systems III, Lecture Notes in Computer Science, vol. 1066, pp.
575-586, 1995.

[14] Jean Paoli, Eve Maler, Tim Bray, et. al.Extensible Markup Language
(XML) 1.0 (Third Edition), Editors. World Wide Web Consortium, 04
February 2004. In http://www.w3.org/TR/2004/REC-xml-20040204.

[15] Sanjiva Weerawarana, Roberto Chinnici, Martin Gudgin, et. al. Web
Services Description Language (WSDL) Version 2.0 Part 1: Core
Language, Editors. World Wide Web Consortium, 03 August 2004. In
http://www.w3.org/TR/2004/WD-wsdl20.

[16] Simon Woodman, et al. Specification and Verification of Composite
Web Services. In proocedings of The 8th Enterprise Distributed Object
Computing Conference 2004.

191

http://www.w3.org/TR/ws-cdl-10/
http://www.w3.org/TR/2004/REC-xml-20040204
http://www.w3.org/TR/2004/WD-wsdl20

WWV 2005 Preliminary Version

Improving the Quality of Web-based Enterprise
Applications with Extended Static Checking: A

Case Study

Frédéric Rioux 1, Patrice Chalin 1

Dependable Software Research Group (DSRG)
Department of Computer Science and Software Engineering

Concordia University
Montréal, Canada

Abstract

ESC/Java2 is a tool that statically detects errors in Java programs and that uses the
Java Modeling Language (JML) as its annotation language. ESC/Java2 can modu-
larly reason about the code of a Java Web-based Enterprise Application (WEA) and
uncover potential errors. In this paper, we assessed the effectiveness of ESC/Java2
at helping developers increase WEA quality by detecting design and implementation
issues.

Key words: Web-based Enterprise Application, Extended Static
Checking, Design by Contract, Java Modeling Language

1 Introduction

The evolution of programming languages has allowed software engineers to
develop increasingly larger software systems while maintaining, or improv-
ing, product quality. This has been achieved in part by increasing the level
of abstraction of the languages, exploiting new paradigms (such as object-
orientedness), and enabling compilers to perform static checks and/or embed
run-time checking code when the former is neither possible nor practical. In
light of the above, one may ask: what will be the next programming language
and tool advances that are likely to go mainstream? We believe that for most
domains of application, these advances are likely to include Design by Con-
tract (DBC) and Extended Static Checking (ESC). DBC can gradually be
integrated into projects as a lightweight formal method allowing developers
to become accustomed to the method. Among others, lint-like [7] ESC tools

1 Email: {f rioux, chalin}@cse.concordia.ca

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Rioux, Chalin

— familiar to many programmers — can then make use of this extra formal
documentation to perform rapid and effective checks.

Enterprise Applications (EAs) are generally characterized by the large vol-
ume of data they manipulate, the business rules they embed, and their need to
integrate with other (often legacy) applications [6]. An important class of EAs
are web-based enterprise applications (WEAs) that businesses and consumers
are increasingly coming to make use of — in the third quarter of 2004 alone,
retail e-commerce sales in the US have been estimated at $17.6 billion US, an
increase of 4.7% from the previous quarter. This figure has been on the rise
since 1999 [16].

This paper presents the preliminary results of a case study whose main
goal is to assess the effectiveness of ESC/Java2 [1][2][4] at helping developers
increase WEA quality by detecting design and implementation issues. In
doing so, we wrote lightweight JML specifications for some javax and java.sql
classes that can be reused not only by ESC/Java2 users, but by the whole JML
community. The subject of our study is a collection of WEAs mainly based
on a small framework (named SoenEA) that has been in use at Concordia for
almost two years now in courses where WEA architecture and design is being
taught.

This paper is organized as follows. DBC, ESC and ESC/Java2 are cov-
ered in Section 2. Section 3 reiterates our goals and presents the case study
including an explanation for our choice of application domain. The remaining
sections offer a discussion of the case study results, future work and conclusion.

2 Background

2.1 Design by Contract (DBC)

DBC is an approach to design which views the relationship between two classes
— a supplier and a client — as a formal agreement, or a contract [12]. Such
an agreement expresses each party’s rights and obligations. Contracts usually
take the form of preconditions, post-conditions, and invariants.

Contracts are a form of module specifications. As such, it is possible to
raise our level of trust of large scale and complex systems if their contracts are
unambiguous, correct, and verifiable. DBC is currently supported by the Eiffel
programming language and some specification languages, including Behavioral
Interface Specification Languages (BISLs).

A BISL is a language that can be used to accurately describe a module’s
interface, hence, by definition, implementing DBC. The main characteristic of
a BISL is that it is tailored to a particular programming language. BISLs are
an interesting kind of specification language, since they can be used to bridge
the gap between the specification and design activities of the software develop-
ment lifecycle. They also set the basis for powerful and automatic verification.
Moreover, they are flexible, allowing them to be introduced incrementally, as

194

Rioux, Chalin

//@ requires y >= 0;

public static int isqrt(int y){

...

}

Fig. 1. Sample lightweight specification

needed, to new developments as well as legacy code.

The Java Modeling Language (JML) is a Java BISL that is actively being
developed by an international team of researchers who collaborate on the
language definition and tool implementation. Details on the latest tools and
applications can be found in [1]. Use of JML for DBC is described in [8].

JML specifications can be embedded in Java source file as specially for-
matted comments or in external specification files. A JML expression look a
lot like a Java expression since JML keeps most of Java’s syntax and semantics
[10]. Such a tight coupling between Java and JML lowers the burden required
of developers to learn and use JML.

JML supports both lightweight and heavyweight specifications. Lightweight
specifications are less detailed and complete than heavyweight specifications
and are often composed of individual clauses, describing only one aspect of
the intended behavior. JML was designed to support lightweight specifications
and has semantics that allow most clauses to be omitted.

In JML, the specifications are usually written just before the methods.
Preconditions are represented by the requires clause and the post-condition
by the ensures clause. Every clause is a Boolean expression. Method calls
can be used in the specification, but they must be calls to methods declared
as pure, i.e. that they have no side-effects [9].

Figure 1 and Figure 2 show partial and more detailed specifications, respec-
tively, of an integer square root function. In the first case, the only constraint
is that the number must be a positive integer; however, in the later case, the
function is also guaranteed to return a number that is in the range [-y, y],
whose square is smaller or equal to y and whose square of the absolute value
increased of 1 is greater than y.

2.2 Extended Static Checking (ESC)

While run-time checking code can certainly be useful for detecting and report-
ing errors, it leaves developers with the problem of handling them at run-time.
Whenever possible, it would be more desirable if those errors could be pre-
vented from occurring in the first place. Also, the earlier an error is found,
the less expensive it is to correct. Static program checkers allow us to detect
some of these run-time errors by static program analysis.

There exists a wide variety of static checking tools ranging from simple
type checkers to formal program verifier. ESC is a special class of checker
that, according to [11], generates verification conditions and logical formulas

195

Rioux, Chalin

/*@ public normal_behavior

@ requires y >= 0;

@ ensures -y <= \result

@ && \result <= y

@ && \result * \result <= y

@ && y < (Math.abs(\result) + 1)

@ * (Math.abs(\result) + 1);

@*/

public static int isqrt(int y){

...

}

Fig. 2. Sample heavyweight specification

/*@ behavior

@ requires true;

@ assignable \everything;

@ ensures true;

@ signals (Exception) true;

@ ...

@*/

Fig. 3. Default (i.e. implicit) method specification

from a given program and passes them to an automatic theorem prover. Ideal
characteristics of ESC tools are completeness and soundness i.e., catching
all the errors, and triggering no false alarms (by reporting an error where
there is none). On engineering grounds, such characteristics are not needed to
benefit from ESC, especially since meeting such characteristics would imply
over specification and reduced performances of the checkers [11][5].

ESC tools warn the user when there is an error or when the code does not
implement its specification. By default, trivial specifications are assumed. A
trivial specification implies that there are no special preconditions, that the
execution may have any side effect, and that no specific post-condition should
be expected. A default specification, if written in JML, would look like Figure
3 [9].

A false alarm may indicate that the specification is too weak and needs to
be strengthened. To do such a strengthening, the programmers need to record
the design decisions using the tool’s annotation language that takes the form
of a comment in the code. According to Flanagan et al. the annotation burden
coupled with the fact that un-annotated code generates an excessive quantity
of warnings may lower the benefit/effort ratio below the acceptable boundary
of the mainstream programmer [5].

196

Rioux, Chalin

2.3 ESC/Java2

ESC/Java is an ESC tool for Java that was developed subsequently to the
ESC/Modula-3 tool. These two ESC tools cumulate more than 12 years of
experience and have been successfully applied to tens of thousands of lines of
code [11]. Even if ESC/Java uses a complex program verification technology,
it looks like a simple type checker for the programmer. Moreover, since it per-
forms modular checking (as opposed to whole-program checking) the level of
complexity can be kept at minimal level [2]. The second version of ESC/Java
features JML as its annotation language. Both heavy and lightweight specifi-
cations are understood. Like its predecessor, ESC/Java2 is neither sound nor
complete.

Coupling ESC with JML by using the phrases from a specification language
as the ESC annotation language implies that the design decisions are recorded
using a rich language and that such specifications can be reused, expanded,
and passed to other JML tools-such as the runtime assertion compiler of Iowa
University, JML RAC, and the formal program verification tool of Nijmegen
University, LOOP [1]. Moreover, such an annotation language can take ad-
vantages of all existing JML specifications in order to better reason about the
code it is checking.

An important feature of JML is its adoption of a behavioral subtyping
semantics [9] in which a method overridden in a subclass is required to preserve
the contracts of its corresponding super class method [3]. In the next section
we mention how we believe behavioral subtyping can be used to advantage.

2.4 Java Web-based Enterprise Application (WEA)

Most Enterprise Applications (EAs) involve a significant quantity of persistent
data. Most often, databases are used to store and access that data. Another
characteristic of EAs is the high number of user interaction screens. For
WEAs, Fowler recommends using the common three layered scheme, which
isolates the domain logic (also referred to as business logic) from the presenta-
tion and data sources [6]. An interesting aspect of Java WEAs, is that most of
them use the same small set of external libraries, super classes and interfaces
for user interaction (e.g. servlets.jar) and database access (e.g. java.sql.*).
Due to the behavioral subtyping semantics of JML, we believe that in such a
situation, the investment of specifying commonly used super classes and inter-
faces should reduce the effort required in specifying subclasses and lower the
number of false alarms thus allowing developers to identify potential faults
more easily.

197

Rioux, Chalin

3 Case study

3.1 Goals and approach

The main goal of our case study has been to assess the effectiveness of ESC/Java2
at helping developers increase software quality by detecting design and imple-
mentation faults. One of our early decisions was concerning the choice of
application area. We opted for WEAs because it is one of the most active
areas in Java development. We were also influenced by the availability of
SoenEA, a small WEA framework that has been developed over the past two
years for use in software architecture and design courses at Concordia Uni-
versity. SoenEA wraps code, such as the database connection and the servlet
interface, so that students can use them easily without thorough knowledge
of these technologies. The framework also comes with application samples.

Our study had two phases. During the first phase we applied ESC/Java2
to the SoenEA core and to sample applications that made use of the SoenEA.
We will refer to this package as A1. The purpose of the first phase was to:

• gain experience in using ESC/Java2, while at the same time

• incrementally developing specifications for:
· A1 application
· SoenEA core
· javax and java.sql package modules used by A1.

ESC/Java2 performs modular checking [5][2] thus allowing us to work on
one A1 file at a time. This is very useful as ESC/Java2 initially reported
hundreds of faults for A1. A1 contained 1.6K source lines of code (SLOC), or
2.1K LOC.

The purpose of phase two was to measure the reduction in false alarms due
to the use of the annotated versions of SoenEA core, javax, java.sql modules
developed in phase 1. In addition to the A1 package we analyzed two more
applications totaling 5K SLOC (or 7.6K LOC). We will refer to the latter as
the A3 package.

3.2 General results

These two phases required approximately 4 person-weeks of effort (full-time).
At the conclusion of phase I we had created:

• An annotated version of the A1 package (i.e. SoenEA core and the A1
application). Overall this represented an increase in size by approximately
4% due to the annotations (i.e. about 100 LOC).

• Lightweight specifications for the javax and java.sql package modules-90
SLOC (379 LOC). These lightweight specifications consisted mostly of an-
notations about the class attributes and method arguments restricting them
to being non-null.

198

Rioux, Chalin

In phase II, use of the created specifications reduced false alarms by 9%
on average for the A1 and A3 packages as compared to use of ESC/Java2
without the specifications.

In the subsections that follow we relate some of our experiences in speci-
fying the external libraries (javax and java.sql) as well as the SoenEA core.
The material presents issues of increasing complexity (to emulate, to some
extent, the order in which we usually had to deal with them). The final sub-
section covers the most interesting faults reported by ESC/Java2 for the A1
application.

Before discussing the number of faults uncovered by ESC/Java2 it becomes
essential at this point to provide our definition of ”fault”. By ”fault”, we refer
to something that is wrong with respect to the intended use of a method (or
in general, a class). The intended use of a method is what is recorded in its
specification. When there is no explicit documented specification (be it formal
or informal), a default implicit specification is assumed. A ”fault” occurs when
the code does not satisfy the specification. According to DBC this can occur
either because a client calls a method when the method’s pre-condition is not
satisfied or when a method returns and its post-condition is not satisfied. A
false alarm due to a missing explicit specification will be recognized as a fault
and named a specification fault. False alarms over external libraries denote
missing specifications in ESC/Java2, whereas false alarms over user modules
denote true specification faults.

3.3 Specifying javax, java.sql and the SoenEA core

ESC/Java2 performs static checking and reasoning using the JML annotations
present in the code or specification files. In the absence of a specification (as
would be the case for a method of the javax class at the start of phase I)
ESC/Java2 assumes the default specification (Section 2.2) which is very per-
missive and seldom satisfactory. This implies that in the absence of specifica-
tion, ESC/Java2 may trigger warnings, many of which would be false alarms
or specification faults. (Thankfully ESC/Java2 comes with JML specifications
for the most common Java classes, which, e.g. prevents it from warning about
possible null dereferences in the case of a simple System.out.)

An example of a specification fault that ESC/Java2 reported early in phase
I is given in Figure 4. The corresponding code is given in Figure 5. ESC/Java2
reports that the variable dbStatement could be null at the indicated point in
line 35. This is not the case since this variable is set to the return value
of db.preparedStatement() which always returns a reference to an object [15].
This is a false alarm due to a lack of explicit specification of preparedState-
ment().

Fixing this false alarm is simple: we create an explicit specification for the
method stating that it does not return a null result-see Figure 6. Most of
the specifications created for javax and java.sql modules where of this nature:

199

Rioux, Chalin

soenEA.applications.assignment.a3.ts.TaskTDG: findAll() ...

.\soenEA\applications\assignment\a3\ts\TaskTDG.java:35:

Warning: Possible null dereference (Null)

return dbStatement.executeQuery();

^

[0.19 s 10054064 bytes] failed

Fig. 4. Sample false alarm / specification fault

public class TaskTDG {

...

public static ResultSet findAll()

throws Exception, SQLException {

Connection db = DbRegistry.getDbConnection();

PreparedStatement dbStatement =

db.prepareStatement("SELECT * from " + TABLE_NAME);

return dbStatement.executeQuery(); // line 35

}

...

}

Fig. 5. TaskTDG code excerpt

package java.sql;

public interface Connection {

//@ ensures \result != null;

public PreparedStatement prepareStatement(String sql)

throws SQLException;

}

Fig. 6. Sample lightweight spec created for Connection.preparedStatement()

i.e. specifying that arguments and or returned results would not be null.
ESC/Java2 is capable of static checking of far more properties but statically
detecting all possible null dereferences was deemed sufficient for this iteration
of the case study.

Like the specifications of the external libraries, the majority of the anno-
tations added to the SoenEA core were of the same lightweight nature. This
allowed us to uncover some very interesting faults nonetheless, which we report
in the next section.

200

Rioux, Chalin

4 Specific design and implementation faults

In this section we report on the most interesting faults uncovered by ESC/Java2
in the A1 package (i.e. SoenEA core and the A1 application) during the sec-
ond phase of our study. ESC/Java2 reported 102 faults for the A1 package.
Of the 102 faults that were identified, 90% were specification faults, i.e. they
were due to a lack of design documentation/specifications. Such faults are
eliminated by writing design documentation in the form of method API spec-
ifications. The faults presented next are taken from the remaining 10% of the
faults.

4.1 Incompletely propagated design changes

At least two of the faults were manifestations of incompletely propagated de-
sign changes. For example, one of the domain logic classes representing a
Task in the A1 application underwent the following design change: initially
the class fields were initialized by means of setters; subsequently it was de-
cided that all fields were to be initialized by means of the (non-default) class
constructors. A consequence of this design change is that class constructor
arguments of reference types could no longer be null. Such a fact had been
properly documented in the Task class but not all calls of the constructors
respected these constraints either because:

• not all client classes were appropriately updated, or, as often happens,

• in subsequent updates to the application, developers were still relying on
the old API semantics.

These two scenarios demonstrate the advantage of formally documented design
decisions and the use of extended static checking.

Another similar example occurred in the SoenEA database registry. An
initial version of the class tried to enforce that a connection field would never
be null. However, it was realized that this was infeasible. It is interesting
to note that had ESC/Java2 been used earlier, this design error would have
been uncovered from the start. The class was redesigned, but ESC/Java2
helped uncover some situations in which designers had not anticipated that
the connection field could still be null.

4.2 Possible violation of behavioral subtyping

In the User class a method named equals was defined (Figure 7), thus overrid-
ing Object ’s equals method. ESC/Java2 reported that the superclass specifi-
cation (i.e. the specification of Object.equals()) might not hold for User.equals.
It was initially thought that the cause of this fault was that User.equals only
compared four of its five attributes. However, after discussion with designers,
it was realized that this was deliberate. Hence, in order to avoid confusion,
it was decided that the proper corrective action was to rename User.equals

201

Rioux, Chalin

public class User { ...

private long id;

private String loginId;

private String name;

private List originatedTasks;

private String password;

public boolean equals(Object obj) {

if(obj == null || !(obj instanceof User))

return false;

User other = (User) obj;

return this.id == other.id &&

this.loginId.equals(other.loginId) &&

this.name.equals(other.name) &&

this.password.equals(other.password);

}

}

Fig. 7. User class excerpt

soenEA.general.app.Servlet: forwardAbsolute(java.lang.String,

javax.servlet.http.HttpServletRequest,

javax.servlet.http.HttpServletResponse) ...

soenEA/general/app/Servlet.java:109:

Warning: Possible null dereference (Null)

dispatcher.forward(request, response);

^

Fig. 8. Null dispatcher error

to User.similar. This example illustrates the power of behavioral subtyp-
ing: carefully written super class specifications allow ESC/Java2 to uncover
semantic errors.

4.3 Unchecked dispatcher

ESC/Java2 detected a fault in the SoenEA core that, we have come to know,
is apparently common for novice WEA developers (Figure 8). The framework
assumed that the servlet dispatcher was always initialized. This is not the case
[14]. ESC/Java2 provided a warning to this effect (based on default implicit
specifications of getRequestDispatcher, which in this case were correct). The
faulty code is given in Figure 9.

202

Rioux, Chalin

public void forwardAbsolute(String target,

HttpServletRequest request, HttpServletResponse response)

throws ServletException, java.io.IOException

{

RequestDispatcher dispatcher =

getServletContext().getRequestDispatcher(target);

dispatcher.forward(request, response);

}

Fig. 9. Servlet class excerpt

4.4 Missed exceptional condition

Database connection information (e.g. login id, password) is recorded in a
property file that the SoenEA framework reads. While the case where the file
is not present was properly handled, the case where the file did not contain
the required properties was not. This was not caught during code review nor
during testing.

4.5 Other faults

A few of the remaining faults were simple possible null pointer dereferences.
An example of this occurred in a file that was recently added to the framework,
which had not been tested carefully. ESC/Java2 detected three possible null
pointer dereferences in it. Only an extensive use of the framework would have
been able to catch these, since the class was an exception adapter that would
only be used under exceptional circumstances.

5 Conclusion

We believe writing JML specifications and verifying the match between them
and the code with ESC/Java2 was a very helpful exercise. The time spent
during this case study has allowed us not only to identify and correct design
issues, but it has also forced us to think about and document the design
decisions that had previously been made. Moreover, this documentation can
be automatically verified by the tool. We have raised our level of trust in
the framework and, through the enforcement of behavioral subtyping, feel the
framework is a better candidate for reuse and expansion.

In this case study, ESC/Java2 proved itself to be useful for WEAs. How-
ever, it is a general purpose tool that is not limited to a specific domain
of application. The use of ESC/Java2 is likely to spread to other domains
of application. To our knowledge, this case study was the first one involv-
ing ESC/Java2 and the WEA domain. Perhaps a drawback of JML in that
particular domain is that is does not currently support reasoning about con-
currency. However, a proposal has just been published to address this issue
[13]. Nonetheless the lightweight JML specifications we had to write for javax

203

Rioux, Chalin

and java.sql can be reused or supplemented by the JML community and can
contribute to making JML and its supporting tools, like ESC/Java2, more
convenient to use for Java developers.

Our case study involved a relatively small framework and application, but
since it performs modular checking, we believe that ESC/Java2 will scale up
to larger application. For this case study, we used the latest development
release of ESC/Java2 (December 2004). It is considered to be in a late alpha
cycle. As such we did encounter errors with the tool but none that could not
be worked around. In fact the lead developers were very responsive to our
problem reports and requests for assistance when the tool failed.

Of course there is a cost associated with the creation of specifications.
As this was our first case study involving ESC/Java2, an important part of
our effort was dedicated to learning about the tool and about the particular
form of JML specifications that best suite it. Several false alarms were also
due to missing specifications of javax and java.sql classes. Moreover, as of
now, ESC/Java2 is not integrated into any IDE. We are confident that as
research progresses and ESC/Java2 becomes more mature and easy to use,
the cost/benefit ratio will become more and more appealing.

6 Future work

Now that some of the javax and java.sql classes have been specified, in the
future, it would be an interesting exercise to perform this case study again
with other WEAs and see if the annotation burden has been lowered in a
significant manner. Since every year the SoenEA framework is used by more
than a hundred students, we plan to provide them with the annotated version
of the framework and verify whether they think using ESC/Java2 can improve
the quality of their WEAs and help them identify and correct faults. Yet an-
other interesting avenue would be to reuse the annotated SoenEA framework,
applying other JML compatible tools to it, and then checking how much the
written specification can be reused and what benefits WEA developers can
get out of it.

7 Acknowledgement

The authors would like to thank Daniel Sinnig and Stuart Thiel for their
valuable feedback as well David Cok and Joseph Kiniry for helping us with
ESC/Java2 and answering all our questions.

References

[1] Burdy, L., Y. Cheon, D. Cok, M. Ernst, J. Kiniry, G. T. Leavens, K. R. M.
Leino and E. Poll, An overview of JML tools and applications, International

204

Rioux, Chalin

Journal on Software Tools for Technology Transfer (STTT) (2004), to appear.
URL ftp://ftp.cs.iastate.edu/pub/leavens/JML/sttt04.pdf

[2] Cok, D. R. and J. R. Kiniry, Esc/java2: Uniting esc/java and jml, in:
Construction and Analysis of Safe, Secure, and Interoperable Smart Devices
(2004), pp. 108–128.

[3] Dhara, K. K. and G. T. Leavens, Forcing behavioral subtyping through
specification inheritance, Technical Report 95-20c, Department of Computer
Science, Iowa State University, Ames, Iowa, 50011 (1995).
URL ftp://ftp.cs.iastate.edu/pub/techreports/TR95-20/TR.ps.gz

[4] Esc/java2.
URL www.sos.cs.ru.nl/research/escjava/

[5] Flanagan, C., K. R. M. Leino, L. Lillibridge, G. Nelson, J. B. Saxe and R. Stata,
Extended static checking for Java, ACM SIGPLAN Notices 37 (2002), pp. 234–
245.

[6] Fowler, M., “Patterns of Enterprise Application Architecture,” Addison Wesley,
2002.

[7] Johnson, S., Lint, a c program checker (1978).
URL citeseer.ist.psu.edu/johnson78lint.html

[8] Leavens, G. and Y. Cheon, Design by contract with jml (2003).
URL citeseer.lcs.mit.edu/leavens03design.html

[9] Leavens, G. T., A. L. Baker and C. Ruby, Preliminary design of JML: A
behavioral interface specification language for Java, Technical Report 98-06y,
Iowa State University, Department of Computer Science (2004), see www.

jmlspecs.org.
URL ftp://ftp.cs.iastate.edu/pub/techreports/TR98-06/TR.ps.gz

[10] Leavens, G. T., K. R. M. Leino, E. Poll, C. Ruby and B. Jacobs, JML: notations
and tools supporting detailed design in Java, in: OOPSLA 2000 Companion,
Minneapolis, Minnesota, ACM, 2000, pp. 105–106.
URL ftp://ftp.cs.iastate.edu/pub/techreports/TR00-15/TR.ps.gz

[11] Leino, K. R. M., Extended static checking: A ten-year perspective, Lecture Notes
in Computer Science 2000 (2001), pp. 157–??
URL http://link.springer-ny.com/link/service/series/0558/bibs/

2000/20000157.htm

[12] Meyer, B., “Object-Oriented Software Construction,” Prentice-Hall, Englewood
Cliffs, 1997, second edition.
URL http://www.prenhall.com/allbooks/ptr_0136291554.html

[13] Rodŕıguez, E., M. B. Dwyer, C. Flanagan, J. Hatcliff, G. T. Leavens and Robby,
Extending sequential specification techniques for modular specification and
verification of multi-threaded programs, Technical Report SAnToS-TR2004-10,
Kansas State University, Department of Computing and Information Sciences

205

ftp://ftp.cs.iastate.edu/pub/leavens/JML/sttt04.pdf
ftp://ftp.cs.iastate.edu/pub/techreports/TR95-20/TR.ps.gz
www.sos.cs.ru.nl/research/escjava/
citeseer.ist.psu.edu/johnson78lint.html
citeseer.lcs.mit.edu/leavens03design.html
www.jmlspecs.org
www.jmlspecs.org
ftp://ftp.cs.iastate.edu/pub/techreports/TR98-06/TR.ps.gz
ftp://ftp.cs.iastate.edu/pub/techreports/TR00-15/TR.ps.gz
http://link.springer-ny.com/link/service/series/0558/bibs/2000/20000157.htm
http://link.springer-ny.com/link/service/series/0558/bibs/2000/20000157.htm
http://www.prenhall.com/allbooks/ptr_0136291554.html

Rioux, Chalin

(2004), to appear in ECOOP 2005.
URL http://spex.projects.cis.ksu.edu/papers/SAnToS-TR2004-10.pdf

[14] Sun java servlet api documentation.
URL
java.sun.com/j2ee/1.4/docs/api/javax/servlet/package-summary.html

[15] Sun java sql api documentation.
URL
java.sun.com/j2se/1.4.2/docs/api/java/sql/package-summary.html

[16] Quarterly retail e-commerce sales 3rd quarter 2004 (2004).
URL www.census.gov/mrts/www/data/html/3q2004.html

206

http://spex.projects.cis.ksu.edu/papers/SAnToS-TR2004-10.pdf
java.sun.com/j2ee/1.4/docs/api/javax/servlet/package-summary.html
java.sun.com/j2se/1.4.2/docs/api/java/sql/package-summary.html
www.census.gov/mrts/www/data/html/3q2004.html

Author Index

Abou-Zahra, S., 97

Álvarez-Álvarez, L., 83

Amato, G., 161

Arias-Fisteus, J., 83

Ballis, D., 153

Barboni, E., 33

Cambronero, M.E., 177

Chalin, P., 193

Coppola, M., 161

Crocker, D., 27

Cuartero, F., 177

Delgado-Kloos, C., 83

Diaz, G., 177

Escalona Cuaresma, M.J., 65

Estruch, V., 77

Farenc, C., 33

Ferri, C., 77

Finkelstein, A., 1

Garćıa-Vivó, J., 153

Gnesi, S., 161

Gutierrez Rodŕıguez, J.J., 65

Hernández-Orallo, J., 77

Honsell, F., 127

Hu, B., 37

Karusseit, M., 9

Kirchner, C., 139

Kirchner, H., 139

Krishnamurthi, S., 3

Kutsia, T., 103

Lauck, F., 37

Liquori, L., 127

Lucas, S., 157

Luque-Centeno, V., 83

Margaria, T., 9

Mej́ıa Risoto, M., 65

Palanque, P., 33

Pardo, J.J., 177

Ramı́rez-Quintana M.J., 77

Redamalla, R., 127

Rioux, F., 193

Santana, A., 139

Scheffczyk, J., 37

Scozzari, F., 161

Semini, L., 161

Silva, J., 121

Stone, R.G., 55

Torres Valderrama, J., 65

Valero, V., 177

Warren, J. H., 27

Winckler, M., 33

	What is a Web Site?
	Web Interactions
	Web Verification
	A Driving Application
	Temporal Behavior
	Information Safety and Visibility

	The Structure of Web Programs
	Some Research Problems
	References
	Features as Modelling Entities
	Application: The Online Conference Service (OCS)
	Feature Description
	Property Description

	Designing the OCS as a Feature Based System
	Feature-based Design
	Hierarchy of Features
	Organizing the User/Role Management
	Model Checking-Based High-Level Validation

	Conclusions
	References
	Hierarchical Feature Structure
	Introduction
	Defining Requirements with CREATIV
	Generating and Verifying the Application with Perfect Developer
	Case Study
	Related Work
	Conclusions and Further Work
	References
	Navigation modeling with the SWC notation
	Strategies for model-based evaluation of navigation
	Discussion and future work
	References
	Introduction
	News Pages --- A Challenge for Up-to-dateness
	Freshness of a Single Document
	Approaching Freshness
	Freshness of a News Page

	An Up-to-dateness Aware WCMS
	XML-centric WCMS
	A Simple Syntactic Document Metric based on XMLDiff
	Measuring Editing Effort by a Syntactic Document Metric

	Determining Up-to-dateness of Multiple Documents
	Semantic Relations
	Propagating Up-to-dateness Changes
	Propagating Up-to-dateness of our Example Web Site

	Conclusions and Outlook
	References
	Introduction
	Embedded Scripting
	Validation against a DTD
	Informal Validation of Scripted Web-Pages
	Generalised Output and Augmenting the DTD
	The Augmented DTD
	The Script Processor
	Current implementation
	Summary
	References
	Introduction
	Distance Based Decision Trees
	An illustrative example
	Conclusions
	References
	References
	Introduction
	Anatomy of the Evaluation and Report Language
	Core Classes
	Extensions

	Current State of Web Accessibility Evaluation Tools
	Use cases for the Evaluation and Report Language
	Combine Reports
	Verify Test Results
	Prioritize Results
	Provide Data Views
	Integrate Authoring Tools
	Annotate Web Content

	Summary
	References
	Introduction
	Preliminaries
	Matching Algorithm
	Regular Expressions
	Context Sequence Matching and XML
	Conclusions
	References
	Introduction
	XML
	The Slicing Technique
	Implementation
	References
	Introduction
	The Pattern Logical Framework
	PLF's Terms
	Matching and Operational Semantics
	PLF's Type System

	Examples
	Call-by-value Lambda Calculus
	Untyped Rewriting Calculus

	References
	Genuine XML-examples in à la Rewriting Calculus
	Introduction
	Motivating example
	The Modular HTML language
	Semantics, anchoring and compilation
	Related Work about HTML
	Conclusion
	References
	Introduction
	Web site denotation
	Web specification language
	The verification system
	References
	Introduction
	From ARSs to TRSs
	Further improvements and applications
	References
	Introduction
	The Multiple Levels of Integrity policy
	Formal Validation Methodology
	Validation of the Multiple Levels of Integrity policy

	A concept of interface
	Case Study: the Travel Agency
	Case Study: Peer to Peer Validation Service
	The inverted Turing Test
	Conclusion
	References
	Introduction
	Case Study: Travel Reservation System
	The WSCI - WSCDL Description
	WSCI
	Example. Travel Reservation System

	Modeling, Simulation and Verification
	Conclusions and Future Work
	References
	Introduction
	Background
	Design by Contract (DBC)
	Extended Static Checking (ESC)
	ESC/Java2
	Java Web-based Enterprise Application (WEA)

	Case study
	Goals and approach
	General results
	Specifying javax, java.sql and the SoenEA core

	Specific design and implementation faults
	Incompletely propagated design changes
	Possible violation of behavioral subtyping
	Unchecked dispatcher
	Missed exceptional condition
	Other faults

	Conclusion
	Future work
	Acknowledgement
	References

